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Lung sound is one of the parameters of respiratory health. This sound has a specific character 

if there is a disease in the lungs. In some cases, it is difficult to distinguish one type of lung 

sound to another. It takes the expertise, experience and sensitivity of clinicians to avoid 

misdiagnosis. Therefore, many studies have proposed a feature extraction method combined 

with automatic classification method for the detection of lung disease through lung sound 

analysis. Since the complex nature of biological signals which are produced by complex 

processes, the multiscale method is an interesting feature extraction method to be developed. 

This study proposes an empirical mode decomposition (EMD) and a modified gray level 

difference (GLD) for a lung sound classification. The EMD was used to decompose the 

signal, and then GLD was measured on each decomposed signal as a feature set. There are 

five classes of lung sounds which were simulated in this study, including normal, wheeze, 

crackle, pleural rub, and stridor. Performance evaluation was carried out using a multilayer 

perceptron (MLP) and 3-fold cross-validation. This proposed method yielded the highest 

accuracy of 96.97%. This study outperformed several previous studies which were simulated 

on the same dataset. It is hoped that in the future, the proposed methods can be tested on 

larger datasets to determine the robustness of the methods. 
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1. INTRODUCTION

Lung sounds can provide information on lung health [1]. 

Lung sounds can be heard using a stethoscope, which is called 

the auscultation method [2]. If there are physiological changes 

in the lungs due to a disease, it can cause changes in the lung 

sound pattern [3]. This becomes one of the reference criteria 

for doctors to diagnose the patients' lung disease. However, 

this technique tends to be very subjective because it depends 

on the experience and expertise of the doctor [1]. Digital signal 

processing methods become an alternative to deal with that 

problem. 

Many studies have proposed algorithms for automatic 

classification of lung sounds based on digital signal processing. 

Various feature extraction methods combined with classifier 

algorithms have been reported. Some of them use time-domain 

analysis, frequency domain analysis, time-frequency domain 

analysis, and signal complexity analysis. Analyzes in the time 

domain, for example using the Hjorth descriptor method are 

reported in [4-6] or empirical mode decomposition method, as 

reported in the study by Chen et al. [7]. Other studies that use 

analysis in the frequency domain such as Fast Fourier 

Transform (FFT) [8, 9], or using the Mel Frequency Cepstral 

Coefficients (MFCC) method are reported in the studies [10, 

11] Lung sound classification using analysis in the time-

frequency domain, as reported in the studies [12, 13]. However,

time domain analysis is preferred in the case of short data

segments and it is capable of measuring the power over the

broad band into a single index [14]. Time domain technique is

thought to be more suitable in the case of abnormal lung

sounds, because it has a short period [15, 16].

Since naturally the lung sound signals have non-stationary 

properties, a complexity analysis in the time domain is used to 

characterize this signal by some researchers. The most 

common complexity approach is the entropy measurement. 

Previous studies by Rizal et al. proposed seven combinations 

of entropy measurements for a lung sound classification [17]. 

This study generated an accuracy of 94.95% for the 

classification of five classes of lung sounds. Another entropy-

based research on the classification of wheeze and non-wheeze 

within lung sound signals was proposed by Aydore et al. [18]. 

The Renyi entropy method was used for feature extraction, and 

the accuracy achieved was 93.5% for the two data classes. 

Another study used a complexity parameter based on the 

Hjorth method for the feature extraction process. Hjorth 

parameters were measured on a single scale and multiscale 

scheme. The proposed methods generated an accuracy of 

83.95% and 95.06%, respectively [4, 5]. From the literature 

review on previous studies where the complexity approach has 

been performed, there is still a gap to improve the accuracy.  

Therefore, in this study, we proposed new protocol based 

on the empirical mode decomposition and a modified grey 

level difference (GLD) for lung sound classification. In this 

method, GLD parameters were measured at each level of 

decomposition. The calculated GLD parameters included 

second-moment gradient (GSM), contrast gradient (GC), 

mean gradient (GM), inverse difference moment (IDM), and 

gradient entropy (GE). These features then become the input 

of a multilayer perceptron for lung sounds classification. It is 

expected that this GLD can produce higher accuracy compared 

to entropy and Hjorth methods. 

As a reminder, this paper is organized as follows: section 2 
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contains a detailed explanation of the materials and methods 

used in this study. In section 3, it contains an explanation of 

the simulation results followed by a discussion. Meanwhile, 

conclusions and future work are presented in section 4. 

2. MATERIAL and METHOD

The lung sound classification protocol in this study is shown 

in Figure 1. The first process is pre-processing, which includes 

amplitude normalization and the mean normalization. The 

next step is signal decomposition using EMD. Next, GLD 

calculations are performed on each EMD result as a signal 

feature. The final process is evaluating performance using the 

classifier algorithm. A detailed description of the proposed 

system is explained in the following section. 

Figure 1. Proposed method 

2.1 Lung sound data 

The lung sound data which is used in this study was 

collected from open sources on the internet [19-21] and CD 

textbooks [22]. This data was then converted to a wav file and 

cut into one breathing cycle. All data were then sampled in 

8000 Hz dan 16-bit depth. Lung sound data consisted of five 

classes, namely normal, wheeze, crackle, pleural rub, and 

stridor. The number of data for each class is shown in Table 1. 

These five lung sound classes represent different lung sound 

characteristics. Normal represents the condition of a normal 

lung. Wheezing sounds produced by patients who have asthma, 

this has a continuous and musical nature. The crackle is 

associated with the condition of the lungs that have bronchitis. 

Stridor sounds usually occur in upper respiratory obstruction 

and produce loud frequencies. Meanwhile, pleural rub occurs 

due to friction in pleural inflammation.  

Table 1. The description of lung sound data 

Data class Number of data 

Normal 18 

Wheeze 13 

Crackle 15 

Pleural Rub 15 

Stridor 20 

2.2 Gray level difference matrix 

Gray-Level Difference Matrix (GLDM) is a method for 

measuring texture, which was first proposed by Weszka et al. 

[23]. Weszka et al. use GLDM to distinguish aerial 

photographs from an area such as urban, rural, forest, railroad, 

lake, and wetlands [23]. This technique measures the absolute 

value of the difference between two pixels at a distance d. The 

equation for calculating GLDM in the horizontal direction is 

as follows.  

𝑦(𝑖, 𝑗) = |𝑥(𝑖, 𝑗) − 𝑥(𝑖, 𝑗 + 𝐷)| 
𝐷 =  𝑝𝑖𝑥𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

(1) 

GLD measures the texture of an image by calculating the 

difference in pixels in the vertical and diagonal directions. The 

absolute pixel value can be calculated as: 

𝐻(𝑔|𝜃) (2) 

where, θ is the direction of adjacent pixels with the distance d. 

The principal value of θ can be: 0°, 45°, 90°, and 135°. Then 

the probability of each pixel can be formulated as: 

ℎ(𝑔|𝜃) =
𝐻(𝑔|𝜃)

∑ 𝐻(𝑔|𝜃)𝑔
∗ (3) 

Since the lung sounds are one-dimensional signals, GLDM 

can only be measured in the 0o direction. In this study, we 

calculated GLDM as features including, the gradient second 

moment (GSM), gradient contrast (GC), mean gradient (GM), 

inverse difference moment (IDM), and gradient entropy (GE) 

[23, 24]. All GLDM features are calculated in the following 

equation [25]: 

𝐺𝑆𝑀 = ∑ [ℎ(𝑔|𝜃)]2

𝑔
(4) 

𝐺𝐶 = ∑ 𝑔2

𝑔
ℎ(𝑔|𝜃) (5) 

𝐺𝑀 = ∑ ℎ(𝑔|𝜃). 𝑔
𝑔

 (6) 

𝐼𝐷𝑀 = ∑
ℎ(𝑔|𝜃)

(𝑔2 + 1)𝑔
(7) 

𝐺𝐸 = − ∑ ℎ(𝑔|𝜃). log ℎ(𝑔|𝜃)
𝑔

 (8) 

2.3 Multilayer perceptron (MLP) and cross-validation for 

evaluation 

Performance evaluation is intended to test the robustness of 

the proposed method. In this evaluation, we use a multilayer 

perceptron (MLP) as classifiers. MLP is preferred because it 

is an artificial neural network with the simplest architecture. 

MLP has the same number of inputs as the number of features, 

while the number of output layers is equal to the number of 

classes [26]. The number of hidden neurons varies to be 

observed, in which MLP configuration gives the best 

performance because this method is trial and error. Because 

MLP is a supervised classifier, cross-validation is needed to 

split the training data and test data. In this study, we used the 

3-fold cross-validation.

3. RESULT AND DISCUSSION

In this study, GLD is calculated on IMF1-IMF10. GLD is 

measured with different distances (D). For D = 0 means the 

GLD feature was calculated on the EMD signal results without 

the GLD process. All features were tested using MLP and 3-

FCV for performance validation [27]. Initially used 10 IMF, 
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then we reduced the number of IMF to observe the effect of 

the number of IMF on accuracy. 

Figure 2 shows the variance in each IMF in each class of 

lung sound data that reflects the energy of the signal. 

Variations in IMF6 to IMF10 tend to be low and have a value 

that coincides with each other. Significant different patterns 

are seen in IMF1-IMF5; this causes the highest accuracy to be 

produced in the range of IMF1-IMF4 or IMF1-IMF5. 

In this study, IMF1-IMF10 was used for the feature 

extraction process. For each IMF, GLD parameters were 

calculated using different D distances. The distance D used 

was divided into two types, short distances (1-5) and long 

distances (10, 20, 50, 100, and 200). 

All features were tested using MLP with the number of 

hidden neurons 15, 30, and 45, and 3-fold cross-validation for 

validation [27]. The test results are shown in Figure 3. 

Figure 2. Variance IMF1-IMF10 in each class of data 

Figure 3. Accuracy of EMD-GLD at a small distance for 

various MLP configuration (max GE, D = 5, N-15-5, 

82.72%) 

Figure 4. Bronchial sound and IMF1-IMF4 with its GLD 

result for D = 1 

As shown in Figure 3. It appears that for D = 1, the accuracy 

is very low. With D = 1, the distance between sample data is 

too small, so the results of the calculation of 𝑦 (𝑛)  =
 | 𝑥 (𝑛)  − 𝑥 (𝑛 +  𝑑) |  will produce 𝑦 (𝑛)  ≈  0.  Thus, the 

resulting GLD parameter will also be very small. The GLD 

results from the original signal and IMF1-IMF4, as in Figure 

4. 

Figures 3 and 5 show that the highest accuracy is achieved 

by GE with D = 5. The highest accuracy achieved is 93.83% 

with MLP N-15-5. The number of IMF which is used is 10, so 

this result is achieved with the number of features = 10. 

To analyze the effect of IMF numbers, which are used in 

GLD, accuracy testing for different IMF numbers using GE 

features is performed. The results obtained for MLP N-15-5 

are shown in Figure 6. At D = 50, the results achieved do not 

change if the IMF is reduced to 5 IMF. Meanwhile, if only 4 

IMF are used, the accuracy will decrease. This shows, IMF1-

IMF5 sufficiently represents the characteristics of lung sounds 

so that the number of features used is sufficient to use GE. 

Table 2 shows the results of the recognition in more detail 

and calculation of sensitivity (SE) and specificity (SP). 

Misclassification only occurs in Pleural rub data. From 15 

Pleural Rub data, only ten were recognized as a pleural rub, so 

the SE for a pleural rub is 66.67%. This misclassification 

causes SP values for the other three classes, including, 

bronchial, crackle, and stridor to decrease. The decrease in SP 

due to the 5 pleural rub data was classified as either bronchial, 

crackle, or stridor. The best results were achieved by Asthma, 

with 100% SE and SP values. 

Referring to Figure 2, where different patterns are occurring 

in IMF1-IMF5, then a feature reduction is carried out in which 

the IMF ranges used are IMF1-IMF4 and IMF1-IMF5 and its 

impact is observed on the resulting accuracy. From this test 

scenario, the highest accuracy for each GLD feature is shown 

in Table 3. The highest accuracy of 96.97% was generated by 

five GLD features at a distance of D = 10 with IMF1-IMF4. 

This means that the number of features was 20. The use of one 

GLD feature in this case GA, produces the highest accuracy of 

95.96% using IMF1-IMF5 with D = 4. From the summary of 

the test results presented in Table 3, it can be seen that the 

highest accuracy in each condition was produced by IMF1-

IMF4 or IMF1-IMF5, this condition was caused because the 

signal information was partly located in IMF1-IMF5. 

Figure 5. Accuracy of EMD-GLD at long distance for 

various MLP configuration (max GE, D = 50, N-15-5, 

93.83%) 

Figure 6. Effect of IMF number used as the feature 
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Table 2. Confusion matrix and SE and SP calculations for GE, IMF1-IMF5, N-15-5 

Data class Classified as SE (%) SP (%) 

Bronchial Wheeze Crackle Pleural Rub Stridor 

Bronchial 18 0 0 0 0 100 98.41 

Asthma 0 13 0 0 0 100 100 

Crackle 0 0 15 0 0 100 98.48 

Pleural Rub 1 0 1 10 3 66.67 100 

Stridor 0 0 0 0 20 100 95.08 

Table 3. The highest accuracy of each GLDM feature on the distance (D) with a range of IMF1-IMF4 and IMF1-IM5 

Feature Highest accuracy (%) Distance (D) IMF Number of features 

ALL 96.97 10 IMF1-IMF4 20 

GC 75.76 5 IMF1-IMF4 4 

GA 95.96 4 IMF1-IMF5 5 

GE 93.94 0 

2 

50 

IMF1-IMF5 

IMF1-IMF4 

IMF1-IMF5 

5 

4 

5 

GM 87.88 50 IMF1-IMF5 5 

IDM 92.93 10 IMF1-IMF5 5 

Compared with similar studies using EMD, the proposed 

method is better in terms of a smaller number of features, five 

features for 95.96% accuracy, or 20 features with 96.97% 

accuracy. The process was simple because it did not have to 

find the IF of the signal, as in previous studies [7, 28-30]. In 

research [7, 28, 29], only analyzes were performed, which 

showed that EMD could be used to distinguish one lung sound 

from another. Meanwhile İçer and Ş. Gengeç simulated a 

classification with IFmean features that produced an accuracy 

of 93% with SVM as a classifier [30]. In general, the proposed 

method promises to be used for feature extraction in the 

classification of lung sounds due to simple computation, a 

small number of features, and higher accuracy compared to 

single scale accuracy. 

4. CONCLUSIONS

In this study, we proposed a combination of EMD and 

GLDM for lung sound classification. EMD was used to 

decompose signals into several IMF, while GLDM was used 

to measure the dynamics of signal. Because GLDM was 

initially used in image processing, modifications were made 

so that it could be used for lung sound signal analysis. GLDM 

was chosen as a method to see the signal dynamics that occur 

in pulmonary sounds. The advantage of GLDM was that it was 

easy to see co-occurrence signal that were determined from a 

specified distance. Accuracy could be improved by finding the 

appropriate distance. Tests using various distances and the 

number of IMF produced the highest accuracy of 96.97% at 

distances D = 10 and 4 IMF. The proposed method can be 

tested on a larger dataset to test the consistency of its 

performance. The proposed method is expected to be used for 

feature extraction in other biomedical signals such as EEG 

signals, heart sounds, and others. 
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