
 

 
 
 

 
 

 
1. INTRODUCTION 

Most building materials are water-bearing porous materials, 

such as concrete, wood, and so on. The moisture transfer in 

these materials poses a great impact on indoor humidity, air-

conditioning load, and the cooling load [1, 2]. In most building 

materials, there is a coupling effect between temperature and 

humidity, especially when the ratio of thermal conductivity to 

water diffusivity is close to the unit value. Despite the 

intensive research [3-8] on the interaction between 

temperature and humidity, most scholars have only discussed 

the ideal case under boundary conditions. Moreover, the 

existing research is concentrated on the coupling effect in the 

material, failing to tackle the energy and mass balance on some 

boundaries [9]. 

In recent years, great progress has been made in the solution 

of heat and mass transfer equations. For instance, Mikhailov 

and Ozisik [10] derived the analytical solution of linear 

problem based on the traditional integral transformation 

method. Nevertheless, some complex eigenvalues were 

discovered and found to influence the distribution of 

temperature and humidity [11]. Chang et al. [14] employed 

decoupling technique to couple the governing equations, but 

did not realize the simultaneous positioning of the coupled 

governing equations and boundary conditions. Cheroto et al. 

[7] proposed an improved lumped system analysis method to 

produce approximate solutions. This approach avoids complex 

empirical formulas at the cost of accuracy. Taking physical 

models as semi-infinite media, Fudym [12] put forward a 1D 

linear equation for unsteady coupled heat and moisture 

transfer, and give the solution to the equation. 

In actual practice, some scholars have made assumptions to 

obtain the analytical solutions of the equations, such as 

regarding the total pressure as a constant and viewing the 

physical parameters of the material as fixed. Taking the partial 

pressure and temperature of water vapour as driving potential, 

Chen Youming and Chen Zaikang established the equations of 

simultaneous heat and moisture transfer for porous building 

materials in the isothermal moisture absorption and desorption 

range, and discussed the conditions for linearization of the 

equations. Guo Xingguo set up a new model of coupled heat 

and moisture transfer in a multilayer wall, taking the humidity 

and temperature of the air in the wall as the driving force, and 

discretized the governing equations by the finite-difference 

method. In his model, the moisture content of the air is 

considered as a function of the moisture content and 

temperature of the materials. 

In light of the above, this paper introduces a hybrid 

numerical method to discuss the transient temperature and 

humidity distribution during the coupled heat and moisture 

transfer in building materials. First, the general solution of the 

governing equations was obtained in the transform domain by 

Laplace transform and the finite-difference method. Then, the 

real domain was inversed by matrix operation and Fourier 

series. 
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ABSTRACT  

 
This paper aims to identify the transient temperature and humidity distribution during the coupled heat and 

moisture transfer in porous building materials. To this end, the Laplace transform and finite-difference method 

were combined into a hybrid numerical method, after the preliminary discussion on the coupled heat and 

moisture transfer in building materials. Then, the governing equations of heat and moisture transfer in porous 

materials were solved by the hybrid numerical method. Under the boundary conditions, the general solution of 

the governing equation was obtained considering the coupling of temperature and humidity on the inner and 

outer surfaces of building materials. The inversion of the real domain was accomplished by matrix operation 

and Fourier sequence. The research provides practical methods and empirical data for further research and 

engineering practice, especially for buildings in humid regions. 
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2. DERIVATION OF GOVERNING EQUATIONS 

Under temperature gradient, humidity gradient, capillary 

force, pressure and gravity, heat and moisture transfer may 

occur in porous building materials at the coupling of the 

internal temperature field and humidity field. The transfer 

process involves the heat conduction of fluid, the natural-

convection heat transfer of fluid, the latent heat transfer in the 

phase change of gas and liquid, as well as the convective mass 

transfer caused by molecular diffusion and macroscopic 

motion of fluid between solid particles and pores.  

Before exploring the heat and moisture transfer in water-

bearing porous materials, it is necessary to describe the 

process with heat and mass transfer equations. In general, the 

fluid movement must obey the law of conservation of mass 

and the law of conservation of energy. Therefore, the basic 

equations should contain the mass conservation equation and 

the energy conservation equation.  

The conservation equations depict the energy and mass 

changes. The energy or mass flowing in or out through the 

medium surface per unit of time equals the enthalpy or 

humidity variation of the medium. Below is the energy 

conservation equation: 

 

t
h

H
q S


  


                                                                         (1) 

 

where H is the total enthalpy (J/m3); qis the heat flux density 

(w/m2); Sh is the source or sink of heat (w/m3). 

The total enthalpy equals the sum of the enthalpy of dry 

material and that of moisture inside the material. 

 

s wH H H                                                                           (2) 

 

where Hs is the enthalpy of dry material (J/m3); HW is the 

enthalpy of moisture inside the material (J/m3). 

The heat flux density is proportional to the thermal 

conductivity and the temperature gradient of the water-bearing 

material. 

 

q k T                                                                                  (3) 

 

where k is the thermal conductivity of water-bearing material 

(w/(m·k)); T is the absolute temperature (K). 

The heat generated from phase change is often considered 

as a source term in the energy conservation equation. 

Meanwhile, the heat of absorption or desorption of the 

material is also considered as a source term. Therefore, the 

source term of the energy conservation equation is obtained as 

follows. 

 

( )h lv

w
S h

t
 


  


                                                                  (4) 

 

where Sh is the heat source or sink resulted from condensation 

or evaporation (J/(m3·s)); hlv is the latent heat of phase change 

(J/kg); σ is the phase change factor; γ is the heat of absorption 

or desorption (J/kg); w is the water content (kg/m3). 

Similar to the energy conservation equation, the mass 

conservation equation of moisture is expressed as: 

 

( )w v w

w
g g s

t


   


                                                          (5) 

 

where gw is the transmission flux density of liquid (kg/(m2·s)); 

gv is the transmission flux density of gas (kg/(m2·s)); Sw is the 

source or sink of moisture (kg/(m2·s)). 

The transmission flux density of liquid depends on the 

relative humidity gradient. 

 

wg D                                                                            (6) 

 

where Dφ is the conductivity coefficient of liquid (kg/(m·s)); 

φ is the relative humidity. 

Then, the  diffusion flux density of water vapour is: 

 

v pg p                                                                            (7) 

 

where δp is the water vapour permeability in building material 

(kg/(m·s·Pa)); p  is the partial pressure of vapour (Pa). The 

water vapour permeability in building material equals the ratio 

of the water vapour permeability in the stagnant air to the 

diffusion resistance factor of water vapour.  

The source term of moisture in building material is so few 

as to negligible here. The sink term of moisture depicts the 

solidification of concrete and mortar. It is also ignored in this 

paper because solidification, as a chemical process, falls out of 

our research scope. 

Obviously, the energy conservation equation is closely 

coupled with the mass conservation equation. The moisture 

content in the material affects the thermal conductivity and the 

source term. In return, the temperature also influences the 

moisture transfer process. In summary, the equations for 

coupled heat and moisture transfer are as follows: 

 

( ) ( )lv

dH w
T h

dt t
  


 •   


                                          (8) 

 

( )p sat

w
D p

t
   


  •    

                                              (9) 

 

where psat is the saturation pressure of water vapour (Pa). 

 

t

w w w v

t t v t




  

    
 

    
                                                    (10) 

 

1
m

t

w
C

v 





                                                                        (11) 

 

where Cm is the specific humidity; 
𝑑𝑤

𝑑𝜑
 is the slope of the 

isothermal adsorption line. 

 

m

w v
C

t t


 


 
                                                                         (12) 

 

Then, formula (8) can be converted as: 

 

( ) ( )p m lv

dT v
C T C h

dt t
    


 •   


                           (13) 
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Whereas the saturation pressure is a single-valued function 

of temperature, the following formula can be derived: 

 

 v

w
T

t
 


 •   


                                                                 (14) 

 

( ) ( )m

w v
C v T

t t
  

 
  •  • 

                                 
(15) 

 

where λ is the moisture diffusion coefficient (m2/s); v is the 

diffusion coefficient induced by temperature gradient 

(kg/(m·s·℃)). 

The temperature diffusivity and the moisture diffusion 

coefficient are closely intertwined and difficult to differentiate 

through experiment. Therefore, the coefficient of temperature 

gradient was introduced to assist with the differentiation. This 

coefficient is expressed as: 

 





                                                                                               (16) 

 

 

3. MATHEMATICAL MODEL 

 

3.1 Governing equations 

 

Typical heat and mass transfer problems can be described 

by the Luikov equation [13]. In a recent study, 1D governing 

equations are established, considering the temperature and 

humidity in the wall and the effect of heat absorption and 

desorption. Here, the original equations are improved by 

changing the driving potential from temperature and moisture 

content to temperature and water vapour content. In this way, 

the author resolved the discontinuity of moisture content in 

porous media. In the meantime, the heat adsorption or 

desorption of porous media and the latent heat (evaporation or 

condensation) of water were taken as the heat source or heat 

sink, and added to the equations of coupled heat and moisture 

transfer. The phase change of water leads to the coupling 

between mass transfer and heat transfer. 

For simplicity, the following assumption were put forward: 

(1) The solid, liquid and gas are continuous media, and in local 

thermodynamic equilibrium; (2) The building material is 

isotropic and the values of its physical parameters are constant; 

(3) the pressure of moist air in the material is constant, and the 

water vapour and air are ideal gases; (4) the coupled heat and 

moisture transfer process is simplified as a 1D transfer process 

along the thickness direction of the wall, without considering 

the adsorption hysteresis; (5) the effect of material usage 

history on heat and moisture transfer is negligible, and the 

effect of temperature on the moisture of the material is also 

negligible; (6) the moisture in the material exists only in the 

forms of vapour and liquid. 

The coupled governing equations can be expressed as [14-

15]: 

 
2

2
( )

p m lv

T T m
C k C h

t tx
   

  
  

 
                                      (17) 

 
2 2

2 2m m m

m m T
C D D

t x x
 

  
 

  
                                          (18) 

 

where T is the temperature; m is the moisture potential; k is 

the thermal conductivity coefficient; Dm is the moisture 

diffusivity coefficient; Cp is the heat capacity of the 

material;Cm is the moisture content of the material; ρ is the 

material density; hlv is the latent heat of material; γ is the heat 

of absorption or desorption; δ is the thermal gradient 

coefficient; ε is the ratio of the vapour diffusion coefficient to 

the total moisture diffusivity. 

All the material properties mentioned above are effective 

properties. The moisture potential depends on the moisture 

content. The dependence can be expressed as:C=Cmm 

The governing formulas (17) and (18) contain both general 

diffusion equations and some source or sink terms. The 

governing formula (17) expresses the thermal energy balance 

in the wall. The last term in this formula represents the heat 

source or heat sink for the fluid-vapour phase change and heat 

absorption or desorption. Similarly, the governing formula (18) 

expresses the water balance in the wall. The last term in this 

formula depicts the wet source or wet sink resulted from the 

temperature gradient. 

Divide formula (17) by ρCp and substitute the quotient to 

formula (18), and we have: 

 
2

2

T T m
L

t tx


  
 
 

                                                              (19) 

 
2

2

m m T
D

t tx


  
 
 

                                                               (20) 

 

where 
p

k
L

C
 ; 

[ ( )]

m

m m lv

kD
D

C k D h   


 
;  

( )m lv

p

C h

C

 



 ; 

[ ( )]

p m

m m lv

C D

C k D h




  


 
. 

v and λ are the equivalent thermal conductivity coefficient and 

the equivalent water diffusivity, respectively. The coefficients 

are usually positive. The moisture in formula (19) is the heat 

source of the temperature distribution is the heat source of 

temperature distribution if the moisture absorption rate is 

positive (
𝜕𝑚

𝜕𝑡
>0), and the heat sink of temperature distribution 

if the moisture rate is negative (
𝜕𝑚

𝜕𝑡
<0). Similarly, the 

temperature can also serve as a wet source or a wet sink 

depending on the positivity or negativity of the temperature 

rate. 

3.2 Boundary conditions 

The diffusion of mass and the transfer of heat are mutually 

affected during the coupled heat and mass transfer process in 

porous media. In other words, the latent heat of water joins the 

energy conservation, and the mass diffusion induced by 

temperature and humidity gradient also affects the mass 

conservation. For the classical problem of coupled heat and 

moisture transfer in porous media, the boundary conditions are 

as follows: 

 

1

1 1 1

1 1 1

( , )
[ ( , ) ]

(1 ) [ ( , ) ]

c

lv m

T x t
k h T x t T

x

h h m x t m






  



 

                                     (21) 
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2

2 2 2

2 2 2

( , )
[ ( , ) ]

(1 ) [ ( , ) ]

c

lv m

T x t
k h T x t T

x

h h m x t m






   



 

                                    (22) 

 

1 1

1 1 1

( , ) ( , )
[ ( , ) ]m m m

m x t T x t
D D h m x t m

x x
 

 
  

                  
(23) 

 

2 2

2 2 2

( , ) ( , )
[ ( , ) ]m m m

m x t T x t
D D h m x t m

x x
 

 
   

 
        

(24) 

 

where hc is the convective heat transfer coefficient (w/(m2·k)); 

hm is the convective moisture transfer coefficient (m/s). 

Formulas (21) and (22) represent the heat conservation at 

the boundary. The two items on the right side of the formulas 

respectively stand for convection heat transfer and the latent 

heat of phase change. Formulas (23) and (24) represent the 

moisture convervation at the boundary. The two items on the 

left side of the formulas are respectively moisture flux under 

temperature gradient and the moisture gradient; the right side 

of the formulas represents the amount of vapour flowing out 

or into the surface under convective mass transfer. The initial 

temperature and the amount of water vapour in the porous 

media are defined as follows: 

 

0( ,0)T x T                                                                          (25) 

 

0( ,0)m x m                                                                        (26) 

4. SOLVING METHOD 

The coupled heat and moisture transfer in porous media is 

commonly solved by analytical method, the numerical method, 

and the simulation method. The analytic method includes 

direct integration, variable separation, image mapping, 

conformal mapping, superposition, Duhamel integration, 

small perturbation, Laplace transform and approximate 

integration. Despite strict inference and clear expression, the 

analytic method is limited to simple situations like linear 

homogeneous problems and simple nonlinear non-

homogenous ones.  

The numerical method is the most popular way to handle 

the coupled heat and moisture transfer in porous media. The 

typical examples are finite-difference method, finite-element 

method, transfer function method, control volume method, 

boundary element method and effective thermal conductivity 

method. Compared with the analytic method, the numerical 

method does well in complex nonlinear and non-homogenous 

problems, and achieves desirable solutions as long as the 

discretization analysis is appropriate. In view of this, a mixed 

numerical method was created to solve our problem. 

Through Laplace transform, the formulas (19), (20), (21), 

(22), (23) and (24) are converted into the following 

expressions: 

 

2

0 02

d T
L ST T Sm m

dx
                                                (27) 

 
2

0 02

d m
D Sm m ST T

dx
                                               (28) 

1 1

1 1

1

1 1

( , )
[ ( , ) ]

(1 ) [ ( , ) ]

c

lv m

dT x S T
k h T x S

dx S

m
h h m x S

S






  

 

                                     (29) 

 

2 2

2 2

2

2 2

( , )
[ ( , ) ]

(1 ) [ ( , ) ]

c

lv m

dT x S T
k h T x S

dx S

m
h h m x S

S






   

 

                                (30) 

 

 

1 1

1

1 1

( , ) ( , )

[ ( , ) ]

m m

m

d m x S dT x S
D D

dx dx

m
h m x S

S





 



                                      (31) 

 

2 2

2

2 2

( , ) ( , )

[ ( , ) ]

m m

m

d m x S dT x S
D D

dx dx

m
h m x S

S





  



                                          (32) 

 

where �̅�(𝑆) and �̅�(𝑆)  are the Laplace transform of T(t) and 

m(t), respectively; S is the Laplace transform parameter. The 

following discretized equations can be obtained by finding the 

central finite difference of formulas (27) and (28): 

 

1 1

2

0 0

2j j j
j

j

T T T
L ST

x

Sm m T 

  
 



 
                                            

  (33) 

 

1 1

2

0 0

2j j j
j

j

m m m
D Sm

x

ST m T 

  
 



  

                                           (34) 

 

where ∆x=l/(N-1); l is the wall thickness; N is the total number 

of nodes. 

Then, substitute the boundary conditions in formulas 

(29)~(32) into formulas (33) and (34), and express the 

resulting formulas in matrix form: 

 

       [ ] [ ] [ ] [ ]j jA S I T B S I m C   
                       

(35) 

 

       [ ] [ ] [ ] [ ]j jF S I T G S I m H   
                          

(36) 

 

where [I] is a unit matrix. 
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1

2 2

2 2 2

2 2 2

2

2 2

22 2
0 ... 0 0

2
... 0 0

[ ]

2
0 0

22 2
0 0 0

c

c

LhL L

k xx x

L L L

x x S x

A

L L L

x x x

LhL L

k xx x

 
   
 
 
   
 

  
 

 
   

 
  
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1 1

2 2

2 2 2

2 2 2

2 2

2 2

2 (1 ) 22 2
0 0 0

2
0 0

[ ]

2
0 0

2 (1 ) 22 2
0 0 0

lv m m

m

lv m m

m

D h h h DD D

k x xDx x

D D D

x x x

G

D D D

x x x

D h h h DD D

k x xDx x

 

 

 
     
 
 

 
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  
 
 

   
 
   

    

 

 

1

2

2 (1 )
0 0 0

0 0 0 0

[ ]

0 0 0 0

2(1 )
0 0 0

lv m

lv m

L h h

k x

B

Lh h

k x




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 
 
 
 
 
 

 
  

 

 

1 1 1 1

0 0

0 0

0 0

2 2 2 2

0 0

2 2 (1 )

[ ]

2 2 (1 )

c lv m

c lv m

Lh T L h h m
m T

k xS k xS

m T

C

m T

Lh T L h h m
m T

k xS k xS











 

 

 
    

 
 

 
 

 
 

   
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2

2
0 0 0

0 0 0 0

[ ]

0 0 0 0

2
0 0 0

c

c

Dh

k x

F

Dh

k x





 
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 
 
 
 
 
 
 
  

 

 

1 1 1 1 1 1

0 0

0 0

0 0

2 2 2 2 2 2

0 0

2 2 (1 ) 2

[ ]

2 2 (1 ) 2

c lv m m

m

c lv m m

m

D h T D h h m h m D
m T

k xS k xS xD S

m T

H m T

D h T D h h m h m D
m T

k xS k xS xD S

  






  


  

  

 
       

 
  
 

   
 
 

 
    
    

 

 

Decouple formulas (35) and (36) by removing the {�̅�(𝑖)} or 

{�̅�(𝑖)} between them. The resulting decoupled equations are: 

 

 
*

jX T X   
    

                                                                       (37) 

 

 
*

jY m Y   
    

                                                                     (38) 

 

where: 

 

                   
1

X F S I G S I B S I A S I 


       
 

 

               
* 1

X H G S I B S I C
     

  
 

                   
1

Y G S I F S I A S I B S I 


       
 

               
* 1

Y H F S I A S I C
     

  
 

 

The Laplace inverse transformation of complex formulas 

(37) and (38) can be accomplished by residue theorem or 

Fourier series. 

5. CONCLUSION 

In this paper, the Laplace transform and finite-difference 

method are combined to find the transient temperature and 

humidity distribution of building materials. The hybrid 

numerical method combines the advantages of both 

components, and achieves high accuracy than each of them. 

The research provides practical methods and empirical data for 

further research and engineering practice, especially for 

buildings in humid regions. 
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