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Evaluating the sum of independent and not necessarily identically distributed (i.n.i.d) 

random variables (RVs) is essential to study different variables linked to various 

scientific fields, particularly, in wireless communication channels. However, it is 

difficult to evaluate the distribution of this sum when the number of RVs increases. 

Consequently, the complex contour integral will be difficult to determine. Considering 

this issue, a more accurate approximation of the distribution function is required. By 

assuming the probability density function (PDF) of a generalized gamma (GG) RV 

evaluated in terms of a proper subset H1,1
1,0

 class of Fox’s H-function (FHF) and the

moment-based approximation to estimate the FHF parameters, a closed-form tight 

approximate expression for the distribution of the sum of i.n.i.d GG RVs and a sufficient 

condition for the convergence are investigated. The proposed approximate may be an 

analytical useful tool for analyzing the performance of certain numbers branch 

maximal-ratio combining receivers subject to GG fading channels. Hence, various 

closed-form performance metrics are derived and examined in terms of FHF. Numerical 

simulations are carried out to illustrate the theoretical results.  
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1. INTRODUCTION

The Fox’s H-function is a Mellin-Barnes integral, first 

introduced by Fox [1] in 1961 as a symmetrical Fourier kernel, 

generalizing the well-known Meijer’s G-function. Such 

integral is a complex contour integral involving a product of 

gamma functions. Due to its versatile nature, recently there 

have been many areas in astrophysics where FHF appeared 

naturally, such as quantum mechanics issues [2], analytic solar, 

reaction-diffusion problems, the nuclear reaction rate theory 

[3], and many others. Also, there are applications to various 

wireless communication systems (WCSs) problems related to 

performance analysis, commonly referred to as the H-

distribution (HD). This function is characterized by significant 

flexibility in investigating the phenomenon of fading 

multipath channels as it generalizes various distributions [4].  

1.1 Background 

Over recent years, numerous fading models have been 

proposed to characterize accurately either fading or shadowing 

effects [5]. Their use is evident in new communication 

technologies, such as massive multiple-input multiple-output 

(MIMO) communications, millimeter-wave (mmWave) 

communications, free-space optical (FSO) communications, 

as well as cognitive radios. Examples of these models include 

GG [6], Weibull and nakagami-m distributions, among many 

others. Our main work is focused on the application of the sum 

of independent and not necessarily identical (i.n.i.d) GG 

distributions and its application in WCSs subject to GG fading 

model. Precisely, GG is known to fit accurately the fading gain 

attenuation in the radio wave propagation subject to one-sided 

normal, Exponential, Rayleigh, gamma, nakagami-m, and 

Weibull distributions [6, 7]. To this end, such distribution 

generalizes multiple fading models, e.g., Exponential, 

Rayleigh, nakagami-m, Weibull, and other special cases, while 

it can also describe the Log-normal as a limited case [8]. 

Leveraging the transforms of FHF known in the literature, 

various performance metrics of a communication system 

undergoing HD fading models, such as average symbol error 

probability (ASEP), outage probability (OP), and average 

channel capacity (ACC) were investigated [4, 5, 9-11]. 

Although the statistical properties for the product, quotient, 

and powers of HDs are known in the literature [12], the closed-

form expression for the PDF of the sum of i.n.i.d HDs remains 

unknown. This problem plays a prominent role in statistical 

performance analysis of WCSs, such as examinating the 

performance of famous diversity techniques, namely equal-

gain combining (EGC), and maximal-ratio combining (MRC), 

known to be the optimum combiner for various system 

configurations [5].  

To this end, the distribution of the sum of HD RVs is 

required to tackle the performance of the aforementioned 

receivers. Mainly, that sum can be approximated using (i) 

Bodenschatz’s methods [13], (ii) moment-based 

approximation estimating FHF’s parameters [14]. Particularly, 

the sum of HDs has been developed for convergent type VI 

FHF variates [15], relying on the three first moments of the 

RVs’ sum.  

It is worth mentioning that the diversity technique is a very 

effective method to overcome the fading’s problem, in which 

the received signals at each receiver’s antenna are combined 
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and weighted appropriately to improve the WCS’ performance. 

The multiple copies of the signal sent by the transmitter and 

arriving at the receiver from multiple paths due to numerous 

optical phenomenon, e.g., diffraction, reflection, scattering, 

shadowing, can be combined efficiently with the help of well-

known diversity techniques in the literature.  

1.2 Related works 

Various works on the performance of diversity receivers 

over uncorrelated GG fading channels have been investigated 

[16-24]. Essentially, Aalo et al. [16] have presented the 

performance of M-ary modulation schemes for MRC, EGC, 

and SC, whereas in ref. [17], switch-and-stay combining over 

i.n.i.d GG fading channels has been studied. The moments of

the output SNR at MRC and EGC receivers, under i.n.i.d

fading channels, are derived in ref. [19]. Average bit error rate

(ABER) expressions for binary digital modulation schemes

experiencing GG fading model were investigated by Aalo et

al. [20]. A unified analysis of ASEP for a general class of M-

ary modulation schemes with MRC and post-detection EGC

over GG fading channels has been studied by Cheng and

Berger [21]. By considering the product of N GG RVs, the

authors in [23, 24] have proposed the use of union upper

bounds for the distribution of the sum of GG RVs in closed-

form, based on which, the OP and the ABEP of EGC receivers

over GG fading channel are analyzed.

1.3 Goals 

The objectives of this paper are to: 

(i) Evaluate an approximation of the closed-form

distribution for the sum of i.n.i.d GG RVs using the

FHF and verify a sufficient condition for

convergence.

(ii) Study some applications of the performance metrics

for the MRC system over GG fading channels with

arbitrary parameters.

1.4 Contributions and organization 

Motivated by the aforementioned discussion, our main 

contributions can be summarized as follows:  

(i) We propose, based on the moments’ method, a

novel closed-form approximate expression of the

sum of i.n.i.d GG distributed RVs,

(ii) we verify a sufficient condition for the

convergence of the analytical approximate PDF

using the sum of H1,1
1,0

 type VI convergent FHF [15], 

(iii) based on the above result, we derive some

performance metrics, namely OP, ACC, ASEP for

various coherent M-ary modulation schemes and

MRC receiver experiencing i.n.i.d GG fading

channels. These results are valid for any operating

scenarios to an arbitrary receiver branches’

number and GG shape parameters’ values,

(iv) we prove and validate the tightness of the

approximate analytical expressions through

Monte-Carlo simulations. Moreover, accuracy of

approximate commulative density function (CDF)

was validated via the Kolmogorov-Smirnov (KS)

statistical test.

The remainder of this paper is structured as follows. In 

Section 2, we present preliminaries as mathematical tools on 

GG distribution and HD including sufficient convergence 

conditions. Section 3 summarizes new tight approximate 

expressions for PDF, CDF, and moment-generating function 

(MGF) of i.n.i.d GG RVs sums in terms of FHF. As an 

application, numerous performance metrics’ approximate 

expressions of a WCS employing MRC receiver and 

undergoing i.n.i.d multipath GG fading channels is presented 

in Section 4, while Section 5 depicts the simulation results and 

provides some insights into the system performance. Finally, 

closing remarks that summarize the current contributions are 

reported in Section 6. 

2. MATHEMATICAL PREREQUISITES

In this section, firstly, we provide the statistical 

characteristic of GG distribution along with its properties. 

Next, we present the convergence conditions of the type VI 

FHF [15] and the connected concept of Mellin transforms 

relevant to this contribution.  

2.1 Generalized gamma distribution 

Definition 1. Let {Zi}1≤i≤N  be the family of three-

parameters GG distribution, each Zi denoted by GG(mi, βi,Ωi).

Its PDF is given by [25]: 

1

( ) exp ,
( )

i i i

i

m

i
Z

i i i i

z z
f z

m

 


−     
 = −   

        

(1) 

where, mi  and β
i
 are the shape parameters, while Ωi  is the

scale parameter. 

Property 1. (nth moment) 

Let us define the function dk(x, y) =
Γ(x+k/y)

Γ(x)
. If 

Zi~GG(mi, βi,Ωi), then the nth moment can be expressed as

[25]: 

( ),n n
i i n i iZ d m   = 

  (2) 

Remark 1. If Zi is GG distributed, then its variance can be

evaluated, using (2), as  

( ) ( )( )2 2
2 1, , .i i i i i iZ d m d m =  −   (3) 

Besides, the PDF given in (1) generalizes that of (i) 

exponential RV if m = β = 1, (ii) nakagami-m RV when β =
1, (iii) Weibull RV if m = 1, (iv) Log-normal RV when m →
∞. Furthermore, by setting β = 2 we obtain a subfamily of GG, 

known as the generalized normal (GN) distribution, which is a 

flexible family and includes half-normal, Rayleigh, and 

Maxwell-Boltzmann RVs when m = 1/2 , 1, and 3/2 , 

respectively [26]. 

Property 2. If Z~GG(m, β,Ω), then [25] 

~ GG , , , 0.n nZ m n
n

 
  

 
(4) 
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2.2 H-distribution 

Definition 2. The Fox's H-function is defined via the 

Mellin-Barnes type integral as [12] 

H[z] ≜ Hp,q
m,n [z |

(ai, Ai)1,p
(bi, Bi)1,q

] =
1

2πj
∫ ℋ
𝒞s

(s)z−sds, (5) 

where, j = √−1,  z ≠ 0, and 

ℋ(s)

=
∏ Γm
i=1 (bi + Bis)∏ Γn

i=1 (1 − ai − Ais)

∏ Γ
q
i=m+1

(1 − bi − Bis)∏ Γ
p
i=n+1

(ai + Ais)
, (6) 

is the Mellin transform of the FHF. Of note, an empty product 

is interpreted as unity; m, n, p, q ∈ ℕ  with 0 ≤ n ≤ p , 0 ≤
m ≤ q , ai, bi ∈ ℂ , Ai ∈ ℝ+  ( i = 1, . . . , p ), Bi ∈ ℝ+  ( i =
1, . . . , q), and 𝒞s is an infinite contour in the complex s-plane,

keeping the poles 

bil = −
bi + l

Bi
,  (i = 1, . . . , m;  l = 0,1,2, . . . ); (7) 

of the Gamma functions Γ(bi + Bis), placed on the left side of

𝒞s, separated from the poles

aik =
1 − ai + k

Ai
,  (i = 1, . . . , n;  k = 0,1,2, . . . ); (8) 

of the Gamma functions Γ(1 − ai − Ais), located on the right

side of 𝒞s.
Definition 3. We say that the FHF H[z] is called type VI if 

the following conditions are satisfied [15] 

D ≥ 0,  E = 0,  F < 0, (9) 

with 
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where, ℜ(. )denotes the real part of a complex number. 

The type VI FHF can be evaluated as the positive sum of 

LHP residues, the negative sum of RHP residues, or both, 

depending on the value of the argument z restricted to 

| arg( z)| < min( π, π
D

2
). We have 

H[z]

=

{

∑zi
(L)

i

,  |z| <
1

ς

−∑zi
(R)

i

,  |z| >
1

ς

∑zi
(L)

i

= −∑zi
(R)

i

,  |z| =
1

ς
 and  F < −1

(11) 

where, ς = ∏ Ai
Aip

i=1 ∏ Bi
−Biq

i=1 with zi
(L)

 and zi
(R)

 denote,

respectively, the residue corresponding to the ith pole located 

in the left half-plane (LHP) and the right half-plane (RHP), 

respectively.  

Property 3. For any positive number α , the following 

relation holds [13] 

2√π

4b1
Hp+1,q
m,n [4B1αz |

(ai, Ai)1,p, (b1 +
1

2
, B1)

(2b1, 2B1), (bi, Bi)2,q

]

= H[αz]. 

(12) 

Definition 4. The Mellin Transform of H[αz] is defined on 

[0,∞) as [12], 

     1

0
( , )s s

s H z H z z dz s  


− −= = (13) 

where, sϵℂ, while its inverse Mellin transform is given by 

 1{ ( )} .s
z s H z − − = (14) 

Definition 5. (H-distribution) The HD is a RV with PDF of 

the form [12] 

( )

( )
1,,

,

1,

,
, , , 0,

( ) ,

0,

i i pm n
p q

Z i i p

a A
H z z

f z b B
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  
   

 = 
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

(15) 

where, α and the constant κ is chosen such that ∫ fZ
∞

0
(z)dz =

1. 

Property 4. (Raw Moments) Considering that a real-valued 

RV Z can be represented as an HD, the nth moment of Z is 

easily obtained, using the Mellin transform, as [12] 

1 1

( 1)
{ ( )} .n

n n Z n

n
Z f z





+ +

+
 = = =
  (16) 

3. APPROXIMATE HD FOR THE SUM OF I.N.I.D GG

RVS

Lemma 1. Let {Zi}1≤i≤N  be N i.n.i.d GG(mi, βi,Ωi)  RVs.

The PDF of Zi can be expressed as an FHF

fZi(z) =
1

ΩiΓ(mi)
H0,1
1,0 [

z

Ωi
|

−;−

(mi −
1

β
i

,
1

β
i

) ; −] ,  z ≥ 0 (17) 

Proof: By rewriting the exponential function as an FHF [12] 

( )
1,0
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;
exp

0,1 ;

1
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z z
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(18) 

and substituting (18) into (1) along with performing some 

computations, we get 
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Finally, using the change of variable t = β
i
(s − mi) + 1,

(17) is obtained, which concludes the proof of Lemma 1.

Property 5. The H0,1
1,0

FHF can be written as an H1,1
1,0

 FHF as 

follows 
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Proof: 

Using (12), the H0,1
1,0

 FHF given in (17) can be written as an 

H1,1
1,0

 FHF as shown in Property 5. 

The following theorem presents an approximation of the 

PDF of the sum of i.n.i.d HDs relying on the moments-based 

approximation method [13, 14].  

Theorem 1. The PDF of Z = ∑ Zi
N
i=1  can be approximated 

by an FHF as 

( )
( )
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where 𝜆 is any arbitrary positive number, and 
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Furthermore, this PDF converges if the real parameter 𝜆 

verifies 

2
1

1

or ,


  


  (23) 

where, 𝜇1 and 𝜇2 are the first and the second moment of Z.

Proof: The PDF of the sum of type VI convergent HD 𝑍𝑖
can be approximated by an FHF as follows [13]  
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where for an arbitrary chosen positive number 𝜆, 𝑎, 𝑏, and 𝑐 

are the solutions of the following non-linear system of 

equations, obtained from (16),  

1 ( 1)
, 0,1,2.

( 1)

n
n

c n
a n

b n
  +  + +

= =
 + +

(25) 

Now, using 𝜇0 = 1 , along with [27], (22) can be

straightforwardly obtained. 

Further, relying on (2), the expectation of Z can be 

expressed as 

( )1 1

1

, ,

N

i i i

i

d m 
=

=  (26) 

While the second moment yields using the multinomial 

theorem as 

𝜇2

=∑𝛺𝑖
2

𝑁

𝑖=1

𝑑2(𝑚𝑖 , 𝛽𝑖)
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𝑁
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𝑁−1
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𝛺𝑙𝑑1(𝑚𝑖 , 𝛽𝑖)𝑑1(𝑚𝑙 , 𝛽𝑙).

(27) 

Note that a sufficient condition for the convergence of the 

FHF given in (21) is 𝑐 − 𝑏 < 0 . Thus, as 𝜇2 − 𝜇1
2 > 0 , it

follows that the sign of 𝑐 − 𝑏 is that of (𝜇1 −
𝜇2

𝜆
) (𝜇1 − 𝜆),

and then any arbitrary value of 𝜆 greater than 
𝜇2

𝜇1
 or less than 

𝜇1 can be chosen, which concludes the proof of Theorem 1.

Corollary 1. The type VI FHF, given in (21), converges if 

, 0,z     (28) 

with 

2
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1 1 .
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 
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(29) 

Proof: If 𝑐 − 𝑏 + 1 < 0, we can use the sum of either LHP 

or RHP residues at z = . Moreover,

( )

2
1 2 1 2

2
2 1

2
1 .c b

     

  

− +
− + = −
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(30) 

That is, as 𝜇2 − 𝜇1
2 > 0, any value of 𝜆 greater than 𝛥can be

chosen to have 𝑐 − 𝑏 + 1 < 0 . Because 𝛥 >
𝜇2

𝜇1
, the PDF

given in (21) converges for any value of z if 𝜆 > 𝛥 . That 

concludes the proof of Corollary 1.  

Corollary 2. The CDF of 𝑍 = ∑ 𝑍𝑖
𝑁
𝑖=1  is given by

( ) ( )
( ) ( )
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(31) 

This function converges for all values of 𝑧 ≠ 𝜆, and 𝜆 >
𝜇2

𝜇1

is a sufficient condition to use either LHP/RHP residues at 𝑧 =
𝜆.  
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Proof: The CDF of Z is straightforwardly derived from its 

PDF given in (21) as 
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Then, using [27], alongside with performing some simple 

algebraic manipulations, and using a linear change of variable 

𝑡 = 𝑠 − 1, the CDF can be reduced to 

1 ( 1 ) ( )
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2 ( 1 ) (1 )
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j b t t
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 
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As sufficient condition for the convergence of the FHF 

given in (31) is 𝐹 < 0 (e.g., 𝑐 − 𝑏 − 1 < 0). As 𝜇2 − 𝜇1
2 > 0

and 𝐹 = −𝜇1
𝜆2−2𝜇1𝜆+𝜇2

𝜇2−𝜇1
2 , 𝜇1 > 0 , then 𝜆2 − 2𝜇1𝜆 + 𝜇2 >

0, ∀𝜆 ∈ ℝ, therefore the CDF, given in (33), converges for all 

𝑧 ≠ 𝜆. Thus, the proof of Corollary 2 is concluded.  

Proposition 1. Suppose that {𝑍𝑖}1≤𝑖≤𝑁  are N i.n.i.

d𝐺𝐺(𝑚𝑖 , 𝛽𝑖 , 𝛺𝑖) RVs. The MGF, 𝑀𝑍(𝑥), of 𝑍 = ∑ 𝑍𝑖
𝑁
𝑖=1  can 

be tightly approximated as  

( ) ( )
( )

1,1
2,1

1,1 ; 1,11
( ) , 0.

1,1 ;
Z

b
M x a H x

cx




 +
 −   

+ −  
(34) 

This function converges for all values of 𝑥 ≠
−1

𝜆
, and 𝜆 >

𝜇2

𝜇1
 is a sufficient condition, by using either LHP/RHP residues 

at 𝑥 =
−1

𝜆
. 

Proof: The MGF of Z is defined as 

( ) , 0.xZ
ZM x e x  

  (35) 

From (21), the MGF can be written in term of the Mellin 

transform as 

𝑀𝑍(𝑥) ≈
𝑎

2𝜋𝑗
∫
𝛤(𝑐 + 𝑠)

𝛤(𝑏 + 𝑠)𝒞

.
1

𝜆−𝑠
ℳ1−𝑠 

(𝐻0,1
1,0 [−𝑥𝛾 |

−;−
(0,1); −]) 𝑑𝑠.

(36) 

Since 𝑥 ≤ 0, the Mellin transform of FHF is 

( )
1,0 1

1 0,1

;
( ) (1 ).

0,1 ;

s
s H x x s −

−

  − −
 − = −  − 
 −   

(37) 

Now, by substituting (37) into (36), we have 

1
( ) (1 ) 1

( ) .
2 ( )

s

Z

a c s s
M x ds

j b s x



 

− +
 +  − − 

  
 +   (38) 

Hence, by performing the change of variable 𝑡 = 𝑠 − 1, the 

MGF of Z will expressed as given in (34). 

Additionally, the FHF given in (34) converges at any value 

of 𝑥 ≠
−1

𝜆
 for condition 𝑐 − 𝑏 − 1 < 0. Also, it converges at 

𝑥 =
−1

𝜆
if 𝑐 − 𝑏 < 0 (i.e., 𝜆 >

𝜇2

𝜇1
 is a sufficient condition of 

convergence), which concludes the proof of Proposition 1. 

4. APPLICATIONS TO WCS

In this section, numerous performance metrics of a WCS 

employing MRC receiver and experiencing uncorrelated GG 

fading multipath channels are investigated relying on the 

previous proposed PDF approximation. 

4.1 Mathematical system model 

Figure 1. Block diagram of MRC system model 

Let us consider an L-branch MRC receiver operating over 

i.n.i.d GG fading multipath channels. The received signal, 𝑟𝑖,
at its ith antenna is expressed as [24]

, ( 1, , )i i ir g x n i L= + =  (39) 

where, x is the complex transmitted symbol, with 𝔼[|𝑥|2] =
𝐸𝑠  being the transmitted average symbol energy, 𝑔𝑖 =
𝑅𝑖𝑒

𝑗𝜓𝑖 (𝑖 = 1,… , 𝐿)  where 𝑅𝑖  is the instantaneous fading

amplitude corresponding to the received signals on the ith 

branch, assumed being i.n.i.d 𝐺𝐺(𝑚𝑖 , 𝛽𝑖 , 𝛺𝑖) distributed, 𝜓𝑖  is
the corresponding instantaneous phase, while 𝑛𝑖 refers to the

instantaneous additive white Gaussian noise (AWGN) with 

zero mean and single-sided power spectral density 𝑁0 =
𝔼[𝑛𝑖

2], assumed to be identical for all branches. Moreover

• 𝛽𝑖 > 0 and 𝑚𝑖 > 0 are two parameters related to the

fading severity. As 𝑚𝑖  and/or 𝛽𝑖  increases, the ith

channel becomes more reliable,

• 𝛺𝑖 is related to the average fading power 𝔼[𝑅𝑖
2] and

the Gamma function. Substituting 𝔼[𝑅𝑖
2]  into (2)

yields

( )

2 2

2

[ ]
.

,

i

i
i i

i i

R
m

d m





 
 =  

  

(40) 

If each branch is weighted by 𝑤𝑖 , then the linear

combination of the received signals at the receiver's output, as 

shown in Figure 1, is expressed as 

1 1 1

.

L L L

i i i i i i

i i i

r w r w g x w n

= = =

= = +   (41) 
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Therefore, the output's SNR, 𝛾, is given by 

2 2

1 1

2 2
0

1 1

,

| | | |

L L

i i s i i

i i

L L

i i i

i i

w g x E w g

w n N w


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= =

 

 

(42) 

By using Cauchy-Schwartz inequality in the numerator of 

(42), we obtain 

2 2
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2
0

1
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,
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

 


(43) 

which is maximized if the weights 𝑤𝑖  are taken such that 𝑤𝑖 =
𝑔𝑖
∗,  ∀𝑖 ∈ {1, … , 𝐿}.
Thus, the resulting combiner SNR becomes 

2 2

0 01 1 1

| | ,

L L L
s s

i i i

i i i

E E
g R

N N
 

= = =

= = =   (44) 

where the instantaneous SNR per symbol at the ith diversity 

channel is  

2

0

.s
i i

E
R

N
 = (45) 

Further, the average of 𝛾𝑖 can be obtained from (45)

2/

2
2

0 0

[ ] ( , ) .

i

s s i
i i i i

i

E E
R d m

N N m



 
 
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 

(46) 

Note that if 𝑅𝑖 are i.i.d, then �̄�𝑖 = �̄�1,  ∀𝑖.
Furthermore, by using (2), the nth moment of 𝑅𝑖  can be

expressed as 

/

( )
( , ) .
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i

n

R n i
n i n i i
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R d m
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

 
 
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 

(47) 

4.2 Statistical analysis 

In this Subsection, various metrics related to the 

performance of the considered WCS are derived. 

4.2.1 Outage probability of the output SNR γ 

Corollary 3. The outage probability, Pout, can be 

approximated as 

( ) ( )
( ) ( )

1,1
2,2

1,1 ; 1,1
,

1,1 ; 0,1

th
out

b
P a H

c






 +
  

+  
(48) 

where, γth denotes the minimum SNR threshold that guarantees 

the reliable communication and having the corresponding 

channel not in outage.  

4.2.2 Moment of the output SNR 𝛾 

The nth moment of 𝛾  is by definition 𝜇𝑛 ≜ 𝔼[𝛾𝑛] . By

applying (21), the nth moment of the MRC output SNR 

undergoing i.n.i.d GG fading channels can be approximated as 

1

1

( )

( 1)
.

( 1)

n n

n

f

c n
a

b n

 


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(49) 

4.2.3 Average channel capacity 

Proposition 2. Let 𝐵𝑤 be the channel bandwidth. The ACC

under MRC diversity and i.n.i.d GG fading channels can be 

approximated as 

3,1
3,3

( 1,1);(0,1), ( ,1)1
.

( 1,1), ( 1,1), ( ,1);ln(2)

w
baB

C H
c
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(50) 

Proof: The ergodic capacity of the multipath channel under 

MRC diversity, per unit bandwidth, is given by [5]  
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The logarithmic function can be expressed as FHF [28] 
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Then, 
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Now, using the Mellin transform (13) of FHF 
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
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(54) 

and substituting (54) into (53), (50) is attained, which 

concludes the proof of Proposition 2. 

4.2.4 Average symbol error probability 

Proposition 3. The ASEP for several coherent modulation 

techniques and MRC combiner operating under i.n.i.d GG 

multipath fading environment can be approximated by 
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where, 𝜚  and 𝛿  are two parameters depending on the 

modulation scheme and summarized in Table 1 [29]. 

Table 1. Values of 𝜚 et 𝛿 for some signaling constellations 

Modulation M 𝜚 𝛿 

BPSK 2 1/2 1 

BFSK 2 1/2 1/2 

M-PSK ≥ 4 1 𝑠𝑖𝑛2(𝜋/𝑀)
M-FSK ≥ 4 (𝑀 − 1)/2 1/2 

M-DPSK ≥ 2 1 2𝑠𝑖𝑛2(𝜋/2𝑀)

M-QAM ≥ 4 2 − 2/√𝑀 1.5/(𝑀 − 1) 

M-PAM (𝑀 − 1)/𝑀 3/(𝑀2 − 1)

Proof: The ASEP is evaluated as the expectation value of 

the instantaneous symbol error rate 𝑃𝑠 [5]

0
( ) ( ) ,s sP P f d  



=  (56) 

where, 𝑃𝑠  is the conditional SER of various digital

modulations, given by [29] 

( )( ) 2 Q 2 ,sP   (57) 

with 𝑄(. )is the Gaussian Q-function defined as 
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Using an alternative Q-function representation (58), the 

conditional error probability (57) can be written as 

2sin2
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By substituting (59) into (56), the ASEP can be expressed 

in terms of MGF as 
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By rewriting the MGF given in (38) in terms of Gamma 

function, we get an approximate expression of ASEP as  
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where, ∫ 𝑠𝑖𝑛2−2𝑠
𝜋

2
0

(𝜙)𝑑𝜙 can be expressed, when ℜ(𝑠) <
3

2
, 

in terms of Beta function [25] as 
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Finally, incorporating (62) into (61), (55) is attained, which 

concludes the proof of Proposition 3. 

5. RESULTS AND DISCUSSION

In this section, the FHF were evaluated using Mathematica 

software. All the analytical expressions derived are validated 

using MATLAB software via Monte-Carlo simulations, as 

shown in algorithm 1, by generating 107𝑁 generalized gamma

distributed random numbers. Further, the inverse transform 

sampling method [30] is employed, along with the exponential 

decaying power delay profile with equispaced delays [31]: 

𝜇1
(𝑧𝑖) = 𝜇1

(𝑧1)𝑒−𝜑(𝑖−1),  ∀𝑖 ∈ {1, … , 𝑁} (63) 

where, 𝜑 stands for the average power decay factor. 

In Figure 2, the tightness of the proposed approximate PDF 

is obviously observed over the entire range of z for 𝑒−𝜑 =
{1,0.9}, 𝑚 = 2, 𝛽 = 3, and different values of N (N= 10, 25, 

50). One can see that the greater N is, the more curves shift to 

the right. This is because, the greater N is, the greater 𝜇1 is,

and consequently the maximum value of the probability is 

attained around such an average. 
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Figure 2. PDF of i.n.i.d GG sums for 𝑚 = 2, 𝛽 = 3, 𝜆 =
200 and various values of N, and 𝜑 

Figure 3. Approximated and simulated PDF of the sum of 

GG RVs for (𝑚 = 1 and 𝛽 = 2) 

In Figure 3, the approximated and the simulated PDF of sum 

i.n.i.d GG RVs, 𝑍, are plotted using (21) and via Monte-Carlo

simulation with the help (21) of algorithm 1 over the z 's range

[0,8]. It can be observed that the proposed approximation is

tight for all values of 𝜑 and 𝑁, validating the accuracy of (21).

Moreover, the greater 𝜑 and 𝑁 are, the greater 𝜇1 is. On the

other hand, according to (21) related to 𝜆 term of theorem 1,

and from the condition convergence (28), the value of 𝜆  is

chosen to be greater than the maximum value of   computed

for 𝑚 = 1 , 𝛽 = 2 , and 𝜑 = {0,− 𝑙𝑛( 0.65)}  (i.e., 𝛥 = 4.73
for 𝑁 = 2 and 𝛥 = 6 for 𝑁 = 3).

In Figure 4, the approximated PDF versus 𝑧, is plotted from 

(21) for 𝑁 = 3, 𝜑 = {0,− 𝑙𝑛( 0.2)}, 𝑚 = {2,4}, and 𝛽 = 2.

The value of 𝜆 = 100  should be chosen greater than the

maximum value of 𝛥 computed for 𝑚 = 2 , and 𝜑 =
− 𝑙𝑛( 0.2) (i.e., 2.49). It is worth mentioning that the PDF

becomes narrower and closer to 1 at 𝜇1 = 𝑧 with the increase

of 𝑚.

Figure 5 shows both approximated and simulated CDF 

computed for 𝑁 = 4, 𝑚 = 3, 𝛽 = {1,3}, 𝜆 = 200, and 𝑒−𝜑 =
{1,1.2}. It can be observed that the curves match well over the 

entire range. Moreover, the KS statistical test [32] measured 

for 𝑁 ≤ 50, 𝑒−𝜑 = {1,1.2} , 𝑚 = 3 , 𝛽 = 3 , 𝜆 = 200 , and a

given significance level 0.05 shows that the goodness-of-fit 

calculated by averaging 15 results obtained for 300 samples 

remains less than the associated critical level 0.085714, for 

which the null hypothesis is not rejected, i.e., the approximate 

CDF in confirmity with the data got by simulation. 

Figure 6 depicts both the approximate and simulated outage 

probability 𝑃𝑜𝑢𝑡  versus 𝛾𝑡ℎ (in dB) for 𝑚 = 2, 𝜑 = − 𝑙𝑛( 1.2),

and different values of 𝛽 and 𝐿. The parameter 𝜆 is chosen to 

be greater than the maximal value of 𝛾𝑡ℎ  to ensure

convergence of OP since 
𝜇2

𝜇1
< 15dB for the two cases 𝐿 = 2,

and 𝐿 = 4. It is evident that the analytical result, evaluated 

using (48), are highly accurate with its simulation counterpart. 

Also, it can be seen that the decrease in OP can be achieved by 

increasing either 𝐿 or 𝛽, for which the system becomes more 

reliable. 

Figure 4. Analytical PDF of the sum of three GG RVs for 

𝛽 = 2 and 𝜆 = 100 

Figure 5. CDF of i.n.i.d GG sums for 𝑁 = 4 and 𝑚 = 3 

Figure 6. OP for L-branch receiver and 𝑚 = 2 

Figure 7 shows the evolution of OP versus minimum SNR 

threshold 𝛾𝑡ℎ  [dB], plotted from (48) for 𝛽 = 2.5, L-branch

MRC combiner, and various values of 𝑚 . Evidently, the 

greater both the diversity order L and the fading severity 𝑚 are, 

the smaller OP is, leading to more reliable system. 
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Figure 7. OP vs minimum SNR for L-branch MRC receiver 

and 𝛽 = 2.5 

Figure 8. Normalized ACC vs total average SNR at the 

output of L-branch MRC receiver for 𝑚 = 1 and 𝜆 = 400 

Figure 8 depicts both the analytical and the simulated 

normalized ACC as a function of average output SNR, �̄�, for 

two- and four-branch MRC receiver, and 𝑒−𝜑 = 1.2 . The

average SNR of signal at the first branch's input �̄�1 was chosen

in [−2.7dB, 15.74dB]  and [−6.57dB, 11.87dB]  for 𝐿 = 2 

and 4, respectively. The value of 𝜆  should be greater than 

86.98 to ensure the convergence of the HD given in (50). 

Clearly, the approximate analytical expression for ACC 

matches perfectly the simulated one for different settings of 

the system parameters. Also, the ACC is monotonically 

increasing with the increase of �̄�, 𝛽, and 𝐿, leading to a more 

reliable system. 

Figure 9 depicts both the analytical and the simulated 

normalized ACC as a function of average output SNR for two- 

and four-branch MRC receiver, and 𝑒−𝜑 = 1.2. �̄�1 was chosen

in [−2.7dB, 15.74dB]  and [−6.57dB, 11.87dB]  for 𝐿 = 2 

and 4, respectively. The value of 𝜆  should be greater than 

90.56 to ensure the convergence of the HD given in (50). 

Obviously, the approximate analytical expression for ACC 

matches perfectly the simulated one for different settings of 

the system parameters. Besides, it is noteworthy that the ACC 

is monotonically increasing with the increase of �̄�, 𝑚, and 𝐿, 

leading to a system quality improvement. 

In Figure 10, both the approximate and simulated ACC per 

bandwidth versus 𝐿 are plotted for 𝑚 = 1, and various values 

of 𝛽  and 𝜑 . The value of 𝜆  should be greater than 37.03 

computed for 𝐿 = 6 , 𝑒−𝜑 = 1.5 , and 𝛽 = 3 . It is clearly

noticed that both curves are matching for various 

configuration settings. Also, the greater both the diversity 

𝑚 = 1 order 𝐿 and the fading severity 𝛽 are, the better ACC 

is. 

Figure 9. Normalized ACC vs total average SNR at the 

output of L-branch MRC receiver for 𝛽 = 2 and 𝜆 = 400 

Figure 10. Normalized ACC vs 𝐿 for 𝑚 = 1 and 𝜆 = 400 

Figure 11. Normalized ACC vs 𝐿 for 𝛽 = 2 and 𝜆 = 400 

Figure 11 illustrates both approximate and simulated ACC 

per bandwidth versus for 𝛽 = 2, and various values of m  and

𝜑. Again, both curves are perfectly matching, which proves 

the accuracy of our result. 

Figure 12 plots the analytical expression and simulates 

ASEP versus the average SNR at the MRC output from (55) 

and (56), respectively, for 𝐿 = 4, 𝑒−𝜑 = 1.2, and for different

values of M, with the help of Table 1. One can notice that, the 

analytical results perfectly match the simulated ones. The 

branch average SNR �̄�1 varies between -12.7 dB and 20.3 dB.

It is worthwhile to mention that the smaller M is, the smaller 

ASEP is. Also, ASEP decreases with the increase of �̄�, leading 

to system quality enhancement. 

In Figure 13, the analytical ASEP �̄�𝑠 is plotted, from (55), 

as a function of �̄�, for BDPSK modulation scheme, based on 

Table 1, 𝛽 = 3, and several values of m and 𝐿. Clearly, the 

ASEP reduces with the increase of �̄� . Besides, the system 

41



performance improves with an increase of both the diversity 

order 𝐿 and the fading severity 𝑚. 

Figure 12. ASEP for M-PSK modulation scheme vs �̄� for 

𝐿 = 4, 𝑚 = 2, 𝛽 = 3, and 𝜆 = 400 

Figure 13. ASEP for BDPSK modulation technique vs �̄� for 

𝛽 = 3, 𝜑 = 0, and two values of 𝐿 

Figure 14. ASEP vs gamma^{bar} for BDPSK, 𝑚 = 2, 𝜑 =
0, and two values of 𝐿 

Figure 14, presents both the approximate and simulated 

ASEP �̄�𝑠 as a function of �̄�, is plotted for BDPSK modulation,

𝑚 = 2, and several values of 𝛽, and 𝐿. Again, the greater both 

𝐿 and 𝛽 are, the smaller the ASEP is.  

6. CONCLUSION

New accurate approximate expressions for the PDF, and 

CDF of i.n.i.d GG RVs sums were derived in this paper. The 

two proposed expressions have been validated by performing 

their simulation. A perfect match between the approximate 

expressions and simulate ones has been noticed. This approach 

is quite useful in the field of wireless communications where 

the sum of RVs' distribution is necessary for performance 

metrics evaluation purposes. Pointedly, accurate 

approximations for MRC receiver performance criteria 

experiencing GG fading channels such as OP, ACC, and ASEP 

have been derived. All derived analytical results are proved via 

Monte-Carlo simulations.  

All analytical results show that the greater is the parameter 

𝜆  (appearing as a denominator in the first argument of the 

Fox’s H-function (21)), the higher is the evaluation time. 

Therefore, the only flaw in the proposed method that should 

be omitted exists in the lambda parameter, 𝜆, and that it could 

be addressed adequately in the next paper.    

The results obtained are limited only to i.n.i.d GG RVs. 

Based on the moment-based approximation method by 

estimating the first 5 moments of the sums of GG RVs instead 

of only three, the investigation may provide a potential 

direction for future work in correlated GG. 
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NOMENCLATURE 

ACC average channel capacity 

ASEP average symbol error probability 

CDF commulative density function 

FHF Fox’s H-function  

GG generalized gamma 

HD H-distribution

i.n.i.d
independent and not necessarily identically

distributed

MGF moment-generating function

MRC maximal-ratio combining

OP outage probability

PDF probability density function

RVs random variables

SNR signal-to-noise ratio

WCSs wireless communication systems

Notations 

(.) Euler Gamma function [25, eq. (6.1.1)] 

[.] Expectation operator 

r rth moment 

[.] Variance function 

(.)Q Gaussian Q-function [25, eq. (26.2.3)] 
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[.]H Fox’s H-function [12, eq. (6.2.1)] 

Infinite contour integral in the complex plane 

(.) Integrand of Mellin-Barnes integral of [.]H  

{.}s Mellin transform of [.]H  [12, eq. (2.8.9)] 

1{.}z
− Inverse Mellin transform [12, eq. (2.8.10)]

+ Set of non-negative real numbers [0, )  

(.)Zf Probability density function of GG RV Z 

(.)ZF Cumulative density function of GG RV Z 

𝑍~𝐺𝐺(. , . , . ) Z is GG distributed 

sP Average symbol error probability 
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