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The present study reveals the heat and mass transfer on the MHD flow of micropolar 

fluid in a porous medium within a rotating frame. In order to facilitate osillatory plate 

velocity with constant suction and first order chemical reaction has been considered. 

Using small perturbation approximation, the governing non-dimensional equations are 

solved. The influence of pertinent physical quantities on the flow phenomena have been 

presented graphically. The skin friction coefficient, wall couple stress, Nusselt and 

Sherwood number have also computed for different flow parameters and have presented 

in table. In the study, the applied magnetic field sets in to produce the resistive force i.e. 

the Lorentz force that resists the fluid motion throughout the domain. Attenuation in the 

Prandtl number is because of the slower thermal diffusivity resulted in a sharp reduction 

in the thermal boundary layer thickness. The retardation in the polar fluid concentration 

is greater in amount for the influence of heavier species. 
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1. INTRODUCTION

In comparison to Newtonian fluids, non-Newtonian fluids 

have several interesting applications in various areas due to the 

physics of the problems. From these fluids microploar fluid is 

became popular in the mind of young researchers for their 

varied applications in industries as well as in engineering. 

Though the movement of the fluid particles is randomly 

oriented and there is a translation as well as rotation occurs in 

each volume element of the fluid, it revealed several 

interesting phenomena. Eringen [1, 2] originated the 

theoretical concept of micropolar fluids and thermo 

micropolar fluids for the characteristics in particular animal 

blood, exotic lubricants, polymeric fluids, liquid crystals, etc. 

due to microrotation, these fluids exhibit microscopic effects 

arising from local structure of the fluid particles. Ariman et al. 

[3, 4] provides excellent reviews about the mechanics of the 

micropolar fluid. 

The exploration of heat transport phenomena is vital in the 

case of moving fluid with incorporating the study of both 

exothermic and endothermic chemical reaction. Flow over a 

stretching surface for the interaction of chemical reaction that 

takes due to the combine effects of working fluid and the 

foreign mass in the various chemical engineering processes. 

Depending upon the several physical properties its order varies. 

In general, reaction rate is related to the species concentration 

is known as first-order reaction, one of the simplest and widely 

used chemical reactions. Time-dependent flow of polar fluid 

in a rotating frame of reference with the chemical reaction and 

heat source was organized by Bakr [5]. He has proposed his 

investigation by considering oscillatory plate velocity in 

conjunction with constant suction. Further, flow past an 

oscillatory vertical plate for a micropolar fluid with the 

Newtonian heating boundary conditions is worked out by 

Hussanan et al. [6]. Sheri and Shamshuddin [7] have analyzed 

the influence of dissipative heat transport phenomena of MHD 

polar fluid in conjunction with reactive agents. Rout et al. [8] 

have studied the behavior of magnetic parameter applied in the 

normal direction for the flow of a conducting micropolar fluid. 

The proposed boundary value problem is conducted over the 

plate placed vertically where the wall temperature and 

concentration varies with time. In viewing to the importance 

of aforesaid discussion, Animasaun [9] has analyzed the flow 

of micropolar fluid with the inclusion of temperature 

dependent viscosity and thermal conductivity. The crux of 

their investigation is the study of melting boundary condition. 

Mahmoud [10] has proposed the flow of a non-Newtonian 

fluid past an extended surface embedding with porous matrix. 

In addition, an enhanced flow characteristic is analyzed by 

incorporating the surface slip, and variable viscosity for the 

behavior of reactive agents. In a recent study, Khan [11] has 

used a non-Darcy Jeffry model using modified Darcy’s law. In 

his investigation the proposed model is based on fractional 

calculus for the non-Newtonian fluid. Dessie and Kishan [12] 

have studied the influenced heat characteristics incorporating 

viscous dissipation in a MHD boundary layer flow past an 

extended surface. In their work, they have proposed the effects 

of variable viscosity in conjunction with external heat 

source/sink. Mishra et al. [13] have carried out the flow of a 

conducting viscoelastic fluid for the behavior of chemical 

reaction. Further, Mishra and his co-workers [14-16] have 

worked out several studies on the flow properties of various 

non-Newtonian fluid for several physical parameters with 

different geometries.  

From various applications, the crude oil extraction is one in 

which the role of porosity plays a vital role. In addition, ground 

water hydrology, geothermal systems, packed bed, etc. are the 

example of different processes for those the medium is filled 

with porous materials. It is the measure of the empty spaces in 

the material and in a total volume; it is the fraction of empty 

volume. In a flow channel it varies from location to location 

depending upon the pattern. It can be used in various fields i.e. 
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metallurgy, materials, manufacturing, mechanics and 

engineering etc. To the best of author’s knowledge, the flow 

of MHD micropolar fluid with heat and mass transfer in a 

rotating frame of reference in presence of porous medium has 

not been addressed so far. Therefore, we have extended the 

work of Bakr [5] by considering the flow in a porous medium. 

So, our study is now confined to heat transport mechanism of 

a conducting polar fluid within a rotating frame embedding 

with porous medium. 

2. PROBLEM FORMALISM

Natural convection of a three-dimensional time-dependent 

flow of micropolar fluid over a semi-infinite vertical moving 

porous plate in a porous medium is presented in this study. The 

magnetic field applied in the direction transverse with uniform 

heat source also assumed in the said discussion. It is assumed 

that the plate velocity u*(t) oscillatory and defined by u*(t*) = 

Ur(1 +  cos nt) where time, t and frequency, n*. The direction

of the flow along the x*-axis, towards the direction (upward 

direction) of the plate and z*-axis is normal to it. Initially, both 

the fluid and the plate are in rest and as time varies i.e. t* > 0, 

the system is allowed to rotate within a rotating frame   

about the z*-axis. Magnetic field of uniform strength B0 is 

applied along the z* direction (Figure 1).  

The conservation of electric charge proposed by   J = 0 

implises Jz = constant, where J= (Jx, Jy, Jz). Here, Jz = 0, since 

the plate is electrically non-conducting. Depending upon the 

physical significance of the geometry all physical quantities 

depend on z* and t* only.  

Figure 1. Flow geometry 

The governing equations of the problem are 
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The initial and boundary conditions of the model are 

1 20, 0, 0, 0, 0,   

= = = = =u v n n T C = C for 0t (8) 

( )( ) 0
2

-1 1
at 0

2 2

0 0 0 0 0 as

* * * ** in t -in t *

r

* *
* * *

1 2 w w* *

* * * * *

1 2

ε
u = U 1+ e + e , v = ,

v u
n = ,n = ,T = T ,C = C z =

z z

u = ,v = ,n = ,n = ,T = ,C = C z





  


  
→



∞ ∞

(9) 

for * 0t , where   is a small constant quantity. According to 

the suggestion proposed by Ganapathy [17], we have assumed 

the oscillatory plate velocity which is given in Eq. (9). 

3. SOLUTION OF THE PROBLEM

We have now considered 

0
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Which satisfy Eq. (1) with unvarying w0 indicates the 
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Imposing above quantities and Eq. (10) the non-

dimensional form of the governing equations is, 
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To solve the equations (11)-(16), we have considered 
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Now with the help of Eq. (19), Eqns. (11)-(16) are reduced 
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The associated boundary conditions are 
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In order to solve Eqns. (20)-(23) satisfying Eq. (25), we 

have defined the followings according to Ganapathy [17].  
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the coefficients of the harmonic and non-harmonic terms and 
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The solutions of the Eqns. (30)-(41) satisfying the 

conditions given in Eqns. (42)-(44) are given by 
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Furthermore, the shear stress at the plate may be written as 
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The rate of heat transfer at the surface is 
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where, r /= xRe U  is the Reynolds number.

The rate of mass transfer at the surface is 
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4. RESULTS AND DISCUSSION

The free convection problem of unsteady three dimensional 

micropolar fluid past a semi-infinite moving vertical porous 

plate embedding with porous medium in conjunction with the 

magnetic field, constant heat source, and first order chemical 

reaction have been considered. The plate velocity is treated as 

oscillatory with constant suction. The characteristics of 

various physical quantities on the flow phenomena have been 

analyzed through graphs from Figures 2-9. For the validation, 

the conformity of the solution in particular cases are presented 

in Table 1. In the absence of the porous matrix the result well 

agrees with the work of Bakr [5]. Also the computed results of 

some flow parameters on the rate coefficients i.e. skin friction 

coefficient, couple stress, Nusselt and Sherwood number have 

been displayed in Table 2.    

Figure 2 portrays the behavior of Prandtl number (Pr), 

magnetic (M) and permeability parameter (Kp) on the fluid 

momentum. Growth in the velocity of the polar fluid is marked 

with the increase in Prandtl number and porosity parameter. 

The expression of the Prandtl number reveals a relationship 

between the kinematic viscosities with thermal diffusivity, so 

attenuation in the thermal diffusivity is rendered that is 

dominated by the kinematic viscosity as Pr increases resulted 

in to increase in the fluid velocity. From the figure it is 

observed that with the increase in magnetic parameter, the 

velocity of the fluid decreases. The appearance of transverse 

magnetic field sets up by the action of the Lorentz force that 

resists the fluid velocity. Figure 3 reveals the influence of 

rotational parameter(R), thermal Grashof number (Gr) and 

mass Grashof number (Gm) on the velocity distributions. Fluid 

velocity attenuates with the increasing values of both the 

buoyancy parameters Gr and Gm. The rotational parameter has 

no significant role on the fluid velocity and this may be 

attributed due the occurrence of the porous matrix. Figure 4 

portrays the effect of suction parameter (s) and heat source 

parameter (S) on velocity profile. It is observed that with the 

increase in suction parameter, the velocity of the polar fluid 
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decelerates. But in case of heat source the impact opposes it. 

On careful observation, it is marked that in case of source, the 

fluid velocity increases throughout the domain. But in case of 

sink, the velocity of the flow field increases for 0 < z <7.5, 

decreases for 7.5 < z <12.5, increases for 12.5 < z < 20 and 

then there is no change. This fluctuation in case of sink may 

be due to the porosity of the medium. Figure 5 shows the effect 

of magnetic parameter (M), prorosity parameter (Kp) and 

rotation parameter (R) on angular velocity. It is observed that 

the angular velocity retards with the enhancement in the 

porosity parameter whereas it favors in to rise as rotation 

parameter increases. But the magnetic parameter has very 

negligible effect on angular velocity. Figure 6 displays the 

effect of heat source parameter (S), suction parameter(s) and 

chemical reaction parameter (Kc) on angular velocity. The 

angular velocity increases with the increase in heat source 

parameter but decreases with the increase in suction parameter 

where as chemical reaction has very negligible effect. Figure 

7 displays the behavior of thermal and Grashof numbers (Gr 

and Gm), and viscosity ratio ( ) on angular velocity. It is

interesting to note that with the increase in viscosity ratio, the 

angular velocity decreases whereas thermal and mass Grashof 

number has very negligible effect. Figure 8 illustrates the 

consequence of Prandtl number (Pr), suction (s) and heat 

source parameter (S) on the fluid temperature. From the figure 

it is observed that the temperature of the fluid decreases with 

the increase in suction parameter and heat source parameter. 

The fluid temperature attenuates with the enhancement in the 

Prandtl number. Moreover, the resulting factor leads to 

decelerate the thickness of the thermal boundary layer. Figure 

9 exhibits the behavior of heavier species (Sc), suction 

parameter(s) and chemical reaction parameter(Kc) on the 

solutal transfer profile. The figure shows that the fluid 

concentration slower down with increasing in chemical 

reaction and suction parameter. Interestingly, the increase in 

Schmidt number also decelerates the concentration level of the 

polar fluid at all points within the flow domain. Therefore, it 

is to conclude that, heavier species have a greater impact to 

retard the polar fluid concentration. 

Table 1. Validation for skin friction and Nusselt number 

R Kc  s Kp Cf

Bakr[5] 

Cf

Present 
(0)−θ

Bakr[5] 

(0)−θ

Present 

0.2 0.2 0.2 1.0 100 6.648 6.64832 3.5371 3.5371 

0.4 0.01 0.2 1.0 100 3.917 3.91713 3.5371 3.5371 

Table 2. Variation of skin friction, couple stress, Nusselt number and Sherwood number with different flow parameters (Fixed 

parameters Gm=2, Gr=10, M=0.2, Pr=0.71, S=10, Sc=016) 

R Kc  s Kp Cf Cw (0)−θ (0)−

0.2 0.2 0.2 1.0 0.5 6.3740 13.2681 3.5371 0.2760 

0.4 0.01 0.2 1.0 0.5 6.5008 13.5328 3.5371 0.1694 

0.6 0.01 0.2 1.0 0.5 6.4072 13.3380 3.5371 0.1694 

0.8 0.01 0.2 1.0 0.5 6.2872 13.0901 3.5371 0.1694 

0.2 0.5 0.2 1.0 0.5 6.2213 12.9510 3.5371 0.3739 

0.2 1.0 0.2 1.0 0.5 6.0652 12.6270 3.5371 0.4879 

0.2 0.01 0.4 1.0 0.5 7.2664 12.8802 3.5371 0.1694 

0.2 0.01 0.6 1.0 0.5 8.1088 12.4875 3.5371 0.1694 

0.2 0.01 0.8 1.0 0.5 9.0389 12.2891 3.5371 0.1694 

0.2 0.01 0.2 1.5 0.5 7.1414 22.2780 3.7393 0.2465 

0.2 0.01 0.2 2.0 0.5 7.7878 32.3774 3.9510 0.3249 

0.2 0.01 0.2 2.5 0.5 8.5354 44.3433 4.1720 0.4040 

0.2 0.01 0.2 1.0 1.5 8.6856 18.0814 3.5371 0.1694 

0.2 0.01 0.2 1.0 2.0 9.7250 20.2441 3.5371 0.1694 

0.2 0.01 0.2 1.0 2.5 10.5993 22.0632 3.5371 0.1694 

Figure 2. Effect of Pr, M and Kp on velocity profile Figure 3. Effect of R, Gr and Gm on velocity profile 
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Figure 4. Effect of s and S on velocity profile 

Figure 5. Effect of M, Kp and R on angular velocity 

Figure 6. Effect of S, s and Kc on angular velocity 

Figure 7. Effect of Gr, Gm and   on angular velocity

Figure 8. Effect of Pr, s and S on temperature profile 

Figure 9. Effect of Sc, S and   on concentration profile 

Table 2 shows the variation of shear stress at the plate i.e. 

skin friction (Cf), couple stress at the plate (Cw), rate of heat 

transfer at the plate i.e. Nusselt number (Nu) and the rate of 

mass transfer at the surface of the plate i.e. Sherwood number 

(Sh) with different flow parameters. From the table it is 

observed that, the rate coefficients i.e. skin friction and couple 

stress decreases with increasing rotation parameter whereas 

the rate of heat and solutal transfer remain unchanged. The 

increase in chemical reaction decelerates the skin friction and 

couple stress but impact is reversed for the Sherwood number 

whereas Nusselt number remains unchanged. The increase in 

microrotation favors in to boost up the skin friction but it 

retards the couple stress whereas the Nusselt number and 

Sherwood number remain unchanged. It is interesting to note 

that; suction parameter is favorable for the enhancement of all 

the engineering coefficients.  

5. CONCLUSIVE REMARKS

In the present study we have theoretically discussed the heat 

transfer phenomena on the time-dependent MHD flow of 

micropolar fluid in a porous medium within a rotating frame, 

considering oscillatory plate velocity with constant suction 

and first-order chemical reaction. The concluding remarks are: 

• The applied transverse magnetic field sets up the

Lorentz force which reduces the fluid velocity.

• The angular velocity attenuates with the growth in the

porosity parameter but impact opposes for the action

of rotation parameter.

• The angular velocity decreases with the increase in
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microrotation viscosity. 

• The retardation in the thickness of the thermal

boundary layer is marked with the rise in Prandtl

number.

• The heavier diffusing species favors in to retard the

fluid concentration.

• An increase in reactive agents decelerates the shear

stress and couple stress but increases the Sherwood

number.
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NOMENCLATURE 

x*,y*,z* dimensional co-ordinate axes 

z non-dimensional z-axis 
* * *, ,u v w velocity components towards x*,y*,z*- 

direction 1[ ]m s−

t* dimensional time variable 

t non-dimensional time variable 

1 2

* *n ,n angular velocity components along x* and y* 

direction 

g acceleration due to gravity 

s suction parameter 

Cp specific heat 1 1[ ]Jkg K− −

B0 magnetic induction 

M non-dimensional magnetic parameter 

QH dimensional heat source 

S non-dimensional heat source 

D molecular diffusivity 

Kl dimensional chemical reactants 

Kc chemical reaction parameter 

T Fluid temperature 2 1[ ]m s−

R non-dimensional rotation parameter 

Ur uniform reference velocity 

Sc Schmidt number 

Pr Prandtl number 

K dimensional porosity parameter 

Kp non-dimensional porosity parameter 

Gr thermal Grashof number 

Gm mass Grashof number 

Greek symbols 

 dimensional rotation parameter 
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 volumetric thermal expansion 

̂ volumetric solutal expansion 

 electrical conductivity 1 1[ ]m− −  

 rotational viscosity 
* dimensional micro-inertia density 

 non-dimensional micro-inertia density

 density of the fluid 3[ ]kgm−

 kinematic viscosity 2 1[ ]m s−

 coefficient of viscosity 1 1[ ]kgm s− −

 viscosity ratio 

 material property 

APPENDIX 
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