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 This paper describes a theoretical approach by making ordinary differential equations 

for observing the phenomena of temperature changes as a form of heat transfer on a 

single rectangular plate fin. Based on what has been done, these research objectives are 

obtained the phenomena of temperature change (a) as a function of the length in the 

copper bar and (b) as a function of the time in a fluid. The methods used in this 

simulation are: (i) do the simplification of differential equations with several 

assumptions to obtain the final form of differential equations and (ii) do a simulation 

based-on spreadsheet application to obtain a curve of temperature change. The 

simulation results are in the form of a change curve, i.e. (a) the temperature change in 

the copper bar as a function of length and (b) changes in temperature values on the fluid 

as a function of time. In general, it is concluded, that changes in the value of parameters 

as a function of the distance or the time can be done by making the ordinary differential 

equations models, so that can be implemented in the simulation process. 
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1. INTRODUCTION 

 

Models describe the beliefs about how the world functions. 

In mathematical modeling, those beliefs must be translated 

into the language of mathematics. There is a lot of element of 

compromise in the mathematical modeling that can be used for 

several different reasons [1, 2]. To apply some mathematical 

methods to a "real-life" problem or is called physical problems, 

must be formulated the problem in mathematical terms, i.e. 

must be constructed a mathematical model for the problem [3]. 

Many physical problems concern relationships between 

changing quantities, namely since rates of change are 

represented mathematically by derivatives. The mathematical 

models often involve equations relating to an unknown 

function and one or more of its derivatives. Such equations are 

differential equations [3]. 

Geometric equations and physical problems have become 

evident as information givers [4] for some of the features of 

the differential equations [4-8]. Some important problems in 

engineering, physics, and social sciences, when informed in 

mathematical form, require research of a function by fulfilling 

a problem containing one or more derivatives of an unknown 

function [8]. Manifestation is the form of language in the 

formulation and resolution of problems in science and 

engineering is one of the important roles of ordinary 

differential equations [9, 10]. The existence of ordinary 

differential equations is characterized by a clear classification 

of dependence on only one variable. One such variable can be 

time, distance, or the other [4-10]. 

The implementation of various fin geometries (rectangular, 

circular, square, and elliptic) has similarities in terms of 

wetting surface area in terms of the point of view of heat 

transfer, tensile strength, and the rate of generation of total 

dimensionless entropy [11]. Cooling states in the fin geometry 

are a form of implementation of Newton's Law that the rate of 

change of the temperature of an object is proportional to the 

difference between its temperature and the temperature of its 

surroundings [11]. The heat that is removed from the 

process in the fin geometry known as a cooling process which 

is a physical operation [12]. The use of material for making fin 

is a very important factor because it is related to the heat 

conductivity of the material. The existence of copper material 

was chosen, because it is closely related to high conductivity, 

besides that copper material is much cheaper when compared 

to other materials which have the same conductivity [13, 14].  

In the phenomena of heat transfer, there is a temperature 

difference, because the transfer of heat will continue as long 

as there is a difference in temperature between the two 

locations. In any situation results from energy flow into a 

system is leads to heating or energy flow from a system to 

surroundings is leads to cooling [15, 16]. Newton's Law makes 

a statement about an instantaneous rate of change of the 

temperature. Newton's Law makes a statement about an 

instantaneous rate of change of the temperature [14], then this 

verbal statement translated into an equation of differential. The 

solution to this equation is a function that tracks the complete 

record of the temperature, time over time. Newton's Law was 

enabled to solve that problem [17]. 

Implementing a single rectangular plate fin as a passive heat 

exchanger for a fluid cooling process is an application of 

differentiation to solve the temperature parameter value per 

unit of distance or time. Based on several descriptions, these 

objectives of the simulation are obtained the phenomena of 

temperature change, namely (i) as a function of the length in 

the copper bar and (ii) as a function of the time in a fluid. 
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2. MATERIALS AND METHODS 
 

2.1 Materials 

 

2.1.1 ODEs that implemented on methods of analytical 

The mathematical approach based on analytical and 

numerical methods for solutions on the temperature difference 

phenomenon with example the cooling process is carried out 

through the implementation of ordinary differential equations 

with variables x, y, and derivatives of y to x, is shown in Eq. 

(1) [4-10]. 

 

𝐹 (𝑥, 𝑦,
𝑑

𝑑𝑥
𝑦,

𝑑2

𝑑𝑥2
𝑦,⋯ ,

𝑑𝑛

𝑑𝑥𝑛
𝑦) = 0 (1) 

 

The form of linear equations with order-n can be written as 

Eq. (2). 

 

𝑎0(𝑥)
𝑑𝑛

𝑑𝑥𝑛
𝑦 + 𝑎1(𝑥)

𝑑𝑛−1

𝑑𝑥𝑛−1
𝑦 + ⋯+ 𝑎𝑛−1(𝑥)

𝑑

𝑑𝑥
𝑦

+ 𝑎𝑛(𝑥)𝑦 = 𝑓(𝑥) 
(2) 

 

where, 𝑎0, 𝑎1, ⋯, 𝑎𝑛−1, 𝑎𝑛, and f is a free variable function x 

and 𝑎0 ≠ 0. 

Ordinary differential equations such as Eq. (2) can be solved 

by methods of analytical (exact) and/or numerical 

(approximation) [18-21]. 

Analytic solution to the cooling process based on the Eq. (2), 

if: 

#i) 𝑛 = 1, called linear differential equations of order-1, as 

shown in the Eq. (3), i,e. 

 
𝑑

𝑑𝑥
𝑦 + 𝑃(𝑥)𝑦 = 𝑄(𝑥) (3) 

 

#ii) 𝑄(𝑥) = 0 , hence 
𝑑

𝑑𝑥
𝑦 + 𝑃(𝑥)𝑦  the order of 

homogeneous linear differential equations of order-1, with a 

general solution is shown in the Eq. (4), i.e. 

 

𝑦 = 𝐾 ∙ 𝑒−∫𝑃(𝑥)𝑑𝑥 (4) 

 

#iii) 𝑄(𝑥) ≠ 0 , hence 
𝑑

𝑑𝑥
𝑦 + 𝑃(𝑥)𝑦 = 𝑄(𝑥)  is called a 

non-homogeneous differential equation with a general 

solution is shown in Eq. (5), i.e. 
 

𝑦 = 𝐾 ∙ 𝑒−∫ 𝑃(𝑥)𝑑𝑥 + 𝑒−∫ 𝑃(𝑥)𝑑𝑥 ∙∫ 𝑒−∫ 𝑃(𝑥)𝑑𝑥 ∙ 𝑄(𝑥)

∙ 𝑑𝑥
 

(5) 

 

where, K is an integration constant according to boundary 

conditions. 

 

2.1.2 Equation of energy balance in a single rectangular plate 

fin 

Another simple, but practical, application of heat 

conduction is in the calculation of the efficiency of a cooling 

fin. Such fins are used to increase the area available for heat 

transfer between metal walls and poorly conducting fluids 

such as gases [22]. A single rectangular plate fin with a 

thickness much smaller than lengthiness (B << L) is shown in 

Figure 1. 
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Figure 1. A single rectangular plate fin with a thickness 

much smaller than lengthiness (B << L) 
 

A reasonably good description of the system may be 

obtained by approximating the true physical situation by a 

simplified model [22]. The comparison between the true 

situation and model [22] is shown in Table 1. 
 

Table 1. The comparison between true situation and model 

 
True Situation No. Model 

𝑇 is a function of both axis (x 

and z), but the dependent on 

the z-axis more important 

1 
T is a function of the z-

axis alone 

A small quantity of heat is 

lost from the fin at the end 

(area 2BW and the edges (area 

2BL+2B𝐿) 

2 
No heat is lost from the 

end or the edges 

The heat transfer coefficient 

is a function of position 
3 

The heat flux at the 

surface is given by 

q=h(T-Ta), in which h is 

constant and T=T(z) 

 

A thermal energy balance on a segment Δz of the bar gives 

the Eq. (6) [22]. 
 

𝑞𝑧|𝑧 ∙ 2𝐵𝑊 − 𝑞𝑧|𝑧+∆𝑧 ∙ 2𝐵𝑊 − ℎ(2𝑊 ∙ ∆𝑧)(𝑇 − 𝑇𝑎)
= 0 

(6) 

 

Division by 2𝐵𝑊 ∙ ∆𝑧 and taking the limit Δz approaches 

zero gives as the Eq. (7). 

 

−
𝑑

𝑑𝑧
𝑞𝑧 =

ℎ𝑚𝑒𝑡.

𝐵
(𝑇 − 𝑇𝑎) (7) 

 

Insertion of [22] Fourier's Law (𝑞𝑧 = −𝑘
𝑑

𝑑𝑧
𝑇) in which k 

thermal conductivity of the metal gives for constant kmet, so 

that the Eq. (7) transformed into the Eq. (8). 

 

−
𝑑2

𝑑𝑧2
𝑇 =

ℎ𝑚𝑒𝑡.

𝑘𝑚𝑒𝑡. ∙ 𝐵
(𝑇 − 𝑇𝑎) (8) 

 

Implementation of the fin form in fluid, then the Eq. (8) 

changes to the Eq. (9) [22]. 

  

−
𝑑2

𝑑𝑧2
𝑇 =

ℎ𝑚𝑒𝑡.

𝑘𝑚𝑒𝑡. ∙ 𝐵
(𝑇 − 𝑇𝑓) (9) 

 

In the case of using copper material for the simulation 

process, then 𝑇 = 𝑇𝑐𝑢 , ℎ𝑚𝑒𝑡. = ℎ𝑐𝑢 , and 𝑘𝑚𝑒𝑡. = 𝑘𝑐𝑢 , so the 

Eq. (9) transformed into the Eq. (10). 
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−
𝑑2

𝑑𝑧2
𝑇𝑐𝑢 =

ℎ𝑚𝑒𝑡.

𝑘𝑚𝑒𝑡. ∙ 𝐵
(𝑇𝑐𝑢 − 𝑇𝑓) (10) 

 

The Eq. (10) is to be solved with the BC [22], at z=0, then 

𝑇𝑐𝑢 = 𝑇𝑤 as the 1st BC and at 𝑧 = 𝐿, then 
𝑑

𝑑𝑧
𝑇𝑐𝑢 = 0 as the 2nd 

BC. 

Now introduce the following dimensionless quantities [22] 

are shown as Eqns. (11), (12), and (13).  

 

Θ =
𝑇𝑐𝑢−𝑇𝑓

𝑇𝑤−𝑇𝑓
= dimensionless temperature (11) 

 

𝜁 =
𝑧

𝐿
 = dimensionless distance (12) 

 

𝑁 = √
ℎ𝑐𝑢∙𝐿

2

𝑘𝑐𝑢∙𝐵
 = dimensionless heat transfer 

coefficient 

(13) 

 

This problem may be restated to Eq. (14). 

 

𝑑2

𝑑𝜁2
Θ = 𝑁2Θ (14) 

 

where: Θ|𝜁=0 = 1 and  
𝑑

𝑑𝜁
Θ|ζ=1 = 0. 

Eq. (14) may be integrated to give hyperbolic functions [22]. 

When the two integration constants have been determined, so 

Eq. (15) is obtained [22]. 

 

Θ = cosh𝑁𝜁 − (tanh𝑁) ∙ sinh𝑁𝜁 (15) 

 

2.2 Methods 

 

Several equations are known, then a spreadsheet-based 

simulation process is carried out. The results obtained are (i) a 

change in temperature in the copper bar is affected by the 

length of the copper bar and (ii) changes in the value of the 

working fluid temperature. The two changes obtained are an 

increase in temperature as a function of the length of the 

copper bar and a decrease in temperature curve as a function 

of time. A simulation for a change in temperature in the copper 

bar as a function of the length of the copper bar. Further 

elaboration of the equation is carried out to obtain the form of 

a new equation that is used for simulating the temperature 

changes as a function of time in the vessel chamber. 

 

 

3. RESULTS AND DISCUSSIONS 
 

3.1 Temperature change as a function of the length of a 

copper bar 

 

For the acquisition of the benefit of Eq. (15), it is necessary 

to stage the simplification, to obtain the form of the equation 

that has been explained by Bird et al. [22]. The simplification 

process for the Eq. (18) is carried out through stages, i.e.: 

 

#the 1st stage: Θ = cosh𝑁𝜁 − (
sinh𝑁

cosh𝑁
) ∙ sinh𝑁𝜁 

#the 2nd stage: Θ =
cosh𝑁

cosh𝑁
∙ cosh𝑁𝜁 − (

sinh𝑁

cosh𝑁
) ∙

sinh𝑁𝜁 

#the 3rd stage: Θ =
cosh𝑁∙cosh𝑁𝜁−sinh𝑁∙sinh𝑁𝜁

cosh𝑁

  

After staging, it is as explained by Bird et al. [2], so that the 

final equation is obtained as the Eq. (16).  
 

Θ =
cosh𝑁(1 − 𝜁)

cosh𝑁
 (16) 

 

The dimensionless numbers in Eqns. (11), (12), and (13) are 

substituted into the Eq. (16), so the Eq. (17) is obtained. 
 

𝑇𝑐𝑢 − 𝑇𝑓

𝑇𝑤 − 𝑇𝑓
=

cosh [√
ℎ𝑐𝑢 ∙ 𝐿

2

𝑘𝑐𝑢 ∙ 𝐵
∙ (1 −

𝑧
𝐿
)]

cosh√
ℎ𝑐𝑢 ∙ 𝐿

2

𝑘𝑐𝑢 ∙ 𝐵

 (17) 

 

The simplification of Eq. (17) is obtained the Eq. (18). 
 

𝑇𝑐𝑢 − 𝑇𝑓 =

cosh [√
ℎ𝑐𝑢 ∙ 𝐿

2

𝑘𝑐𝑢 ∙ 𝐵
∙ (1 −

𝑧
𝐿
)]

cosh√
ℎ𝑐𝑢 ∙ 𝐿

2

𝑘𝑐𝑢 ∙ 𝐵

∙ (𝑇𝑤 − 𝑇𝑓) (18) 

 

Further simplification to the Eq. (18), obtained the Eq. (19). 
 

𝑇𝑐𝑢 =

cosh [√
ℎ𝑐𝑢 ∙ 𝐿

2

𝑘𝑐𝑢 ∙ 𝐵
∙ (1 −

𝑧
𝐿
)]

cosh√
ℎ𝑐𝑢 ∙ 𝐿

2

𝑘𝑐𝑢 ∙ 𝐵

∙ (𝑇𝑤 − 𝑇𝑓) + 𝑇𝑓 (19) 

 

The simulation process assisted by the spreadsheet 

application in Eq. (19) results in a temperature change curve 

on the copper bar. The change in temperature value in the 

copper bar as a function of the length is shown in Figure 2. 

 
Figure 2. The change in temperature value in the copper bar 

as a function of the length 
 

Based on Eq. (19) and Figure 2 can be explained, that 

change in temperature value (in a copper bar) as a function of 

the length (as the distance) is shaped exponential curve with 

an initial length value of zero meters. It is shown that the 

change in temperature in the copper bar is influenced by the 

length of the copper bar in the form of a single rectangular 

plate fin. 
 

3.2 Temperature change as a function of the time in a fluid 
 

The rate of change of energy in a system in the form of a 

chamber filled with water with a cooling source from a fin rod 

is a simple block made of copper, equal to the rate of energy 

entry minus the rate of energy coming out plus the formation 

of energy. Referring to the statement referred to, then obtained 
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the Eq. (20). 
 

𝑚𝑓 ∙ 𝐶𝑝𝑓 ∙
𝑑

𝑑𝑡
𝑇𝑓 = −ℎ𝑐𝑢 ∙ 𝐴𝑐𝑢 ∙ (𝑇𝑐𝑢 − 𝑇𝑓) 

+𝑈𝑤 ∙ 𝐴𝑤 ∙ (𝑇𝑓 − 𝑇𝑤) 
(20) 

 

A solution to Eq. (20) to determine the change in fluid 

temperature with a change in time is obtained the Eq. (21). 
 

𝑑

𝑑𝑡
𝑇𝑓 = −

ℎ𝑐𝑢 ∙ 𝐴𝑐𝑢
𝑚𝑓 ∙ 𝐶𝑝𝑓

∙ (𝑇𝑐𝑢 − 𝑇𝑓) +
𝑈𝑤 ∙ 𝐴𝑤
𝑚𝑓 ∙ 𝐶𝑝𝑓

∙ (𝑇𝑓 − 𝑇𝑤) 

(21) 

 

For observations of changes in temperature values in fluids, 

it is necessary to value properties related to materials and 

fluids, namely heat capacity of copper, area of copper, a mass 

of fluid, heat capacity of fluid, over-all heat transfer coefficient 

of a wall, and area of the wall. Assumed the IC, namely (i) 

value of time is t= 0, (ii) temperature of copper is Tcu = 0℃, 

and fluid temperature is Tf= 20℃. The BC is also assumed to 

be a value of time is t≥0, including the temperature of the wall 

and the temperature of ambient air, which are considered 

constant. Using Eq. (21) for obtaining a change in the value of 

the working fluid temperature concerning time, and the curve 

in the form of a cooling time statement, i.e. the curve of the 

relationship of the temperature value to the change in time. 

Changes in temperature values (in fluid) as a function of the 

time at the six various range of time is shown in Figure 3. 
 

 

 

 

 

 

 
 

Figure 3. Changes in temperature values (in fluid) as a 

function of the time at the six various range of time 

 

Based on Figure 3 can be explained, that change in 

temperature value (in fluid) as a function of the time at six 

various range of time with an initial temperature value of 20 

degrees. The observation with a period of up to 600 seconds 

indicated, that the curve is formed as a straight line or linear 

curve. 

When the observation with a period of up to 1,200 seconds, 

the shape of the curve changes not purely a straight line 

anymore. So it is the time of observation with a period of up 

to 1,800 seconds and up to 2,400 seconds, the shape of the 

curve changes to be a semi-straight line, while the time of 

observation with the time of up to 3,000 seconds and up to 

3,6000 seconds indicated, that the curve that occurs is an 

exponential line curve or nonlinear curve. As a whole, it can 

be concluded, that the phenomena of decreasing temperature 

are in the form of an exponential line curve when carried out 

over a relatively long time. 

 

 

4. CONCLUSIONS 

 

Based on results and discussions can be concluded 

according to the first research objectives, that change in 

temperature value (in a copper bar) as a function of the length 

(as the distance) is shaped exponential curve with an initial 

length value of zero meters. It is shown that the change in 

temperature in the copper bar is influenced by the length of the 

copper bar in the form of a single rectangular plate fin. 

According to the second research objectives, that change in 

temperature value (in fluid) as a function of the time with an 

initial temperature value of 20 degrees is shaped linear curve 

when at the beginning of the time with a time of up to 600 

seconds (10 minutes), then it turns into an exponential line 

curve. It is shown that the temperature change in the fluid is 

influenced by time. In general, it is concluded, that changes in 

the value of parameters as a function of the distance or the time 

through the simulation can be done by making mathematical 

equations based on ordinary differential equations. 
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NOMENCLATURE 

x dependent variable; 𝑥-axis 

y independent variable; 𝑦-axis 

F, P, Q, f functions 

K an integration constant according to 

boundary conditions 

d differentiating 

e exponential number = 2.71828… 

∫ integrating 

∑ summing 

Δ the segment of a 

n constant 

! factorial 

B fin thickness 

L fin lengthiness 

W fin widths 

z 𝑧-axis 

q heat flux at the surface 

h heat transfer coefficient 

T absolute temperature 

k thermal conductivity, W.m-1. K-1 

Cp specific heat, J. kg-1. K-1 

t time 

U over-all heat transfer coefficient 

A area, m2 

BC boundary conditions 

IC initial conditions 

Greek symbols 

Θ dimensionless temperature 
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𝜁 dimensionless distance 

𝛮 dimensionless heat transfer 

coefficient 

 

Superscripts 

 

1, 2, n, n-1 sequence to 

(n) n-th derivative 

  

 

 

Subscripts 

 

1, w, n sequence to  

met. metal 

cu copper 

a air 

f fluid 

w wall 

z in 𝑧-axis 
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