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ABSTRACT. This paper attempts to solve the problem of material selection for resonance panels 

in Chinese musical instruments, which are mostly made of wood. For this purpose, the author 

combined the Gaussian mixture model (GMM) and support vector machine (SVM) into a 

classification and recognition algorithm of wood vibration signals, and adopted the approach 

to classify and recognize resonance panels of different Chinese musical instruments. The 

application results show that our method achieved a recognition rate greater than 90%, 

outperformed the strategy of using the GMM as the only classifier, and overcame the decline 

of recognition rate of the SVM facing a huge amount of data. The research findings shed new 

light on the material selection and quality improvement of Chinese musical instruments. 

RÉSUMÉ. Cet article tente de résoudre le problème de la sélection des matériaux pour les 

panneaux de résonance d'instruments de musique chinois, principalement en bois. Dans ce 

but, l'auteur a combiné le modèle de mélange gaussien (GMM, le sigle de « Gaussian Mixture 

Model » en anglais) et la machine à vecteurs de support (SVM, le sigle de « support vector 

machine » en anglais) dans un algorithme de classification et de reconnaissance des signaux 

de vibration du bois. Les résultats de l'application montrent que notre méthode a atteint un 

taux de reconnaissance supérieur à 90%, a réréalisé de meilleures performances que la 

stratégie consistant à utiliser le GMM comme le seul classificateur et a surmonté le déclin du 

taux de reconnaissance de SVM confrontée à une énorme quantité de données. Les résultats 

de la recherche ont apporté un nouvel éclairage sur la séléction des matériaux et 

l’amélioration de la qualité des instruments de musique chinois. 
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1. Introduction 

As the carrier of traditional culture, China’s national musical instrument has a 

long history of development (Luo and Tang, 2013). It records the glorious music 

culture of China and the outstanding wisdom and creativity of its ancestors. Wood is 

an indispensable raw material for making musical instruments. Wood, like other 

elastic materials, can generate and propagate vibrations under the action of impact 

force or periodic external force. This reaction to external force vibration is the 

source of sound effects produced by wood. The vibrating wood surface will excite 

the surrounding air and use air as the medium to transmit vibrations into the human 

ear in the form of waves. The wood with good acoustic property has excellent 

acoustic resonance and vibration spectrum characteristics, and it can give a beautiful 

sound by radiating the sound energy from its own vibration under the action of the 

impact force. Therefore, the study of the wood vibration sound signal characteristics 

is of great significance for the manufacture of musical instruments. The studies for 

the wood vibration characteristics by domestic and foreign experts and scholars 

(Shen et al., 2002; Chen, 1988; Ono and Norimoto, 1983) can be broadly divided 

into several aspects, such as vibration characteristics method, the interrelationship 

between vibration parameters, the selection of musical instrument soundboards, and 

the analysis of characteristics etc.  

The features used in the field of voice recognition are mostly divided into the 

following categories, such as short-term energy, zero-crossing rate, Mel-Frequency 

Cepstral Coefficients (MFCC) (Bhalke et al., 2016), Spectral Centroid, Sub-band 

Energy, Perceptual Linear Prediction (PLP), LPCC (Ai et al., 2006), and Gabor 

(Wang et al., 2014), or a combination of these features. Currently the commonly 

used sound classification algorithms are GMM, SVM (Jung and Yong, 2017), KNN 

(Wang et al., 2006), END, Bayes, and HMM (Brognaux and Drugman, 2016) etc. In 

the mid-1970s, the voice recognition of Hidden Markov model (HMM) based on 

DTW and statistical methods appeared. HMM can effectively describe the time-

varying characteristics of speech signals and solve the problems encountered by 

DTW in computing and segmenting continuous sound primitives. The literature 

(Radhakrishnan and Divakaran, 2005) proposed an audio monitoring system applied 

to the railway environment, where the MFCC feature is used to train the GMM 

classifier and recognize screams and gunshots. KNN is widely used in various fields 

for its simple realization and high classification accuracy. Its drawback is that it 

requires a large storage overhead and the boundary classification error is large. END 

is also a classification algorithm with the higher classification accuracy. However, 

due to the high complexity of the END calculation time, it is difficult to implement 

the classification problem with many data types and large data volumes. SVM is a 

new type of machine learning method developed on the basis of statistical learning 

theory (Vapnik, 1997). It solves practical problems such as non-linearity, small 

sample size and high dimensionality, and has become one of the research hotspots in 

machine learning; it has also successfully applied to classification, time series 

prediction and function approximation, etc., so as to reflect the differences between 

categories to a greater extent in terms of classification. 
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This paper intends to introduce related methods of sound recognition into the 

study so as to explore new ideas and methods. In view of the many advantages of 

the SVM method, this paper proposes one method based on the combination of 

different sound eigenvalues to establish a hybrid model of GMM and SVM and 

classify the vibration sound signals of wood. Then it extracts three features of LPCC, 

MFCC and Gabor for comparison experiments. This paper proves the feasibility and 

correctness of the GMM-SVM model to classify the sound signals of wood vibration. 

The rest of the paper is organized as follows. In Sect. 2, highlights the process of 

feature extraction of wood sound. Then the GMM model and SVM classifier and an 

overall about algorithm design will be described in Sect. 3. The test results are 

presented and discussed in Sect. 4. Finally, Sect. 5 concludes the paper and 

describes the future work. 

2. Feature extractions 

The basic task of feature extraction is to analyze and process the preprocessed 

sound signal and extract the important and useful information for sound recognition. 

The selection of feature parameters is one key issue for sound classification and the 

quality of feature parameters directly affects the classification accuracy. Therefore, 

the feature parameters that can reflect the important characteristics of wood 

vibration sound should be extracted firstly, and then the data can be given to the 

classifier for training and classification recognition. This paper selects three 

commonly used sound features: LPCC, MFCC and Gabor. 

2.1. LPCC feature 

The Linear Prediction Coefficient (Jiang and Zhang, 2009) (LPC) technique is 

the theoretical and calculation basis for solving the Linear Prediction Cepstral 

Coefficient (LPCC). To ensure the stability of sound feature parameters and the 

effect of sound recognition, LPC isn’t generally used as the feature parameter of 

sound signal in sound recognition systems, but it is subjected to homomorphic signal 

processing to obtain the LPC cepstral coefficient. The LPCC is recursively derived 

from linear prediction coefficients. The iterative relationship is given as: 
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When the order of LPCC is smaller than that of LPC, the second equation in 

formula (1) is used. When the order of LPCC is greater than the that of LPC, the 

third equation is used. 
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2.2. MFCC feature 

MFCC is the feature that utilizes the human ear’s different perception of 

different frequency signals. A non-linear Mel frequency scale is used to simulate the 

auditory system of the human ear by combing the human ear’s auditory perception 

characteristics with the sound production mechanism. It can be widely used in all 

areas of sound signal processing. 

The extraction process of MFCC feature parameter is shown in Figure 1: 
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Figure 1. Extraction process of MFCC parameter 

In the actual operation process, the specific solving process of MFCC feature 

parameters is given as follows: 

(1) The wood vibration sound signal is divided into a series of consecutive 

frames. Then the Hamming window framing is added, where each frame contains 

N=512 samples, and the adjacent frame has 256 samples overlapping. Let the sound 

signal time domain signal be x(n), the i-th frame sound signal xi(n) can be expressed 

as: 

( ) ( ) ( ),  0 -1ix n x i N n n n N=  +                                 (2) 

where, ω(n) is Hamming window, 
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(2) The signal is converted from the linear frequency to the Mel frequency scale. 

The conversion formula is expressed as 

( ) 2595lg(1 )
700

f
Mel f = +                                      (4) 

(3) The triangular filter bank is configured on the Mel frequency axis, and the 

center frequency c(l) of each triangular filter is uniformly spaced. The corresponding 

upper and lower limit frequencies can be represented by h(l) and o(l), respectively. 

The cutoff frequency of the signal determines the number of filters L. Therefore, the 

upper limit, center and lower limit frequencies between adjacent triangular filters 

have the following relationship: 
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( ) h( 1) o( 1)c l l l= − = +                                           (5) 

(4) One logarithmic transformation on the output of the filter is performed. This 

shall not only compress the dynamic range of the signal, but also convert the 

convolutional relationship into a linear relationship by the homomorphic 

transformation so as to separate the noise. 

(5) Finally, the discrete cosine transform on the logarithmic spectrum is made to 

remove the correlation of the spectrum, map the signal to the low-dimensional space, 

and obtain MFCC. The discrete cosine transform is expressed as: 
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where L is the number of Mel filters and D is the dimension of the MFCC feature. 

2.3. Gabor feature 

The Gabor filter bank consists of a set of two-dimensional Gabor filters, where 

each filter is defined by the time-frequency domain envelope function and the time-

frequency carrier function. The Gabor filter function is defined as: 

0 0

0 0 0 0

2 2

( , , , , , , , , )

( ) ( ) ( ) ( )
k n k n

k n

k n k n

i

g k n k n

s k k s n n h k k h n n e   

 

   





= − − − −                          (7) 

where k is the frequency index, n is the frame index, k0 is the carrier frequency, n0 is 

the center of the time frame, ωk is the spectrum modulation frequency, ωn is the time 

modulation frequency, vk and vn are the half-cycle number of the carrier in the 

frequency and time domain dimensions respectively, and ∅ is an additive global 

phase. 

The Gabor feature is a time-frequency feature whose extraction process is shown 

in Figure 2: 
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Figure 2. Extraction process of gabor parameter 

First, the sound signal y(n) is windowed and pre-emphasized, using Hamming 

window. Then, the discrete Fourier transform is applied to the sound signal for 
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transforming the signal into the frequency domain Yl,k, and the log spectrum of the 

signal is logarithmically transformed by Mel spectrum ,l mY


: 
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where N is the window length, ns is the sampling frequency, and M is the number of 

MEL filter. Then, the logarithm Mel spectrum coefficient Y is sent to the two-

dimensional Gabor filter, and the real part of the Gabor filter output is taken as the 

Gabor feature of the signal, as shown in formula (10): 
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When one Gabor filter bank is applied to each Mel filter, a high-dimensional 

feature representation shall be obtained correspondingly, e.g., in this paper, 23 Mel 

filters and 41 Gabor filters are used, so Gabor filter output has 23*41=943 

dimensions. The literature (Schädler et al., 2012) indicated that the filter output of 

the adjacent channel is highly correlated, thus, the output of the Gabor filter can be 

reduced dimensionally. 

3. Sound recognition system 

3.1. GMM model classifier 

At present, GMM as a commonly used classifier has been used in many fields of 

sound signal processing, and especially it has achieved good results in the field of 

audio retrieval and audio event detection. The GMM model describes the statistical 

distribution of features through the linear weighting of the Gaussian probability 

density function. The spatial distribution of feature parameters determines the model 

parameter values. One M-order GMM is a weighted sum of M Gaussian probability 

density functions, as shown in Formula (11): 

1
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where, a is a D-dimensional feature vector; bi(a) is the D-dimensional Gaussian 

distribution function that represents a Gaussian mixture model component; Pi is the 

weighting factor of the corresponding component bi(a). For bi(a) and Pi, it can be 

expressed as: 
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where, μi is the mean vector; i

→

 is the covariance matrix. Therefore, the GMM 

consists of the parameter mean vector, the covariance matrix, and the mixing 

weights. It is expressed as: 

 , ,   i=1, ,i i i M  
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=                                        (14) 

3.1.1. GMM EM algorithm of GMM 

The GMM parameters represents the individual characteristics of the wood board 

vibration signal Therefore, a set of parameters that determine the probability 

distribution should be found during the identification in order to maximize the 

probability of representing the sound characteristics of the wood board vibration. 

Usually, the EM algorithm is used to achieve the maximum likelihood estimation. 

By iteratively estimating the parameters of the GMM by the EM algorithm, when 

the value of the likelihood function reaches its maximum, the iteration stops. The 

EM algorithm parameters are estimated in the following procedures: 

(1) Calculate the unknown z (each classification) using the parameters obtained 

in Step M, to obtain the conditional distribution of the observed data, 
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where, P(z|y,θ) is the likelihood function of complete data, p is the joint probability 

density function of the complete data; (y, z) is the sample set, y is the observation 

data, z is the missing data, P(z|y,θ) is the conditional probability of missing data, and 

P(z|θ)is the distribution of missing data. 

(2) Calculate new mean, variance, and weight; 
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(3) Substitute μj,σj,p(zj=i|θ) into step (15) to recalculate until the sample set no 

longer significantly changes the likelihood function of each classification. 

When training the GMM by the EM algorithm, it is necessary to first determine 

the order M of and the initial parameters of the model: weight, mean, and variance. 

The clustering method is generally adopted for the selection of initial parameters. 

There are many clustering algorithms, such as K-means algorithm, STING algorithm, 

CLIQUE algorithm etc. The K-means algorithm, by centralized division of the 

complete data set and incomplete searching, can ensure the maximum of the given 

objective function value maximum under certain criteria. It has the characteristics of 

theoretical reliability, fast convergence, and efficient processing of large data sets. 

Therefore, K-means algorithm is selected in this paper. 

In the training phase, the model is created for each wood vibration signal, i.e., 

the sound feature vectors are first clustered to obtain the initial values of the weights, 

the mean and the covariance matrix, and then a set of parameters is determined for 

each wood by iteration according to the EM algorithm, which are used as model 

parameters. Through the K-means algorithm, the EM algorithm obtains the 

relatively theoretical and stable initial value. The K-means algorithm is the key 

initialization step in the EM algorithm and a very widely used clustering method. 

3.2. SVM classifier 

SVM was proposed by Vapnik (1999). It has particular advantages in solving 

small-sample, non-linear and high-dimensional data pattern recognition. Given a set 

of training samples, each of which is marked as one of two categories, the SVM can 

construct a non-probabilistic binary linear classifier model so that a new sample can 

be classified into its category. The principle of SVM is to map the points in the low-

dimensional space to the high-dimensional space, so that these data can be linearly 

separable in the high-dimensional space, and then use the linear partition principle to 

divide the category boundaries. The main idea of SVM is to establish a hyperplane 

as the decision surface, which maximizes the interval between samples to be divided, 

and realizes the transformation from the classification problem into a constrained 

min/max problem, as shown in the following: 
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where: ζi is slack variable; C is the penalty factor, and N is the number of samples. 

In formula (19), it can be seen that those influencing the SVM model accuracy 
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are slack variable ζ and penalty factor C. The slack variable ζ ensures the SVM to 

have fault tolerance when the sample is regressed, while the penalty factor C is to 

solve the problem that the SVM classifier makes the target ‖w‖ smaller for a small 

number of discrete points. The kernel function (ωx) reflects the degree of correlation 

of each support vector and realizes the transformation of model solution into a 

planning problem with constraint by mapping the inseparability between the vector 

and x in the low-dimension space to the high-dimensional space and then making 

the inner product. To select the kernel functions and determine the kernel function 

parameters are key points and difficulties. The commonly used kernel functions are 

shown in Table 1. 

Table 1. Common kernel function 

Kernel function name Kernel function expression 

Linear Kernel (x ,x ) xTk x ci j ji= +  

Polynomial Kernel (x ,x ) ( x c)T dk xi j ji= +  

RBF Kernel 2(x ,x ) exp( ||x x || )k i j i j= − −  

Sigmoid Kernel (x ,x ) tanh( (x x ) c)Tk i j ji=  +  

Temko stated in literature (Temko and Nadeu, 2006) that using Radial Basis 

Function (RBF) kernel functions for classification of audio events can achieve better 

classification results than others. Therefore, the RBF kernel function was selected in 

our experiments. 

Recognition of wood vibration signals is a multi-class classification issue. The 

single 2-class SVM classifier cannot solve this issue. There are generally two kinds 

of treatment methods, namely, one-to-many method and one-to-one method. In this 

paper, the one-to-many method was adopted to train and identify samples, and to 

extend the 2-class classification problem to multiple classes; this method can easily 

classify each optimization problem at fast speed of classification. If there are N 

different wood vibration signals in this method, the nth is defined as +1 class, and 

the others are combined as -1 class, thus, a two-class classifier is obtained. In this 

way, N classifiers can be finally obtained. In the recognition process, the sounds to 

be tested are input into N classifiers, and the decision function values are calculated 

by formula (20) and (21). 

SVM classifier is expressed as: 

( ), 1,2, ,nf x n N=                                            (20) 

Decision function is given as: 
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 1( ) argmax ( ), ( )Nf x f x f x=                                     (21) 

3.3. GMM-SVM classifier 

Studies have shown that GMM and SVM have very different recognition rates 

on the same training data, indicating that they are complementary in some aspects. 

Therefore, if the wood vibration signal recognition system can integrate the 

advantages of both models, the recognition rate will be improved to some extent. In 

practical applications, the SVM training algorithm is complex and requires a large 

amount of calculations, making it difficult to process large amounts of sample data. 

The hybrid model combining the advantages of GMM and SVM together, can 

effectively solve the problems of SVM training algorithm above. In this paper, the 

wood vibration signal recognition system is established by GMM-SVM method. 

Based on the eigenvectors calculated by the GMM, the SVM is used to perform the 

optimal classification, establish the sample database, and complete the training 

process. Besides, in the recognition process, the decision function is used to 

discriminate the sound samples of wood vibration. Fig.3 depicts the structure of 

wood vibration. signal recognition system based on GMM-SVM.  

Pre-
emphasis

GMM

Extract feature 
parameters

GMM
input

SVM

Pattern 
matching

        train

  test

judgment

 

Figure 3. Wood vibration signal recognition system structure based on GMM-SVM 

The recognition process is made are as follows: 

(1) After preprocessing the training sounds, extract the feature parameters, and 

then make GMM training by EM algorithm to to obtain the mean parameters. If 

there are N woods, the mean values are μ1, μ2,..., μn respectively. 

(2) Using the one-to-many method to train the SVM model; calculate the 

distance 1 2,d , ,dN

nm nm nmd
 
from each sound signal to the m-th mean value parameter 

of the n-th wood vibration sound signal, and finally obtain an N-dimensional 

training sample 1 2[ ,d , ,d ]N

nm nm nm nmD d= . 

(3) Repeat step (2) to obtain all SVM training samples and finally achieve the N 

SVM recognition models. 
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(4) For the sound sample to be tested, take the similar method as step (1) to 

obtain the final test sample. 

(5) Compare the test sample with each SVM model. According to the 

classification criteria, the wood level corresponding to the maximum output value is 

the recognition result. 

4. Experiment and results 

4.1. Data collection 

The professional recording pen was used in the quiet laboratory environment 

with relatively little noise. The experimental materials were 30 wood boards of 

paulownia elongata of the same size and 3 different quality grades. There were 10 

boards per quality grade; for each board took, 30 fixed positions were taken and 

recorded for 60s respectively, to obtain the mono sound file at sampling rate 32 kHz. 

In order to reduce the complexity of voice data, 8 kHz sampling rate was adopted for 

re-sampling, i.e., down-sampling, and then the voice file was saved as a sound file 

with a quantization number of 16-bit, wav format, followed by preprocessing. 

4.2. Preprocessing 

CoolEdit software was used to remove noise from the original sound sample, and 

then the high-pass filter as adopted to eliminate the low-frequency noise in the audio, 

because there existed non-voice segments in the recorded sound data. High-pass 

filter conversion function is H(z)=1-kZ-1, where parameters k is set to be 0.9375. 

After the signal passed through the high-pass filter, the signal that was originally 

only floating in the low-frequency part was adjusted to make it sound clearer. All 

sound files were intercepted into about 2s data for training and testing. Sound signal 

before and after noise removal is shown as follows: 

 

Figure 4. Waveform of original wood vibration sound signal   
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Figure 5. Waveforms of wood vibration sound signal after denoising 

4.3. Experimental results discussion 

Through experiments, the selection of the mixing degree M of the GMM, the 

recognition effect of different sound features, and the recognition effect of different 

classifiers were studied. The recognition rates of GMM system and GMM-SVM 

system based on MFCC features at different mixing degree are shown in Table 2. 

Table 2. Recognition rates of GMM and GMM-SVM at different mixing degrees 

mixing degree GMM recognition rate% GMM-SVM recognition rate% 

8 

16 

32 

64 

79.1 

85.4 

88.6 

86.2 

81.4 

89.1 

90.9 

91.0 

 

In Table 2, it can be seen that the recognition rate of GMM system and GMM-

SVM system increase with the mixing degree, and when the mixing degree is the 

same, the recognition rate of GMM-SVM system is always higher than that of GMM 

system. At the mixing degree 8, 16, and 32, the recognition rate of both increases 

rapidly, but when the mixing degree is more than 32, the recognition rate of the 

GMM system almost no longer increases, despite the increase of the mixing degree, 

whereas the recognition rate of GMM-SVM system is still slowly increasing. 

Therefore, the mixing degree M has a great influence on the recognition rate of the 

system. When M is small, GMM cannot describe the acoustic characteristics of 

wood well, and then the classification result of SVM is not accurate enough, so as to 
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decrease the recognition rate of the system. When M is too high, the training of 

GMM takes too much time, and SVM training is also faced with large sample 

problems, leading to the reduced system identification performance. Thus, the 

moderate mixing degree M of the GMM model should be selected, by taking 32 in 

this paper. A process of extracting LPCC and MFCC features, the frame length was 

512 points and the frame shift were 256 points. The LPCC feature of each frame 

took 12-dimensions, and its first-order differential dynamic features were also taken, 

to obtain a total of 24 eigenvectors. The LPCC, MFCC and Gabor features 

characterize the cepstral domain and time-frequency domain of the sound event 

respectively, belonging to two different types of sound features. Besides, the 

Hamming window was used to extract the Gabor features, with 41 Gabor filters. 

Each Gabor filter was convolved with 23 log Mel frequency bandwidths in the 

frequency range from 64 Hz to 4000 Hz. The secondary sampling was made for 

Gabor filter output, and the initial feature of 41*23=943 dimension was reduced to 

311 dimensions. Based on the experimental results in Table 2, the M value was 

chosen as 32 in this experiment. The experimental results of the 3 different sound 

features are shown in Table 3. 

Table 3. Recognition rates of GMM and GMM-SVM under different sound features 

feature GMM recognition rate% GMM-SVM recognition rate% 

LPCC 

MFCC 

Gabor 

78.3 

88.6 

89.8 

81.6 

90.9 

91.9 

 

The MFCC feature is based on the auditory characteristics of the human ear. It 

mimics the processing characteristics of the human ear to a certain extent and 

exhibits good robustness in the noisy environment. The LPCC is established on the 

basis of pronunciation model, but its parameter does not fully consider the auditory 

characteristics of the human ear and is not robust in the noisy environment. The 

Gabor feature is a biologically inspired feature that is extracted from a two-

dimensional Gabor filter bank. The Gabor filter decomposes the power spectral 

density in the time-frequency domain into modulation units in the time, frequency, 

and time-frequency domains. The experimental results show that Gabor has 

achieved better performance and is slightly better than MFCC, and also the GMM-

SVM model based on these three features has achieved better results than the GMM 

model. 

5. Conclusions 

In this paper, three different methods were used to extract feature parameters. 

Besides, the sound classification method combining GMM model with SVM 

classifier was adopted and compared with the GMM used alone as classifier. Finally, 



150     TS. Volume 35 – n° 2/2018 

 

the experiments were performed at different mixing degrees. In the same 

environment, the experimental results show that the classification method based on 

GMM-SVM hybrid model has the characteristics of simple structure and high 

classification accuracy, and it can be practically applied in the wood vibration sound 

classification system. In future, more studies should be made by combing the GMM 

with other theories, in order to apply it more effectively to the field of wood 

vibration sound recognition. 
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