
Fault Diagnosis in Distributed Power-Generation Systems Using Wavelet Based Artificial 

Neural Network 

Jiahui Chen*, Jason Gao, Yiwei Jin, Pengpeng Zhu, Qinzhen Zhang 

School of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China 

Corresponding Author Email: chenjiahui@mail.shiep.edu.cn

https://doi.org/10.18280/ejee.230107 ABSTRACT 

Received: 5 January 2021 

Accepted: 25 February 2021 

In recent years, research on fault diagnosis of grids is becoming increasingly important, 

because it ensures the stable operation of power systems, and meets high demands on the 

power quality by power customers. In this paper, an intelligent approach for fault diagnosis 

of distributed power generation systems is proposed based on maximum overlap discrete 

wavelet transform and artificial neural network. In the proposed scheme, the fault data are 

first collected. Then, maximum overlap discrete wavelet transform is applied to detect 

faults and extract features. Finally, artificial neural network is constructed to classify the 

fault types. Results show that the method can identify faults precisely, classify fault types 

accurately, and is not affected by the change of electrical parameters. In addition, 

compared with several existing intelligent diagnosis techniques, the proposed approach 

can provide better fault classification accuracy. To evaluate the performance, the algorithm 

is verified by the case of the modified simulation model of IEEE-13 bus standard system. 
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1. INTRODUCTION

In the background of energy shortage, environmental 

degradation, and high growth of power demand [1], traditional 

centralized power grids suffer from the serious safety and 

stability issues, in contrast, distributed power grids develop 

rapidly. The distributed power grids occur because they can 

solve many potential problems of large centralized power 

grids. And they also take the advantages of distributed powers, 

such as high reliability, environmental protection, and energy 

saving [2]. Meanwhile, as an important part of the 

development of distributed power grids, research on fault 

diagnosis has also received extensive attention, because it can 

detect grid faults, restore power supply, and ensure the stable 

operation [3]. 

In recent years, artificial intelligence methods (e.g., petri net, 

support vector machine (SVM), artificial neural network 

(ANN), etc.) have been widely used in the research on fault 

diagnosis of the power systems [4-6]. An investigation on the 

high voltage transmission lines is carried on by Said at al. [4]. 

The method is based on ANN and Mho relay, and it can detect 

short-circuit faults quickly and precisely. An efficient 

microgrid protection scheme based on SVM is developed by 

Manohar and Koley [5], and it contributes to the protection of 

microgrid. Owing to these intelligent approaches, the fault 

diagnosis has been greatly improved with high efficiency and 

precision. In comparison, artificial neural network is a 

relatively mature fault diagnosis tool at present. It has the 

characteristic of strong nonlinear approximation, adaptive 

learning ability, and short calculation time. Moreover, it is 

suitable for analyzing real-time fault diagnosis problems of 

power grids [7]. 

Additionally, many studies also adopt wavelet analysis to 

extract features when using machine learning models. As is 

known, the wavelet transform is an ideal tool for signal time-

frequency analysis. The engineering applications usually 

utilize discrete wavelet transform (DWT). For instance, many 

studies have been undertaken to investigate the issue of 

transients in grids [8, 9], classification and location of faults 

[10, 11], and detection of power quality disturbances [12]. 

However, when analyzing time series, DWT of level 𝐽 restricts 

the signal length to an integer multiple of 2𝐽, and it is very

sensitive to the starting point of signals [13]. In contrast to 

DWT, the maximum overlap discrete wavelet transform 

(MODWT) is a highly redundant nonorthogonal transform, 

and it is a modified edition of the DWT. When MODWT is 

applied to analyze the real-time detection of fault-induced 

transients, it can detect transients faster than DWT [14, 15]; 

and MODWT is a shift-invariant transform, that is, it can 

choose the starting point arbitrarily without causing problems 

such as phase distortion [13, 16]; besides, MODWT can 

process signals of any length, which is more suitable for 

applications [17]. 

However, there is still a research gap on the issue of the fault 

diagnosis in distributed power grids. Many studies fail to 

provide the arbitrary initial angles of the faults, and the initial 

angles are set with a certain angular interval during 

simulations [5, 10]. Meanwhile, some prior investigations 

represent that fault detection can be achieved through wavelet 

coefficient energy, or boundary wavelet coefficients [9, 14, 

18]. However, the method based on wavelet coefficient energy 

may fail to detect faults in the case of a high impedance fault, 

it also suffers the difficulty of choosing the appropriate 

threshold [18]. Furthermore, some research neglect to address 

the issue on fault localization [10], and some existing 

techniques require further improvements for the accuracy of 

fault classification. 

In order to address the research gap of fault diagnosis in 

distributed power grids, the fault diagnosis scheme based on 

ANN and MODWT are considered in this paper. Compared 
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with the existing studies, the contributions of this study are 

concluded. To begin with, the method based on MODWT 

adaptive threshold selection is used for fault detection. On the 

one hand, the difficulty of choosing the appropriate threshold 

can be avoided, because the threshold is determined by the 

signal itself rather than artificially set. On the other hand, 

faults can be detected with a high recognition rate. Then, the 

algorithm of MODWT and ANN is adopted for fault 

classification, and it can recognize the types of short-circuit 

faults accurately. Further, different schemes are compared 

under the same conditions, and the results represent that the 

method in this study can provide higher accuracy.  

The remaining sections of the paper are arranged as below. 

The fault diagnosis scheme is introduced in the second section, 

and three main parts are included: the MODWT based fault 

detection process, the feature extraction employing MODWT, 

and the ANN based fault classification process. The 

performance testing and discussion about the results are 

presented in the third section, and four parts are composed: the 

test system, data generation, the results of the method, and the 

comparison with other schemes. The last one is the conclusion 

of the article. 

2. FAULT DIAGNOSIS SCHEME

In the proposed scheme, there are three main parts: the fault 

detection, feature extraction, and fault classification. Firstly, 

the fault data are obtained from different fault conditions. 

Secondly, the fault detection is performed based on MODWT, 

and it aims to determine whether and when the fault occurs. 

Thirdly, the feature vectors are extracted through MODWT, 

then, they are put into the neural network for training. Finally, 

the results of the fault classification can be obtained. The flow 

chat of the proposed scheme is given in Figure 1. 

Figure 1. The flow chat of the fault diagnosis scheme 

2.1 MODWT based fault detection 

2.1.1 Maximum overlap discrete wavelet transform 

Compared with DWT, MODWT has the following 

characteristics [13]: it can handle any sample size 𝑁 with a 

wider range of applicability; besides, it has no down-sampling 

process, and wavelet coefficients can be calculated 

immediately after each sampling process; what’s more, 

MODWT is not affected by the starting point of the time series, 

and it is different from DWT. 

For a signal 𝑌(𝑛) of any length 𝑁, MODWT decomposes 

the signal into 𝑙𝑜𝑔2𝑁 levels. Meanwhile, the wavelet

coefficients �̃�𝑗,𝑛 and scale coefficients �̃�𝑗,𝑛 of the 𝑗𝑡ℎ level are

shown in Eqns. (1) and (2): 

�̃�𝑗,𝑛 = ∑ ℎ̃𝑗,𝑙𝑌𝑛−𝑙 𝑚𝑜𝑑 𝑁

𝐿𝑗−1

𝑙=0
(1) 

�̃�𝑗,𝑛 = ∑ �̃�𝑗,𝑙

𝐿𝑗−1

𝑙=0
𝑌𝑛−𝑙 𝑚𝑜𝑑 𝑁 (2) 

ℎ̃

𝑛 = 0,1,2, … , 𝑁 − 1, where, 𝑁 is the signal’s sampling length; 

𝑗,𝑙  is the wavelet filter the 𝑗𝑡ℎ stage; �̃�𝑗,𝑙 is the scale filter of 

the 𝑗𝑡ℎ stage; 𝐿𝑗 is the filter’s width of the 𝑗𝑡ℎ level. For more 

details, please refer to the papers [13, 16]. 

2.1.2 Detection algorithm 

After obtaining the data, the fault detection is carried on to 

judge whether a fault occurs. If a fault occurs, the current will 

undergo a sudden change, and generate a short transient 

phenomenon. By extracting and analyzing the high-frequency 

components in the first-level coefficients of MODWT, the 

time when the fault occurs can be detected, otherwise it ends. 

The modular extremum method is proposed by Silva at al. 

[18], that is, if the first-level wavelet coefficients exceed the 

set threshold, the occurrence time of the fault can be identified. 

However, the approach suffers the difficulty of choosing the 

appropriate threshold. If the threshold is set inappropriately, 

there will also be multiple points before the fault occurs that 

exceed the threshold, as shown in Figure 2(b). As a result, the 

detection fails. 

Therefore, in order to improve the fault detection rate, the 

real-time fault detection in this article has made some 

adjustments to the technique of literature [18], which is mainly 

based on the adaptive threshold selection. An example that the 

comparison result of the two detection methods is represented 

in Figure 2. 

Figure 2. An example of the comparison result of the two 

detection methods: (a) three-phase current of AG fault; (b) 

the detection result of the algorithm proposed in literature 

[18]; (c) the detection result of the algorithm proposed in this 

paper 
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The algorithm of the fault detection is as follows: 

1) MODWT on the current using “𝐻𝑎𝑎𝑟” wavelet;

2) The first-level detail coefficients of each phase are

extracted, and the first 1000 and last 1000 detail coefficients 

are removed; 

3) For the coefficients obtained in (2), first the difference

between adjacent points in absolute value are calculated, 

which is defined as the Eq. (3). Then, the maximum value 

𝐷𝑘𝑚𝑎𝑥  of each phase are compared, and found.

𝐷𝑘 = |𝐶1,𝑘+1 − 𝐶1,𝑘| (3) 

where, 𝐶1,𝑘 is the 𝑘𝑡ℎ wavelet coefficient of the first level.

4) 2 points around 𝐷𝑘𝑚𝑎𝑥  of each phase are averaged, the

maximum mean 𝐷𝑡ℎ and its phase are compared, and found.

𝐷𝑡 =
1

3
∑ 𝐷𝑘𝑚𝑎𝑥

𝑘𝑚𝑎𝑥+1

𝑘𝑚𝑎𝑥−1
(4) 

5) The 𝐷𝑘 of the phase determined in (4) are compared with

𝐷𝑡ℎ. If it is greater than 𝐷𝑡ℎ, then it is related to the occurrence

time of the fault.  

As is seen in Figure 2, the algorithm proposed in this paper 

has achieved a good effect of detecting the fault, because there 

is only one point exceed the threshold, and the moment 

corresponding to this point is just the moment when the fault 

occurs. However, the method proposed in the literature [18] 

fails, because there are multiple points before the fault occurs 

that exceed the threshold, and the moment when the fault 

happens cannot be accurately determined. Besides, faults can 

also be detected at any time without delay. As for the accuracy 

of the detection results, we will discuss with the results of fault 

classification.  

2.2 Feature extraction 

After detecting the faults, two successive cycles of the 

currents are used as the objects for feature extraction, and it 

starts from the previous cycle of the faults. Then, the detail 

coefficients of each level are obtained after MODWT. 

However, if the detail coefficients are directly employed as 

feature vectors for training, it will result large memory space, 

long processing time, and poor classification accuracy [19]. 

Therefore, on the premise of not losing the original signal 

characteristics, it is vital to choose the appropriate feature 

vectors for training [20]. In this paper, “change in total 

standard deviation” and “change in the sum of mean” are 

calculated as the neural network’s inputs. The details of the 

feature vectors are as follows: 

1) Standard Deviation: it is typical that standard deviation

is utilized as the feature vector, which can reflect the degree of 

dispersion of a set of data distribution. The definitions of total 

standard deviations and change in total standard deviations are 

indicated in Eqns. (5) and (6): 

𝜎𝐷 = ∑ √
1

𝑁
∑(𝐷𝑖𝑗 − 𝜇𝐷,𝑖)

2

𝑁

𝑗=1

𝐽

𝑖=1

(5) 

∆𝜎𝐷 = 𝜎𝐷𝐴 − 𝜎𝐷𝐵 (6) 

where, 𝑖 = 1,2,3, … , 𝐽  ( 𝐽 is the decomposition level of 

MODWT); 𝑁 is the amount of sampling points at each level; 

𝐷𝑖𝑗  is the detail coefficient; 𝜇𝐷,𝑖 is the mean of detail

coefficients at each level; 𝜎𝐷𝐴 is the total standard deviation of

the post cycle of the fault; 𝜎𝐷𝐵 is the total standard deviation

of the previous cycle of the fault. 

2) Mean: the formulas of sum of mean and change in sum

of mean are as follows: 

𝜇𝐷 =
1

𝑁
∑ ∑ 𝐷𝑖𝑗

𝑁

𝑗=1

𝐽

𝑖=1
(7) 

∆𝜇𝐷 = 𝜇𝐷𝐴 − 𝜇𝐷𝐵 (8) 

where, 𝑖 = 1,2,3, … , 𝐽  ( 𝐽 is the decomposition level of 

MODWT); 𝑁 is the number of sampling points of each level; 

𝐷𝑖𝑗  is the detail coefficient; 𝜇𝐷𝐴 is the sum of mean of the post

cycle of the fault; 𝜇𝐷𝐵 is the sum of mean of the previous cycle

of the fault. 

In summary: the description of feature vectors (F1-F8) are 

as follows:  

1) F1: change in the total standard deviation of phase A;

2) F2: change in the total standard deviation of phase B;

3) F3: change in the total standard deviation of phase C;

4) F4: change in the total standard deviation of zero

sequence; 

5) F5: change in the sum of mean of phase A;

6) F6: change in the sum of mean of phase B;

7) F7: the change in the sum of mean of phase C;

8) F8: change in the sum of mean of zero sequence.

For example, the feature patterns for different short circuit

faults are represented in Figure 3. 

Figure 3. The feature patterns for different short circuit faults 

2.3 Artificial neural network 

Artificial neural network is a processor with simple 

processing units, and it is similar to the brain in that it acquires 

knowledge from external processes through a learning process. 

The BP neural network is one of relatively mature neural 

networks, and its network structure can be constructed through 

the neural network toolbox of MATLAB.  

As the input layer, it is intended to receive the data-

processed feature vectors from the outside world. In this paper, 

the input layer is determined by the 8-dimensional feature 
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vectors (F1-F8), and the input is divided into training data set 

and test data set randomly. As the hidden layer, the aim is to 

convert the information into a targeted solution through 

internal self-learning and information processing, and the 

information is received by the input layer. The hidden layer’s 

output is given in Eq. (9): 

ℎ𝑗 = 𝑓(∑ 𝑤𝑖𝑗

𝑛

𝑖=1
𝑥𝑖 − 𝑏𝑗) (9) 

where, 𝑛 is the number of neurons in the input layer; 𝑤𝑖𝑗  is the

connection weight of the input layer and hidden layer; 𝑗 =
1,2,3, … , 𝑞; 𝑞 is the number of neurons in the hidden layer; 𝑏𝑗

is the threshold of hidden layer. 

As the output layer, the intention is to get the final result by 

comparing the actual output with the expected output of the 

neuron. The output layer’s output is as follows: 

𝑦𝑘 = 𝑓(∑ 𝑣𝑗𝑘ℎ𝑗

𝑚

𝑘=1
− 𝑡𝑘) (10) 

where, 𝑣𝑗𝑘  is the connection weight of the hidden layer and

output layer; 𝑘 = 1,2,3, … , 𝑚; 𝑚 is the number of neurons in 

output layer; 𝑡𝑘  is the threshold of the output layer. In this

paper, the output layer is determined by the 11 types of short-

circuit faults. The classification of short-circuit faults is a 

binary classification problem, so the outputs can be expressed 

in binary mode, and it is given in Table 1. 

Table 1. The binary mode of the outputs 

Fault types Phase A Phase B Phase C Ground 

AG 1 0 0 1 

BG 0 1 0 1 

CG 0 0 1 1 

AB 1 1 0 0 

AC 1 0 1 0 

BC 0 1 1 0 

ABG 1 1 0 1 

ACG 1 0 1 1 

BCG 0 1 1 1 

ABC 1 1 1 0 

ABCG 1 1 1 1 

As a result, the diagram of ANN structure used for 

classification is given in Figure 4. 

It is critical to set the learning parameters of the neural 

network, because there will be problems of over-fitting and 

under-fitting without proper selection of parameters. Usually 

it has no definite choice, and it can be set by empirical 

formulas and continuous experiments. This paper chooses the 

relatively best learning parameters through continuous 

experiments. Its learning parameters are illustrated in Table 2. 

Table 2. ANN structure and learning parameters setting 

Structure and parameters Values 

Input layer 8 

Hidden layer 18 

Output layer 4 

Training function traingdm 

Learning rate 0.02 

Training accuracy 0.0001 

Activation function Tangent,sigmoid 

3. PERFORMANCE TESTING AND RESULTS

3.1 Test system 

In this paper, the IEEE-13 bus system is adopted as the test 

system, which is a typical three-phase unbalanced system [21]. 

The test system is modelled in MATLAB, and its diagram is 

given in Figure 5. Referring to [22-23], the descriptions of the 

system are as follows: 

1) It is a small 4.16 kV feeder system with high loads, and

there is a 4.16 kV/480V transformer between lines 633-634; 

2) The phases of the overhead and ground cables are

unbalanced. Note that some are single-phase, such as lines 

684-653 and 684-611; some are two-phase, like lines 671-684,

632-645, and 645-646; and others are three-phase;

3) A 4.16 kV three-phase voltage source is directly

connected to node 632 in test system; however, a voltage 

regulator is connected from nodes 650 to nodes 632 in the 

original system; 

4) The photovoltaic power generation unit is connected to

the node 680 through a 4.16 kV/480 V transformer, in order to 

achieve grid connection; 

5)The rest of the data are from the official website without

any change. For specific parameters, please refer to literature 

[21]. 

Figure 4. Schematic diagram of BP network structure 
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Figure 5. Diagram of modified IEEE13 bus test system 

This paper mainly focuses on the short-circuit fault, and its 

waveform can be captured through simulation. For example, 

the waveform of single-phase ground fault is depicted in 

Figure 6. 

Figure 6. The waveform of single-phase ground fault 

3.2 Data generation 

In this study, different fault conditions with the change of 

electrical parameters are needed to be considered, and their 

specific settings are as follows: 

1) Time of fault occurrence (initial phase angles of faults):

the time of fault occurrence are usually consistent, and the 

initial angles of faults are set with a certain angular interval 

during simulation, such as literature [5, 10, 18]. However, the 

occurrence time and the initial angles of the faults are arbitrary, 

so there are certain limitations of the setting. In this study, 

three moments t1, t2, t3 that the faults occur were randomly 

generated during simulation, and they obey the uniform 

distribution on [0, 1]; 

2) Fault lines: line632-633, line632-671, line692-675,

line671-680 in Figure 5; 

3) Transition resistances: 0.01Ω, 1Ω, 50Ω;

4) Fault types: AG, BG, CG, AB, AC, BC, ABC, ABCG,

ABG, ACG, BCG. 

As a result: a total of 3 ∗ 3 ∗ 4 ∗ 11 = 396 fault conditions 

can be simulated. 

3.3 Results of the proposed scheme 

In order to verify the effectiveness of the proposed scheme, 

relevant sample data are obtained to test and evaluate it. First, 

all sample data are tested, and part of the output results are 

shown in Table 3. Then the recognition rate of fault detection 

and the accuracy rate of fault classification are counted, 

respectively. Additionally, the sample data of 4 lines are tested 

separately, and their classification accuracy are summarized. 

The fault diagnosis performance of the scheme is given in 

Table 4. 

In the actual output result of the neural network, there is 

rarely a result that is exactly zero or one on each output neuron. 

Thus, if the error of each output neuron is within a small range, 

it can be ignored, and the fault is considered to be correctly 

classified [24]. As seen in Table 3, the error of each output 
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neuron is almost within 0.03, and there are also few large 

errors. But in general, the errors can be ignored, the results of 

the actual output are satisfactory, and 11 types of the short-

circuit faults are correctly identified. 

Table 3. Part of the output results 

Fault 

type 

Expected 

output 

Actual output 

Phase 

A 

Phase 

B 

Phase 

C 
Ground 

AG (1 0 0 1) 0.9994 0.0222 0.0404 0.9996 

BG (0 1 0 1) 0.0138 0.9980 0.0176 0.9916 

CG (0 0 1 1) 0.0168 0.0023 0.9802 0.9939 

AB (1 1 0 0) 0.9921 0.9877 0.0017 0.0157 

AC (1 0 1 0) 0.9898 0.0088 0.9878 0.0084 

BC (0 1 1 0) 0.0030 0.9904 0.9884 0.0024 

ABG (1 1 0 1) 0.9869 0.9954 0.0307 0.9798 

ACG (1 0 1 1) 0.9996 0.0018 0.9880 0.9977 

BCG (0 1 1 1) 0.0160 0.9976 0.9728 0.9917 

ABC (1 1 1 0) 0.9714 0.9805 0.9324 0.1896 

ABCG (1 1 1 1) 0.9916 0.9856 0.9972 0.9519 

Table 4. Fault diagnosis results of the proposed scheme 

Line 
Test data 

(groups) 

Accuracy 

Fault 

detection 

Fault 

classification 

Line632-

633 
99 100% 99.51% 

Line632-

671 
99 100% 97.75% 

Line671-

680 
99 100% 98.92% 

Line692-

675 
99 100% 98.47% 

Overall 396 100% 98.57% 

It can be concluded from Table 4 that the proposed 

algorithm of fault detection can detect all faults, and the 

recognition rate of fault detection can reach 100%. 

Consequently, the results of the fault detection prove that the 

algorithm is feasible. As for the performance of fault 

classification, it is slightly worse. Nevertheless, the approach 

can still offer a satisfactory overall classification accuracy of 

98.57%, and it indicates that the method can successfully 

classify faults in most conditions. In addition, the accuracy of 

fault classification for different transmission lines can achieve 

more than 97.5%, and it shows that the method can adapt well 

to the change of parameters. 

Although the proposed scheme can obtain a good 

classification accuracy, there are still individual misjudgments. 

The misjudgments exist because when the transition resistance 

increases, the characteristics of the voltage and current of the 

fault phase will become less and less obvious. And if the 

characteristics of the fault phase are less obvious, it will lead 

to the increased difficulty in distinguishing [16]. Especially in 

the case of high impedance (severe) faults, there may even be 

indistinguishable situations. 

3.4 Comparison with other intelligent fault classification 

schemes 

The performance of the proposed scheme with other 

intelligent fault diagnosis schemes are also compared, and 

results are summarized in Table 5. In addition, the best 

performing item is shown in bold. It should be noted that other 

schemes conclude two main parts: the methods in other studies 

and other algorithms. Moreover, the data of these comparison 

schemes are provided from the test system in this paper. And 

the faults are also detected with the method proposed in this 

paper, so they can all identify the faults. Besides, the method 

in scheme 2 refers to the reference [24]. 

Table 5. Comparison of the results with other schemes 

Scheme Accuracy 

Proposed scheme 98.57% 

DWT MRA+ANN [24] 97.86% 

MODWT+SVM 97.3% 

MODWT+DT 97.22% 

MODWT+KNN 96.5% 

From the comparison of fault diagnosis results in Table 5, 

in general, among all these comparison schemes, the proposed 

method outperforms the existing methods presented in Table 

5 with the highest classification accuracy, so the results show 

that the proposed method is practicable to be applied to the 

fault diagnosis of the grids. In detail, on the one hand, the 

proposed scheme is compared with the method proposed in the 

literature [24], and the main differences between two methods 

are the selected wavelets and feature vectors. However, the 

proposed scheme in fault classification performs better than 

the other one, so the results infer that the choice of wavelet and 

feature vectors plays an important role in fault classification. 

On the other hand, the proposed scheme is compared with 

other algorithms, and the main difference between these 

methods is the artificial intelligence technology. However, the 

proposed scheme in fault classification performs better than 

others, so the results imply that the choice of artificial 

intelligence technology is also vital in fault classification. 

4. CONCLUSIONS

An intelligent method of fault diagnosis in distributed 

power grids is shown in this paper, and the method is based on 

MODWT and ANN. First, fault detection is performed on the 

collected fault data. After identifying the faults, then the 

frequency domain features are extracted as feature quantities 

through MODWT, and finally the feature quantities are put 

into the artificial neural network for training. In order to verify 

the performance of the proposed scheme, it is tested on the 

simulation model of the modified IEEE-13 bus standard 

system. The results indicate that it can precisely detect faults, 

classify the fault types, and is not subjected to the variation of 

the electrical parameters. Meanwhile, contrasted with several 

existing diagnosis schemes, the proposed approach can 

provide better fault classification accuracy. Besides, future 

work will focus on the fault location and the optimization of 

neural network parameters. 
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