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Modularity concepts attracted the attention of many researchers as it plays an important 

role in product design problems. Modularity requires dividing a product into a set of 

modules that are independent between each other and dependent within. The product is 

represented using Design Structure Matrix (DSM). DSM works as a system representation 

tool; it visualizes the interrelationship between product elements. In this research, a 

comparison is conducted between four optimization algorithms: Emperor Penguins 

Colony (EPC), First Modified Emperor Penguins Colony (MEPC1), Second Modified 

Emperor Penguins Colony (MEPC2) and Cuckoo Search (CS) optimization algorithms. 

These four algorithms aim at finding the optimal number of clusters and the optimal 

assignment of components to clusters, with the objective of minimizing the total 

coordination cost. Experimental results show that EPC outperforms the other three 

algorithms. 
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1. INTRODUCTION

Modular design has a significant impact on product 

development, which respond to market trends that require 

large varieties in small production processes [1]. Modularity is 

an important method that helps to manage large systems by 

breaking them into modules. Such modules should be 

interdependent within the same module and independent 

among different modules. Modular design requires clustering 

various components that form a product to create modules that 

are efficient and useful for production. Efficient modularity of 

products takes on greater significance as identical components 

are used in various products [2]. 

Design Structure Matrix (DSM) is a powerful tool which 

supports both analysis and complex system management [3]. 

It is also a product representation tool that allows the user to 

model, visualize and analyze the dependencies between the 

elements of a system. In addition, DSM helps to derive 

suggestions for the improvement or synthesis of a system, 

providing a clear visualization of the product design from the 

perspective of a product representation tool. A product can be 

represented by a DSM that contains a list of the components 

of the product. The DSM of commodity also offers exchange 

of knowledge and relationships of dependency between these 

components [4]. 

In this paper, four meta-heuristic algorithms are used to 

determine: (1) the optimal number of clusters in a DSM, and 

(2) the optimal assignment of components to clusters that

minimizes the total coordination cost. These meta-heuristic

algorithms are Emperor Penguins Colony (EPC), First

Modified Emperor Penguins Colony (MEPC1), Second

Modified Emperor Penguins Colony (MEPC2) and Cuckoo

Search (CS) optimization algorithms. To the best of our

knowledge, this is the first time EPC, MEPC1 and MEPC2 are

used in solving discrete optimization problems. 

The rest of this paper is structured as follows: Section 2 

provides a brief introduction about DSM, followed by a review 

of related literature in Section 3. Problem definition and the 

used solution algorithms are provided in Sections 4 and 5, 

respectively. Section 6 includes numerical experimentation 

and analysis of the algorithms and, finally, the paper 

conclusion and future work are provided in section 7. 

2. DESIGN STRUCTURE MATRIX (DSM)

The Design Structure Matrix (DSM) is a system analysis 

method that provides a complex system with a compact and 

consistent representation. It captures the interaction or 

interdependencies among elements of the system. DSM 

tolerates feedback and cyclic dependencies, an important 

feature as many engineering applications has the cyclic 

property [5]. 

DSM is a square matrix of size n, where n is the number of 

elements of the system. Figure 1 shows an example of a DSM 

of size 7. Elements names are written on the first raw and the 

first column of the matrix in the same order. An entry of 1 or 

x in the matrix means that the correspond elements i j (rowi, 

columnj) are dependent on each other. For each product, a 

DSM is developed and can be analyzed to classify modules, 

which are referred to as clustering. DSM clustering seeks to 

find clustering arrangements where modules interact with each 

other minimally and at the same time, components belonging 

to the same module interact maximally with each other [4]. 

For instance, Figure 1(a) Shows the original un-clustered 

DSM, Figure 1(b) shows a clustered DSM where the majority 

of the interactions are found in two domains, namely {A, F, E} 

and {D, B, C, G}. Figure 1(b) also shows that three 
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interactions do not belong to any specific module. 

 

 
Figure 1. Example of a DSM of size 7 elements 

 

 

3. LITERATURE REVIEW 

 

Eppingeret, et al. [6] introduced the concept of minimizing 

module interactions, thus optimizing module interactions in a 

DSM. Idicula [7] suggested an algorithm for stochastic 

clustering of DSM clusters. Further developments were made 

by (Gutierrez 1998), where the development of a mathematical 

model. The model minimizes the total coordination cost [8]. 

A Genetic Algorithm is used to find optimal arrangement of 

elements within DSM which optimize the minimum 

description length (MDL) [9]. 

A new method is developed to define the difference 

between designing modular systems and integrative systems 

[10]. The study is focused on the specification of modules, 

modules architecture, and their interfaces. (DSM) is used and 

extended to represent more accurately the models under study 

[11].   

To obtain better output from a clustering algorithm, a 

method known as conceptual module generation phase can be 

employed [12]. Liang [13] developed a model known as group 

decomposition model. The proposed model decomposes a 

complex set of activities into simpler ones. The DSM is used 

as a system simplification tool. The used clustering algorithm 

is K-means algorithm. 

A modularization scheme based on functional modeling is 

proposed and K-means is used for clustering [14]. Neural 

networks algorithms and DSMs have been utilized to cluster 

DSM components with the objective function of clustering 

efficiency; however, the algorithm requires a predetermined 

number of clusters [15]. 

Borjesson and Hölttä [16] develop an algorithm named 

Idicula-Gutierrez-Thebeau Algorithm (IGTA) for clustering 

DSM. An improved algorithm, named IGTA-plus, is proposed. 

IGTA-plus provide significant improvement when compared 

with IGTA. Recorded improvements are in terms of 

computational time and solution quality. Genetic clustering is 

proposed with Minimum Description Length measure. A new 

assumption is added to minimize the total execution time. The 

proposed algorithm is tested on four case studies [17]. 

Yang et al. [18] developed a systematic clustering algorithm 

for organizational DSM. The algorithm evaluates clustering 

structures based on the strength of interaction Another novel 

approach for product design is introduced by integrating the 

sequence structure planning of assembly and disassembly of a 

product [19]. 

Clustering method is developed based on multidimensional 

scaling (MDS), this method is used DSM as system 

visualization tool [20]. Clustering algorithm using cuckoo 

search is developed to find optimal number of clusters within 

DSM and best assignment of each element in cluster using 

minimizing coordination cost as objective [4, 5]  

A new practical method is proposed by Sakao et al. 2017 to 

support designers in creating service modules by extending the 

DSM [21]. novel research is developed, this research tries to 

answer a lot of questions, what is the importance of modularity 

concept in product design problems, how modularity helps in 

design for variety, and the importance of modulatiy in 

increasing the performance of the organization [22]. Multi-

objective clustering algorithm is proposed using non-

dominated cuckoo search to minimized coordination cost and 

maximizes Sustainability through DSM [23]. Finally, new 

research is developed aiming to construct independent clusters 

to be replaced or removed at any stage of manufacturing 

process [24]. 

The reviewed literature on product design using DSM as a 

system analysis tool revealed the existence of several 

techniques used to cluster the DSM for modularity. One major 

difference between those techniques is the objective of 

clustering. Minimizing cost is one of the most widely targeted 

objectives [25]. Another objective is the Minimal Description 

Length (MDL) [9], another clustering objective is the 

Clustering Efficiency (CE) index with static number of 

clusters [15]. 

From the solution technique point of view, several 

techniques were used in solving product design under 

modularity; stochastic hill-climbing algorithm [25], Genetic 

Algorithm [9], and neural networks [15]. To the best of our 

knowledge, this research is the first one to use the four 

previously mentioned metaheuristic algorithms with cost 

minimization as the objective function in solving product 

design problem under modularity while having the number of 

clusters dynamic. 

 

 

4. PROBLEM DEFINITION 

 

In modular design problem the product is represented using 

DSM, DSM is product representation tool, as shown in figure 

1, DSM contains set of cells, cells contain “1” or “x” if there 

is relation between component i and j, cells contain “0”  or 

“empty cell” if there isn’t relation between component i and j. 

The objective is to cluster these components in such a way 

that minimizes the total coordination cost. Accordingly, two 

sets of decisions are to be considered; (1) the number of 

clusters to be formed, and (2) the optimal assignment of 

components in each cluster.  

For a given DSM, the total coordination cost consists of two 

parts; IntraClusterCost and ExtraClusterCost as provided by 

Eqns. (1) and (2), respectively. If interaction DSMik belongs to 

cluster j then IntraClusterCost is to be calculated, otherwise 

ExtraClusterCost is to be calculated.  The total cost is the 

additi0n of IntraClusterCost and ExtraClusterCost as shown in 

Eq. (3) and mentioned in the ref. [26]. 

 

𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡

= ∑ (𝐷𝑆𝑀𝑖𝑘
𝑖,𝑘∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗

+ 𝐷𝑆𝑀𝑘𝑖)

∗ ∑ (𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒
𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑗=1
𝑗)𝑝𝑜𝑤𝑐𝑐  

(1) 
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𝐸𝑥𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡

= ∑ (𝐷𝑆𝑀𝑖𝑘

𝑖,𝑘 ∉ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗

+ 𝐷𝑆𝑀𝑘𝑖)𝐷𝑆𝑀𝑆𝑖𝑧𝑒𝑝𝑜𝑤𝑐𝑐   ,
𝑗 = 1 … 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

(2) 

 

where, DSMik is the relation between component i and k, 

DSMSize is the number of components (rows) in the matrix, 

powcc is a value utilized to penalize clusters’ sizes, and 

ncluster is the total number of clusters. Clustersize(j) is the 

number of components within cluster j.  

 

Total coordination Cost = IntraClusterCost + 

ExtraClusterCost 
(3) 

 

In this problem we have one constaint, this constaint is; each 

component must assign to one cluster; overlapping between 

clusters not allowed. overlapping between cluster decreases 

the importance of the clustering process and minimize the 

Sustainability of product being easy to replace or remove any 

cluster to produced different product or adding new features. 
 

 

5. SOLUTION ALGORITHMS 
 

Meta-heuristic optimization algorithms are general iterative 

algorithms capable of solving combinatorial optimization 

problems. These algorithms are stochastic in nature, and they 

simulate the behavior of particles. Meta-heuristic optimization 

algorithms try to find optimal or near optimal solutions for 

complex problems [27]. To solve the problem defined in 

Section 4, four meta-heuristic algorithms are utilized. These 

algorithms represent population-based optimization 

algorithms. The utilized algorithms are Emperor Penguins 

Colony (EPC), First Modified Emperor Penguins Colony 

(MEPC1), Second Modified Emperor Penguins Colony 

(MEPC2) and Cuckoo Search (CS) optimization algorithms. 

In the following subsections, a brief description of the 

algorithms is given, Section 5.5 shows the discretization 

process of EPC, MEPC1, and MEPC2. 
 

5.1 Cuckoo Search (CS)  
 

Yang and Deb [28] had proposed the Cuckoo Search (CS) 

algorithm. The algorithm simulates cuckoo birds' behavior to 

explore the solution space for an optimum solution, or near 

optimum. CS is inspired by the behavior of certain species of 

brood parasite cuckoo that lay their eggs in the nests of other 

host birds. Brood parasite cuckoos distribute their eggs 

between various nests. Their aim is to escape the parental 

investment in raising their offspring, and to minimize the risk 

of their egg loss, as mentioned by Yang and Deb [28]. 

One of the major advantages of CS is its performance, 

which has been proved by a large number of benchmark 

studies. CS performed better when comparing outcomes with 

other metaheuristic algorithms [29]. Another advantage its 

simplicity compared to other metaheuristic algorithms, 

because it involves setting only two parameters. This function 

simplifies the time and effort required to adjust and fine-tune 

the parameter settings for the algorithm. 
 

5.2 Emperor Penguins Colony (EPC) 
 

A new Meta heuristics algorithm named The Emperor 

Penguin Colony (EPC) was proposed by Harifi et al. [30]. The 

algorithm inspired by the behavior of emperor penguins in 

colonies when they move from a cold domain to a warmer one 

following a logarithmic spiral like movement. This algorithm 

is controlled by the body heat radiation of the penguins and 

their spiral-like movement in their colony. The algorithm tries 

to find optimal or near to optimal solution. 

In the EPC, the temperature around the huddle is calculated, 

the algorithm is vector based equations, when the body 

temperature is calculated and body heat radiation of each 

penguin and then due to distance and attractiveness each 

penguin performs the spiral-like movement. 

EPC starts with a set of penguins representing the 

population size. These penguins are distributed in nature with 

calculated position and cost, penguins are continually moving 

in the direction of low objective value penguins, these 

penguins with high intensity. The objective function value is 

calculated using heat intensity and the distance. Attraction is 

done, a new solution is evaluated and the heat intensity is 

updated. All solutions are sorted and the best is selected. 

Damping ratio for heat radiation, movement, and heat 

absorption is applied. Figure 2 describes pseudo code of the 

EPC algorithm.  
 

 
 

Figure 2. Pseudo code of the EPC algorithm [30] 

 

This algorithm is performed according to the following 

rules [30]: 

1- All penguins in the initial population have heat radiation 

and attract to each other due to absorption coefficient. 

2- The body surface area of all penguins is considered equal 

to each other. 

3- Penguin absorbs the full heat radiation and the effect of 

the earth’s surface and the atmosphere are not regarded. 

4- The heat radiation of penguins is considered linear.  

5- The attraction of penguin is done according to the amount 

of heat in the distance between two penguins. 

6- The penguin spiral movement during the absorption 

process is not monotonous and has a deviation with uniform 

distribution. 

This algorithm has several of advantages, namely, 

simplicity, ease of implementation, providing a solution to 

complex problems and not requiring large population size to 

start solving any optimization problem [31]. 

The heat radiation of each penguin is calculated using Eq. 

(4), 
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𝑄𝑝𝑒𝑛𝑔𝑢𝑖𝑛 = 𝐴Ɛ σ 𝑇𝑠
4 (4) 

 

where, Qpenguin is heat transfer per unit of time, A is total 

surface area of the penguin which equal to 0.56 m2. Ɛ is 

emissivity of bird plumage which is considered 0.98, σ is the 

Stefan–Boltzmann constant (5.6703×10−8 W/m2K4) and Ts 

is the absolute temperature in Kelvin (K) which is considered 

35℃ equals to 308.15 K [30]. 

The attractiveness Q is calculated using Eq. (5),  

 

𝑄 = 𝐴Ɛ σ 𝑇𝑠
4 𝑒−μx  (5) 

 

where, μ is attenuation coefficient and x are the distance 

between two linear sources.  

The calculation of the coordinated spiral movement and the 

new position is done using logarithmic spiral movement in the 

original EPC [30]. 

 

5.3 First Modified Emperor Penguins Colony (MEPC1) 

 

Two modifications are performed to the original emperor 

penguin colony algorthm (EPC) introduced by Harifi et al. 

[30], the two modifications are called MEPC1 and MEPC2, 

MEPC1 is developed by Wahdan et al. [31]. MEPC1 involves 

changing the algorithms used to represent the spiral movement 

of the EPC. In the original EPC given in the ref. [30], the 

penguins colony move from a cold environment to a warmer 

environment using logarithmic like spiral movement. In 

MEPC1, the penguins colonies move from position i to 

position j using Archimedes spiral like movement. 

As shown in Figure 3, Suppose there are two penguins 𝑖 and 

𝑗. Moving always is from the penguin that needs heat to the 

penguin that is warmer. Here the spiral movement is from 𝑖 to 

𝑗, because in this case the penguins 𝑗 is warmer, penguin i starts 

movement form position i and is attracted to position j using 

spiral like movement. To reach position j, the penguins should 

reach new position(s) k. 

MEPC1 algorithm has proven successful in solving 

continuous optimization problems compared to the original 

EPC. The algorithm is efficient for solving complex problems 

in terms of solution quality and convergence rate [31].  

 

 
 

Figure 3. Spiral like movement of emperor penguins 

 

5.4 Second Modified Emperor Penguins Colony (MPC2) 

Algorithm 

 

The second modification performed to the original EPC is 

developed by Wahdan et al. [31]. The modification assumes 

hyperbolic spiral like movement instead of logarithmic like 

spiral movement. 

When compared to other eight metaheuristics, MEPC2 

achieved better results in most cases, in terms of objective 

function value [31]. 

 

5.5 Implementation 

 

5.5.1 Solution representation 
The four proposed algorithms (EPC, MEPC1, MEPC2 and 

CS) are designed mainly to solve continuous optimization 

problems. The problem under study is considered discrete 

optimization problem because a solution (nests or penguins) is 

represented by a vector of length that is equal to the number of 

elements in DSM. Each cell in the vector can assume values 

from 1 which represent the lower limit and to the size of the 

DSM which represent the upper limit. 

As shown in Figure 4, a vector represents a solution to the 

problem, where the DSM size is 10 components with specific 

interaction between each other; these components want to be 

assigned in specific cluster, the vector in Figure 4 represents 

one of the solutions of the problem, and shows that we have 

three clusters. Cluster number one contains components 1, 2, 

10, cluster two contains components 3, 5, 6, 7 and finally the 

third cluster contains components 4, 8, 9. These numbers in 

the vector are between 1 and 10, 1 represents the lower limit 

and 10 represent the upper limit. We start with number of 

cluster equal number of components in product, and 

optimization process performed to find the optimal number of 

clusters after deleting empty clusters.   
 

 
Figure 4. Example of Solution representation 

 

The problem presented in this work is discrete in nature, and 

hence, the proposed algorithm requires a process of 

discretization. Several methods are available in the literature 

to perform discretization. Among the known discretization 

methods is the random key technique, where continuous 

values are transformed into discrete integer values [32]. 

Another method is the smallest position value (SPV) [33]. A 

different technique available in the literature is the nearest 

integer (NI) method. In this method, a continuous valueis 

trasnformed to the nearest integer value by simply rounding, 

trancatingup, or trancatingdown [34]. 

SPV and random key methods do not permit the repetition 

of integer values in the solution. Solving the problem 

presented in this research necessarily requires repeating some 

integer values. Hence, SPV and random key methods cannot 

be used to solve the problem in hand. The nearest integer 

method, on the other hand, allows the repetition of integer 

values in a solution, and therefore, the nearest integer 

discretization technique is chosen to solve the problem in this 

research. This discretization technique is efficient in solving 

many problems before [4, 5, 23]. 

 

5.5.2 Solution evaluation 

Clustering a DSM requires minimizing the total 

coordination cost which is based on IntraClusterCost and 

ExtraClusterCost. IntraClusterCost is calculated if interaction 

DSMik belongs to cluster j, otherwise, ExtraClusterCost is 

calculated. At the beginning of the solution procedure, feasible 

solutions are randomly generated, and the total coordination 

cost is calculated. Details of calculating the total coordination 

cost, IntraClusterCost, and ExtraClusterCost, are given in 
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Section 4. Evaluation of the solution(s) is performed, then the 

algorithm selects the best obtained solution and a new iteration 

begins. 

In this research, four algorithms are used, hence, each 

algorithm moves to the next solution according to its specific 

procedure as follows: when using CS to cluster a DSM, the 

algorithm begins with generating a set of nests. A nest consists 

of a vector having a length that is equal to the number of 

elements of the DSM to be clustered. Entries of vectors are 

randomly generated uniformly between the upper limit and 

lower limit. Then, these entries are transformed into integer 

values using the nearest integer method. Vectors represent 

solutions that require evaluation. Therefore, each vector is sent 

to the evaluation function. The evaluation function calculates 

the corresponding total coordination cost, conducts 

comparisons and performs updates using Levy flight and the 

probability of discovery (pa) (4). 

Regarding EPC, MEPC1 and MEPC2, the algorithms start 

with a set of penguins representing the population size. These 

penguins consist of a vector having a length that is equal to the 

number of elements of the DSM to be clustered. Entries of 

vectors are randomly generated uniformly between the upper 

limit and lower limit. Then, these entries are transformed into 

integer values using the nearest integer method. Vectors 

represent solutions that require evaluation. Therefore, each 

vector is sent to the evaluation function. The evaluation 

function calculates the corresponding total coordination cost, 

all solutions are sorted and the best is selected. Damping ratio 

for heat radiation, movement, and heat absorption is applied. 

Each of the four algorithms is moved from generation to the 

next till the stopping criteria are reached. 

 

 

6. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In this section, the four algorithms are examined on 

different test instances. Three instances are given in the 

literature and 80 instances with different dimensions and 

complexities are randomly generated. Several parameters exist 

for the 4 algorithms. Parameters’ setting for these algorithms 

are as follows: population size is 25 penguins in case of EPC, 

MEPC1 and MEPC2 and 25 nests in case of CS. The 

maximum number of iterations equal 100 in all algorithms. For 

EPC, MEPC1 and MEPC2 the mutation factor ф is set at 0.05 

as recommended by (30). For CS, (pa) is a parameter that 

represents exploration. In the experimental setting of this 

research, the value of (pa) is set at 0.25 as recommended in (5). 

 

 
 

Figure 5. Original DSM          Figure 6. Clustered DSM 

 

The first small size instance has a DSM that contains 7 

elements as shown in Figure 5 [9], after applying EMP, 

MEPC1, MEPC2 and CS algorithms. Results obtained are 

given in Figure 6. Figure 6 shows that two clusters are formed, 

elements 1, 5, 6 are assigned to cluster 1, elements 2, 3, 4, 7 

are assigned to cluster 2 and objective function value is 47.29. 

The four algorithms provide the same results. 

Another example with 9 elements is used to test the 

efficiency of the algorithms [26]. The original DSM is given 

in Figure 7, and results obtained are given in Figure 8. Figure 

8 shows that four clusters are formed, elements A, E, G are 

assigned to cluster 1, elements B, C, F, H are assigned to 

cluster 2, element D is assigned to cluster 3 and element I is 

assigned to cluster 4. The four algorithms provide the same 

results with Objective function value of 41.8. 
 

 
 

Figure 7. Original DSM        Figure 8. Clustered DSM 
 

A large size instance available in the ref. [25] is also used to 

examine the proposed algorithms.  The instance represents an 

elevator example, and the objective function value obtained in 

(24) equals 4433. After solving the elevator example using the 

proposed algorithms, the following results are obtained: CS 

obtained an objective function value of 4133.25, EPC obtained 

an objective function value of 4108.714, MEPC1 obtained an 

objective function value of 4090.51, and MEPC2 obtained an 

objective function value of 4079.58. Hence, MEPC2 yields the 

best solution for the elevator example. 

Due to the limited benchmark problems available in the 

literature for the problem in hand, 80 DSMs are randomly 

generated. These matrices contain 1's and 0's. The number of 

entries equals to 1 represents the existence of interaction, and 

they represent the problem’s complexity. These matrices range 

from size 10 (number of elements in DSM) up to 100, and from 

complexity 0.2 up to 0.9. Complexity is defined as the ratio 

between the numbers of actual interactions to the total number 

of possible interactions in any given DSM. For the sake of 

comparison in various experiments, each of the four proposed 

algorithms set for 30 runs, 100 iterations, and population size 

of 25. 

Results obtained are given in the Tables 1-10. Table 1 

shows the results obtained in case of DSM of size 10 elements, 

MEPC2 provide the best solution in 7 out of 8 problems. The 

best minimum value is written in bold. 

Table 2 gives the results obtained in case of DSM with size 

20 elements, MEPC2 provides the best solution in 6 out of 8 

problems, and EPC provides the best solution in the remaining 

2 problems. 

Table 3 shows the results obtained in case of DSM with size 

30 elements, EPC yields the best solution in 6 out of 8 

problems, and MEPC2 provides the best solution in the 

remaining 2 problems.  

Table 4 provides the results obtained in case of DSM with 

size 40 elements, EPC provide the best solution in all test 

instances. 
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Table 1. Results obtained in case of 10 elements 
 

Problem NO. Complexity EPC MEPC1 MEPC2 CS 

1 0.20 59.26 59.29 59.11 59.64 

2 0.30 90.92 91.55 90.86 92.74 

3 0.40 124.17 124.73 124.17 126.14 

4 0.50 141.62 143.12 141.35 143.85 

5 0.60 182.58 181.76 181.78 185.71 

6 0.70 222.79 222.08 221.88 226.07 

7 0.80 262.30 260.72 260.95 266.94 

8 0.90 301.50 298.83 298.74 305.37 

 

Table 2. Results obtained in case of 20 elements 
 

Problem NO. Complexity EPC MEPC1 MEPC2 CS 

9 0.20 410.74 410.12 409.84 448.57 

10 0.30 633.49 635.20 633.12 695.21 

11 0.40 845.67 848.92 845.38 930.58 

12 0.50 1025.98 1031.18 1025.55 1131.10 

13 0.60 1268.62 1274.23 1267.94 1394.53 

14 0.70 1501.73 1514.06 1500.38 1653.73 

15 0.80 1742.36 1751.44 1756.81 1912.14 

16 0.90 1981.62 1995.36 1992.33 2170.11 

 

Table 3. Results obtained in case of 30 elements 
 

Problem NO. Complexity EPC MEPC1 MEPC2 CS 

17 0.20 1243.77 1244.20 1240.92 1416.35 

18 0.30 1892.66 1888.89 1887.01 2156.63 

19 0.40 2452.75 2460.71 2458.43 2800.52 

20 0.50 3137.64 3150.20 3144.74 3574.28 

21 0.60 3823.16 3840.35 3840.50 4356.61 

22 0.70 4510.58 4539.36 4537.98 5136.24 

23 0.80 5201.03 5237.51 5242.36 5916.99 

24 0.90 5892.03 5942.50 5945.68 6692.67 

 

Table 4. Results obtained in case of 40 elements 
 

Problem NO. Complexity EPC MEPC1 MEPC2 CS 

25 0.20 2659.34 2688.08 2688.04 3110.47 

26 0.30 4108.99 4145.67 4153.25 4793.71 

27 0.40 5374.10 5430.81 5436.64 6274.72 

28 0.50 6833.19 6901.61 6924.44 7960.46 

29 0.60 8286.32 8381.90 8389.70 9654.20 

30 0.70 9754.97 9867.63 9893.70 11349.13 

31 0.80 12695.63 12854.96 12863.97 14737.86 

32 0.90 12695.56 12854.79 12841.51 14716.40 

 

Table 5 provides the results obtained in case of DSM with 

size 50 elements, MEPC2 provides the best solution in all test 

instances. 

Table 6 shows the results obtained in case of DSM with size 

60 elements, MEPC2 provide the best solution in all test 

instances. 

Table 7 provides the results obtained in case of DSM with 

size 70 elements, EPC provides the best solution in all test 

instances. 

 

Table 5. Results obtained in case of 50 elements 
 

Problem NO. Complexity EPC MEPC1 MEPC2 CS 

33 0.20 4872.99 4876.53 4864.79 5696.09 

34 0.30 7554.15 7555.88 7549.51 8813.82 

35 0.40 10162.66 10150.55 10136.22 11835.57 

36 0.50 12644.24 12633.26 12594.36 14694.53 

37 0.60 15289.76 15304.14 15277.54 17788.42 

38 0.70 17993.41 17961.41 17936.48 20855.22 

39 0.80 20669.70 20642.17 20633.62 23953.84 

40 0.90 23357.20 23331.84 23317.28 27031.44 
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Table 6. Results obtained in case of 60 elements 

 

Problem NO. Complexity EPC MEPC1 MEPC2 CS 

41 0.20 8241.80 8124.36 8120.49 9563.00 

42 0.30 12502.10 12339.54 12331.14 14516.15 

43 0.40 16467.73 16317.96 16308.94 19150.40 

44 0.50 20845.65 20624.13 20628.78 24177.89 

45 0.60 25181.64 24938.64 24912.80 29206.28 

46 0.70 29511.19 29265.34 29228.18 34227.98 

47 0.80 33886.56 33588.34 33565.04 39268.96 

48 0.90 38153.21 37935.76 37926.04 44266.25 

 

Table 7. Results obtained in case of 70 elements 

 

Problem NO. Complexity EPC MEPC1 MEPC2 CS 

49 0.20 12278.74 12388.62 12521.29 14662.28 

50 0.30 18047.36 18241.68 18415.55 21553.46 

51 0.40 24429.92 24699.62 24877.97 29149.01 

52 0.50 30813.92 31164.59 31339.48 36730.60 

53 0.60 37200.45 37629.73 37839.29 44338.85 

54 0.70 43605.67 44144.83 44415.53 51914.27 

55 0.80 50024.42 50648.82 50870.36 59507.85 

56 0.90 56462.69 57172.20 57357.32 67122.44 

 

Table 8. Results obtained in case of 80 elements 

 

Problem NO. Complexity EPC MEPC1 MEPC2 CS 

57 0.20 17525.86 17749.66 17898.10 21063.75 

58 0.30 26259.91 26574.60 26728.03 31517.85 

59 0.40 34918.14 35395.07 35505.06 41883.51 

60 0.50 44020.18 44620.30 44742.08 52743.66 

61 0.60 53128.16 53814.11 53995.54 63606.21 

62 0.70 62230.02 63063.00 63233.70 74434.30 

63 0.80 71355.15 72318.92 72423.36 85317.54 

64 0.90 80514.41 81606.40 81709.90 96163.83 

 

Table 9. Results obtained in case of 90 elements 

 

Problem NO. Complexity EPC MEPC1 MEPC2 CS 

65 0.20 24075.11 24283.99 24383.92 28879.44 

66 0.30 36262.51 36570.27 36728.63 43434.52 

67 0.40 48085.50 48547.90 48629.22 57602.77 

68 0.50 60507.28 61114.71 61271.23 72469.39 

69 0.60 72976.99 73738.22 73855.36 87363.44 

70 0.70 85388.53 86332.14 86468.65 102199.42 

71 0.80 97831.44 98974.95 99099.94 117038.63 

72 0.90 110266.79 111648.85 111760.94 131906.45 

 

Table 10. Results obtained in case of 100 elements 

 

Problem NO. Complexity EPC MEPC1 MEPC2 CS 

73 0.20 32358.58 32231.73 32253.43 38386.95 

74 0.30 47918.90 47820.50 47828.16 56879.90 

75 0.40 64576.49 64427.24 64460.62 76554.42 

76 0.50 81195.57 81094.70 81116.32 96239.47 

77 0.60 97831.45 97738.73 97727.19 115896.80 

78 0.70 114485.53 114454.57 114445.83 135621.28 

79 0.80 131159.43 131109.21 131117.61 155255.84 

80 0.90 147849.93 147819.83 147780.66 174927.68 

 

Table 8 provides the results obtained in case of DSM with 

size 80 elements, EPC provide the best solution in all test 

instances. 

Table 9 provides the results obtained in case of DSM with 

size 90 elements, EPC provide the best solution in all test 

instances. 

Table 10 provides the results obtained in case of DSM with 

size 100 elements, MEPC1 provides the best solution 7 out of 
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8 problems. 

Results given in Tables 1 to 10 shows that, EPC 

outperforms the other three proposed algorithms in 50% of the 

tested problems, MEPC1 outperforms the other 3 proposed 

algorithms in 10% of the tested problems and finally MEPC2 

outperforms the other 3 proposed algorithms in 40% of the 

tested problems. 

Sensitivity analysis is performed to examine the effect of 

changing parameters on the quality of solutions. Regarding CS, 

there are two parameters that need setting, namely, the number 

of nests and the probability of discovery (Pa). The number of 

nests (n) represents the population size. Sensitivity analysis is 

performed by solving the same test instances using CS with 

different values of (n) to be 25, 50, 75 and 100. Sensitivity 

analysis shows that changing the number of nests does not 

have a significant impact on the objective function value for 

all tested cases. The second parameter (pa) represents the 

probability of discovery. The sensitivity analysis is performed 

by solving the test instances using CS at values of (pa) in the 

range [0.1, 0.9], with an increment of 0.1. Results show that 

high values of (pa) tend to get rid of solutions without trying 

to improve them locally. Therefore, the value of (pa) in the 

range [0.1, 0.5] for these test instances, achieves the required 

balance between exploration and exploitation.  

Regarding EPC, MEPC1 and MEPC2, sensitivity analysis 

is performed for two parameters, namely, the number of 

penguins (colony size) and the mutation factor ф. The 

sensitivity analysis involved changing the number of penguins 

from 20 to 100 and the value of the mutation factor ф from 

0.01 to 0.09. Several runs are performed on the same test 

instances mentioned above with different values of number of 

penguins and ф. These runs conclude that, changing the 

number of penguins or changing the value of the mutation 

factor does not have a significant effect on the results obtained.  

The performance of the four algorithms is ranked using the 

Friedman test [35]. The Friedman test is a non-parametric 

method for identifying treatment discrepancies through 

several attempts. Table 11 shows the ranking of algorithms 

based on the results obtained from Table 1 to 10 (80 problems) 

using the Friedman test. Table 11 shows that EPC algorithm is 

first in the ranking; MEPC2 comes next, followed by MEPC1 

and, finally CS. 

 

Table 11. Ranking of algorithms based on performance using 

Friedman's test 

 

Algorithms EPC MEPC1 MEPC2 CS 

Ranking 1.83125 2.1375 2.03125 4 

 

To find significant differences between the results obtained 

by the algorithms in solving the 80 test problems, statistical 

analysis is used. To detect significant differences in the results, 

Friedman test is employed. When applying Friedman test 

using the online Friedman calculator, the result is significance 

at p < 0.05. This means that the results are important.  

Given The null hypothesis for the Friedman test is that there 

is no a significant difference between the results, Table 12 

shows the results of the Friedman test The Chi-Square value is 

146.32, with 3 degrees of freedom, and also there is 

asymptotic significance of the test (p-value) with very close to 

zero value. Given the close to zero value of the asymptotic 

significance, the hypothesis is rejected. Therefore, it can be 

concluded that there is a significant difference in the 

performance of algorithms. 

Table 12. Results of Friedman’s tests based on performance 

 

Test 

method  

Chi-

Square  

Degrees of 

freedom 

(DF)  

P-value Hypothesis 

Friedman 146.32 3 0.00001 Rejected 

 

 

7. CONCLUSION AND FUTURE WORK 

 

This work provided a comparison between four population-

based optimization algorithms. This is the first research that 

used EPC, MEPC1 and MEPC2 in solving discrete 

optimization problem. The research aimed to find the optimal 

number of clusters (modules) in DSM and the best assignment 

of each element to a specific cluster. A product is represented 

using DSM, DSM is a product representation tool; it provides 

graphical representation to the system elements. The objective 

function was to minimize the total coordination cost. The 

utilized algorithms were tested and compared on three 

problems found in literature and eighty test instances 

randomly generated. Results showed that the EPC algorithm 

was the first in the Friedman ranking test, MEPC2 comes next, 

followed by MEPC1, then CS. Future work may include multi-

objective EPC algorithm to find the optimal assignment of 

each element in the cluster and the optimal number of clusters 

which minimize total coordination cost of the product and 

maximize product sustainability and provide hybridization 

between CS and EPC to solve discrete optimization algorithms. 
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