
Discretization of Emperor Penguins Colony Algorithms with Application to Modular

Product Design

Hayam G. Wahdan1*, Hisham E. Abdelslam1, Tarek H.M. Abou-El-Enien1, Sally S. Kassem1,2

1 Faculty of computers and Artificial Intelligence, Cairo University, Giza 12613, Egypt
2 Smart Engineering Systems Research Centre, Nile University, Giza 12588, Egypt

Corresponding Author Email: Hayam@fci-cu.edu.eg

https://doi.org/10.18280/jesa.540105 ABSTRACT

Received: 1 September 2020

Accepted: 26 January 2021

Modularity concepts attracted the attention of many researchers as it plays an important

role in product design problems. Modularity requires dividing a product into a set of

modules that are independent between each other and dependent within. The product is

represented using Design Structure Matrix (DSM). DSM works as a system representation

tool; it visualizes the interrelationship between product elements. In this research, a

comparison is conducted between four optimization algorithms: Emperor Penguins

Colony (EPC), First Modified Emperor Penguins Colony (MEPC1), Second Modified

Emperor Penguins Colony (MEPC2) and Cuckoo Search (CS) optimization algorithms.

These four algorithms aim at finding the optimal number of clusters and the optimal

assignment of components to clusters, with the objective of minimizing the total

coordination cost. Experimental results show that EPC outperforms the other three

algorithms.

Keywords:

Design Structure Matrix, Emperor Penguins

Colony, Cuckoo Search, modular design,

clustering

1. INTRODUCTION

Modular design has a significant impact on product

development, which respond to market trends that require

large varieties in small production processes [1]. Modularity is

an important method that helps to manage large systems by

breaking them into modules. Such modules should be

interdependent within the same module and independent

among different modules. Modular design requires clustering

various components that form a product to create modules that

are efficient and useful for production. Efficient modularity of

products takes on greater significance as identical components

are used in various products [2].

Design Structure Matrix (DSM) is a powerful tool which

supports both analysis and complex system management [3].

It is also a product representation tool that allows the user to

model, visualize and analyze the dependencies between the

elements of a system. In addition, DSM helps to derive

suggestions for the improvement or synthesis of a system,

providing a clear visualization of the product design from the

perspective of a product representation tool. A product can be

represented by a DSM that contains a list of the components

of the product. The DSM of commodity also offers exchange

of knowledge and relationships of dependency between these

components [4].

In this paper, four meta-heuristic algorithms are used to

determine: (1) the optimal number of clusters in a DSM, and

(2) the optimal assignment of components to clusters that

minimizes the total coordination cost. These meta-heuristic

algorithms are Emperor Penguins Colony (EPC), First

Modified Emperor Penguins Colony (MEPC1), Second

Modified Emperor Penguins Colony (MEPC2) and Cuckoo

Search (CS) optimization algorithms. To the best of our

knowledge, this is the first time EPC, MEPC1 and MEPC2 are

used in solving discrete optimization problems.

The rest of this paper is structured as follows: Section 2

provides a brief introduction about DSM, followed by a review

of related literature in Section 3. Problem definition and the

used solution algorithms are provided in Sections 4 and 5,

respectively. Section 6 includes numerical experimentation

and analysis of the algorithms and, finally, the paper

conclusion and future work are provided in section 7.

2. DESIGN STRUCTURE MATRIX (DSM)

The Design Structure Matrix (DSM) is a system analysis

method that provides a complex system with a compact and

consistent representation. It captures the interaction or

interdependencies among elements of the system. DSM

tolerates feedback and cyclic dependencies, an important

feature as many engineering applications has the cyclic

property [5].

DSM is a square matrix of size n, where n is the number of

elements of the system. Figure 1 shows an example of a DSM

of size 7. Elements names are written on the first raw and the

first column of the matrix in the same order. An entry of 1 or

x in the matrix means that the correspond elements i j (rowi,

columnj) are dependent on each other. For each product, a

DSM is developed and can be analyzed to classify modules,

which are referred to as clustering. DSM clustering seeks to

find clustering arrangements where modules interact with each

other minimally and at the same time, components belonging

to the same module interact maximally with each other [4].

For instance, Figure 1(a) Shows the original un-clustered

DSM, Figure 1(b) shows a clustered DSM where the majority

of the interactions are found in two domains, namely {A, F, E}

and {D, B, C, G}. Figure 1(b) also shows that three

Journal Européen des Systèmes Automatisés
Vol. 54, No. 1, February, 2021, pp. 35-44

Journal homepage: http://iieta.org/journals/jesa

35

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.540105&domain=pdf

interactions do not belong to any specific module.

Figure 1. Example of a DSM of size 7 elements

3. LITERATURE REVIEW

Eppingeret, et al. [6] introduced the concept of minimizing

module interactions, thus optimizing module interactions in a

DSM. Idicula [7] suggested an algorithm for stochastic

clustering of DSM clusters. Further developments were made

by (Gutierrez 1998), where the development of a mathematical

model. The model minimizes the total coordination cost [8].

A Genetic Algorithm is used to find optimal arrangement of

elements within DSM which optimize the minimum

description length (MDL) [9].

A new method is developed to define the difference

between designing modular systems and integrative systems

[10]. The study is focused on the specification of modules,

modules architecture, and their interfaces. (DSM) is used and

extended to represent more accurately the models under study

[11].

To obtain better output from a clustering algorithm, a

method known as conceptual module generation phase can be

employed [12]. Liang [13] developed a model known as group

decomposition model. The proposed model decomposes a

complex set of activities into simpler ones. The DSM is used

as a system simplification tool. The used clustering algorithm

is K-means algorithm.

A modularization scheme based on functional modeling is

proposed and K-means is used for clustering [14]. Neural

networks algorithms and DSMs have been utilized to cluster

DSM components with the objective function of clustering

efficiency; however, the algorithm requires a predetermined

number of clusters [15].

Borjesson and Hölttä [16] develop an algorithm named

Idicula-Gutierrez-Thebeau Algorithm (IGTA) for clustering

DSM. An improved algorithm, named IGTA-plus, is proposed.

IGTA-plus provide significant improvement when compared

with IGTA. Recorded improvements are in terms of

computational time and solution quality. Genetic clustering is

proposed with Minimum Description Length measure. A new

assumption is added to minimize the total execution time. The

proposed algorithm is tested on four case studies [17].

Yang et al. [18] developed a systematic clustering algorithm

for organizational DSM. The algorithm evaluates clustering

structures based on the strength of interaction Another novel

approach for product design is introduced by integrating the

sequence structure planning of assembly and disassembly of a

product [19].

Clustering method is developed based on multidimensional

scaling (MDS), this method is used DSM as system

visualization tool [20]. Clustering algorithm using cuckoo

search is developed to find optimal number of clusters within

DSM and best assignment of each element in cluster using

minimizing coordination cost as objective [4, 5]

A new practical method is proposed by Sakao et al. 2017 to

support designers in creating service modules by extending the

DSM [21]. novel research is developed, this research tries to

answer a lot of questions, what is the importance of modularity

concept in product design problems, how modularity helps in

design for variety, and the importance of modulatiy in

increasing the performance of the organization [22]. Multi-

objective clustering algorithm is proposed using non-

dominated cuckoo search to minimized coordination cost and

maximizes Sustainability through DSM [23]. Finally, new

research is developed aiming to construct independent clusters

to be replaced or removed at any stage of manufacturing

process [24].

The reviewed literature on product design using DSM as a

system analysis tool revealed the existence of several

techniques used to cluster the DSM for modularity. One major

difference between those techniques is the objective of

clustering. Minimizing cost is one of the most widely targeted

objectives [25]. Another objective is the Minimal Description

Length (MDL) [9], another clustering objective is the

Clustering Efficiency (CE) index with static number of

clusters [15].

From the solution technique point of view, several

techniques were used in solving product design under

modularity; stochastic hill-climbing algorithm [25], Genetic

Algorithm [9], and neural networks [15]. To the best of our

knowledge, this research is the first one to use the four

previously mentioned metaheuristic algorithms with cost

minimization as the objective function in solving product

design problem under modularity while having the number of

clusters dynamic.

4. PROBLEM DEFINITION

In modular design problem the product is represented using

DSM, DSM is product representation tool, as shown in figure

1, DSM contains set of cells, cells contain “1” or “x” if there

is relation between component i and j, cells contain “0” or

“empty cell” if there isn’t relation between component i and j.

The objective is to cluster these components in such a way

that minimizes the total coordination cost. Accordingly, two

sets of decisions are to be considered; (1) the number of

clusters to be formed, and (2) the optimal assignment of

components in each cluster.

For a given DSM, the total coordination cost consists of two

parts; IntraClusterCost and ExtraClusterCost as provided by

Eqns. (1) and (2), respectively. If interaction DSMik belongs to

cluster j then IntraClusterCost is to be calculated, otherwise

ExtraClusterCost is to be calculated. The total cost is the

additi0n of IntraClusterCost and ExtraClusterCost as shown in

Eq. (3) and mentioned in the ref. [26].

𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡

= ∑ (𝐷𝑆𝑀𝑖𝑘
𝑖,𝑘∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗

+ 𝐷𝑆𝑀𝑘𝑖)

∗ ∑ (𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒
𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑗=1
𝑗)𝑝𝑜𝑤𝑐𝑐

(1)

36

𝐸𝑥𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡

= ∑ (𝐷𝑆𝑀𝑖𝑘

𝑖,𝑘 ∉ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗

+ 𝐷𝑆𝑀𝑘𝑖)𝐷𝑆𝑀𝑆𝑖𝑧𝑒𝑝𝑜𝑤𝑐𝑐 ,
𝑗 = 1 … 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟

(2)

where, DSMik is the relation between component i and k,

DSMSize is the number of components (rows) in the matrix,

powcc is a value utilized to penalize clusters’ sizes, and

ncluster is the total number of clusters. Clustersize(j) is the

number of components within cluster j.

Total coordination Cost = IntraClusterCost +

ExtraClusterCost
(3)

In this problem we have one constaint, this constaint is; each

component must assign to one cluster; overlapping between

clusters not allowed. overlapping between cluster decreases

the importance of the clustering process and minimize the

Sustainability of product being easy to replace or remove any

cluster to produced different product or adding new features.

5. SOLUTION ALGORITHMS

Meta-heuristic optimization algorithms are general iterative

algorithms capable of solving combinatorial optimization

problems. These algorithms are stochastic in nature, and they

simulate the behavior of particles. Meta-heuristic optimization

algorithms try to find optimal or near optimal solutions for

complex problems [27]. To solve the problem defined in

Section 4, four meta-heuristic algorithms are utilized. These

algorithms represent population-based optimization

algorithms. The utilized algorithms are Emperor Penguins

Colony (EPC), First Modified Emperor Penguins Colony

(MEPC1), Second Modified Emperor Penguins Colony

(MEPC2) and Cuckoo Search (CS) optimization algorithms.

In the following subsections, a brief description of the

algorithms is given, Section 5.5 shows the discretization

process of EPC, MEPC1, and MEPC2.

5.1 Cuckoo Search (CS)

Yang and Deb [28] had proposed the Cuckoo Search (CS)

algorithm. The algorithm simulates cuckoo birds' behavior to

explore the solution space for an optimum solution, or near

optimum. CS is inspired by the behavior of certain species of

brood parasite cuckoo that lay their eggs in the nests of other

host birds. Brood parasite cuckoos distribute their eggs

between various nests. Their aim is to escape the parental

investment in raising their offspring, and to minimize the risk

of their egg loss, as mentioned by Yang and Deb [28].

One of the major advantages of CS is its performance,

which has been proved by a large number of benchmark

studies. CS performed better when comparing outcomes with

other metaheuristic algorithms [29]. Another advantage its

simplicity compared to other metaheuristic algorithms,

because it involves setting only two parameters. This function

simplifies the time and effort required to adjust and fine-tune

the parameter settings for the algorithm.

5.2 Emperor Penguins Colony (EPC)

A new Meta heuristics algorithm named The Emperor

Penguin Colony (EPC) was proposed by Harifi et al. [30]. The

algorithm inspired by the behavior of emperor penguins in

colonies when they move from a cold domain to a warmer one

following a logarithmic spiral like movement. This algorithm

is controlled by the body heat radiation of the penguins and

their spiral-like movement in their colony. The algorithm tries

to find optimal or near to optimal solution.

In the EPC, the temperature around the huddle is calculated,

the algorithm is vector based equations, when the body

temperature is calculated and body heat radiation of each

penguin and then due to distance and attractiveness each

penguin performs the spiral-like movement.

EPC starts with a set of penguins representing the

population size. These penguins are distributed in nature with

calculated position and cost, penguins are continually moving

in the direction of low objective value penguins, these

penguins with high intensity. The objective function value is

calculated using heat intensity and the distance. Attraction is

done, a new solution is evaluated and the heat intensity is

updated. All solutions are sorted and the best is selected.

Damping ratio for heat radiation, movement, and heat

absorption is applied. Figure 2 describes pseudo code of the

EPC algorithm.

Figure 2. Pseudo code of the EPC algorithm [30]

This algorithm is performed according to the following

rules [30]:

1- All penguins in the initial population have heat radiation

and attract to each other due to absorption coefficient.

2- The body surface area of all penguins is considered equal

to each other.

3- Penguin absorbs the full heat radiation and the effect of

the earth’s surface and the atmosphere are not regarded.

4- The heat radiation of penguins is considered linear.

5- The attraction of penguin is done according to the amount

of heat in the distance between two penguins.

6- The penguin spiral movement during the absorption

process is not monotonous and has a deviation with uniform

distribution.

This algorithm has several of advantages, namely,

simplicity, ease of implementation, providing a solution to

complex problems and not requiring large population size to

start solving any optimization problem [31].

The heat radiation of each penguin is calculated using Eq.

(4),

37

𝑄𝑝𝑒𝑛𝑔𝑢𝑖𝑛 = 𝐴Ɛ σ 𝑇𝑠
4 (4)

where, Qpenguin is heat transfer per unit of time, A is total

surface area of the penguin which equal to 0.56 m2. Ɛ is

emissivity of bird plumage which is considered 0.98, σ is the

Stefan–Boltzmann constant (5.6703×10−8 W/m2K4) and Ts

is the absolute temperature in Kelvin (K) which is considered

35℃ equals to 308.15 K [30].

The attractiveness Q is calculated using Eq. (5),

𝑄 = 𝐴Ɛ σ 𝑇𝑠
4 𝑒−μx (5)

where, μ is attenuation coefficient and x are the distance

between two linear sources.

The calculation of the coordinated spiral movement and the

new position is done using logarithmic spiral movement in the

original EPC [30].

5.3 First Modified Emperor Penguins Colony (MEPC1)

Two modifications are performed to the original emperor

penguin colony algorthm (EPC) introduced by Harifi et al.

[30], the two modifications are called MEPC1 and MEPC2,

MEPC1 is developed by Wahdan et al. [31]. MEPC1 involves

changing the algorithms used to represent the spiral movement

of the EPC. In the original EPC given in the ref. [30], the

penguins colony move from a cold environment to a warmer

environment using logarithmic like spiral movement. In

MEPC1, the penguins colonies move from position i to

position j using Archimedes spiral like movement.

As shown in Figure 3, Suppose there are two penguins 𝑖 and

𝑗. Moving always is from the penguin that needs heat to the

penguin that is warmer. Here the spiral movement is from 𝑖 to

𝑗, because in this case the penguins 𝑗 is warmer, penguin i starts

movement form position i and is attracted to position j using

spiral like movement. To reach position j, the penguins should

reach new position(s) k.

MEPC1 algorithm has proven successful in solving

continuous optimization problems compared to the original

EPC. The algorithm is efficient for solving complex problems

in terms of solution quality and convergence rate [31].

Figure 3. Spiral like movement of emperor penguins

5.4 Second Modified Emperor Penguins Colony (MPC2)

Algorithm

The second modification performed to the original EPC is

developed by Wahdan et al. [31]. The modification assumes

hyperbolic spiral like movement instead of logarithmic like

spiral movement.

When compared to other eight metaheuristics, MEPC2

achieved better results in most cases, in terms of objective

function value [31].

5.5 Implementation

5.5.1 Solution representation
The four proposed algorithms (EPC, MEPC1, MEPC2 and

CS) are designed mainly to solve continuous optimization

problems. The problem under study is considered discrete

optimization problem because a solution (nests or penguins) is

represented by a vector of length that is equal to the number of

elements in DSM. Each cell in the vector can assume values

from 1 which represent the lower limit and to the size of the

DSM which represent the upper limit.

As shown in Figure 4, a vector represents a solution to the

problem, where the DSM size is 10 components with specific

interaction between each other; these components want to be

assigned in specific cluster, the vector in Figure 4 represents

one of the solutions of the problem, and shows that we have

three clusters. Cluster number one contains components 1, 2,

10, cluster two contains components 3, 5, 6, 7 and finally the

third cluster contains components 4, 8, 9. These numbers in

the vector are between 1 and 10, 1 represents the lower limit

and 10 represent the upper limit. We start with number of

cluster equal number of components in product, and

optimization process performed to find the optimal number of

clusters after deleting empty clusters.

Figure 4. Example of Solution representation

The problem presented in this work is discrete in nature, and

hence, the proposed algorithm requires a process of

discretization. Several methods are available in the literature

to perform discretization. Among the known discretization

methods is the random key technique, where continuous

values are transformed into discrete integer values [32].

Another method is the smallest position value (SPV) [33]. A

different technique available in the literature is the nearest

integer (NI) method. In this method, a continuous valueis

trasnformed to the nearest integer value by simply rounding,

trancatingup, or trancatingdown [34].

SPV and random key methods do not permit the repetition

of integer values in the solution. Solving the problem

presented in this research necessarily requires repeating some

integer values. Hence, SPV and random key methods cannot

be used to solve the problem in hand. The nearest integer

method, on the other hand, allows the repetition of integer

values in a solution, and therefore, the nearest integer

discretization technique is chosen to solve the problem in this

research. This discretization technique is efficient in solving

many problems before [4, 5, 23].

5.5.2 Solution evaluation

Clustering a DSM requires minimizing the total

coordination cost which is based on IntraClusterCost and

ExtraClusterCost. IntraClusterCost is calculated if interaction

DSMik belongs to cluster j, otherwise, ExtraClusterCost is

calculated. At the beginning of the solution procedure, feasible

solutions are randomly generated, and the total coordination

cost is calculated. Details of calculating the total coordination

cost, IntraClusterCost, and ExtraClusterCost, are given in

38

Section 4. Evaluation of the solution(s) is performed, then the

algorithm selects the best obtained solution and a new iteration

begins.

In this research, four algorithms are used, hence, each

algorithm moves to the next solution according to its specific

procedure as follows: when using CS to cluster a DSM, the

algorithm begins with generating a set of nests. A nest consists

of a vector having a length that is equal to the number of

elements of the DSM to be clustered. Entries of vectors are

randomly generated uniformly between the upper limit and

lower limit. Then, these entries are transformed into integer

values using the nearest integer method. Vectors represent

solutions that require evaluation. Therefore, each vector is sent

to the evaluation function. The evaluation function calculates

the corresponding total coordination cost, conducts

comparisons and performs updates using Levy flight and the

probability of discovery (pa) (4).

Regarding EPC, MEPC1 and MEPC2, the algorithms start

with a set of penguins representing the population size. These

penguins consist of a vector having a length that is equal to the

number of elements of the DSM to be clustered. Entries of

vectors are randomly generated uniformly between the upper

limit and lower limit. Then, these entries are transformed into

integer values using the nearest integer method. Vectors

represent solutions that require evaluation. Therefore, each

vector is sent to the evaluation function. The evaluation

function calculates the corresponding total coordination cost,

all solutions are sorted and the best is selected. Damping ratio

for heat radiation, movement, and heat absorption is applied.

Each of the four algorithms is moved from generation to the

next till the stopping criteria are reached.

6. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the four algorithms are examined on

different test instances. Three instances are given in the

literature and 80 instances with different dimensions and

complexities are randomly generated. Several parameters exist

for the 4 algorithms. Parameters’ setting for these algorithms

are as follows: population size is 25 penguins in case of EPC,

MEPC1 and MEPC2 and 25 nests in case of CS. The

maximum number of iterations equal 100 in all algorithms. For

EPC, MEPC1 and MEPC2 the mutation factor ф is set at 0.05

as recommended by (30). For CS, (pa) is a parameter that

represents exploration. In the experimental setting of this

research, the value of (pa) is set at 0.25 as recommended in (5).

Figure 5. Original DSM Figure 6. Clustered DSM

The first small size instance has a DSM that contains 7

elements as shown in Figure 5 [9], after applying EMP,

MEPC1, MEPC2 and CS algorithms. Results obtained are

given in Figure 6. Figure 6 shows that two clusters are formed,

elements 1, 5, 6 are assigned to cluster 1, elements 2, 3, 4, 7

are assigned to cluster 2 and objective function value is 47.29.

The four algorithms provide the same results.

Another example with 9 elements is used to test the

efficiency of the algorithms [26]. The original DSM is given

in Figure 7, and results obtained are given in Figure 8. Figure

8 shows that four clusters are formed, elements A, E, G are

assigned to cluster 1, elements B, C, F, H are assigned to

cluster 2, element D is assigned to cluster 3 and element I is

assigned to cluster 4. The four algorithms provide the same

results with Objective function value of 41.8.

Figure 7. Original DSM Figure 8. Clustered DSM

A large size instance available in the ref. [25] is also used to

examine the proposed algorithms. The instance represents an

elevator example, and the objective function value obtained in

(24) equals 4433. After solving the elevator example using the

proposed algorithms, the following results are obtained: CS

obtained an objective function value of 4133.25, EPC obtained

an objective function value of 4108.714, MEPC1 obtained an

objective function value of 4090.51, and MEPC2 obtained an

objective function value of 4079.58. Hence, MEPC2 yields the

best solution for the elevator example.

Due to the limited benchmark problems available in the

literature for the problem in hand, 80 DSMs are randomly

generated. These matrices contain 1's and 0's. The number of

entries equals to 1 represents the existence of interaction, and

they represent the problem’s complexity. These matrices range

from size 10 (number of elements in DSM) up to 100, and from

complexity 0.2 up to 0.9. Complexity is defined as the ratio

between the numbers of actual interactions to the total number

of possible interactions in any given DSM. For the sake of

comparison in various experiments, each of the four proposed

algorithms set for 30 runs, 100 iterations, and population size

of 25.

Results obtained are given in the Tables 1-10. Table 1

shows the results obtained in case of DSM of size 10 elements,

MEPC2 provide the best solution in 7 out of 8 problems. The

best minimum value is written in bold.

Table 2 gives the results obtained in case of DSM with size

20 elements, MEPC2 provides the best solution in 6 out of 8

problems, and EPC provides the best solution in the remaining

2 problems.

Table 3 shows the results obtained in case of DSM with size

30 elements, EPC yields the best solution in 6 out of 8

problems, and MEPC2 provides the best solution in the

remaining 2 problems.

Table 4 provides the results obtained in case of DSM with

size 40 elements, EPC provide the best solution in all test

instances.

39

Table 1. Results obtained in case of 10 elements

Problem NO. Complexity EPC MEPC1 MEPC2 CS

1 0.20 59.26 59.29 59.11 59.64

2 0.30 90.92 91.55 90.86 92.74

3 0.40 124.17 124.73 124.17 126.14

4 0.50 141.62 143.12 141.35 143.85

5 0.60 182.58 181.76 181.78 185.71

6 0.70 222.79 222.08 221.88 226.07

7 0.80 262.30 260.72 260.95 266.94

8 0.90 301.50 298.83 298.74 305.37

Table 2. Results obtained in case of 20 elements

Problem NO. Complexity EPC MEPC1 MEPC2 CS

9 0.20 410.74 410.12 409.84 448.57

10 0.30 633.49 635.20 633.12 695.21

11 0.40 845.67 848.92 845.38 930.58

12 0.50 1025.98 1031.18 1025.55 1131.10

13 0.60 1268.62 1274.23 1267.94 1394.53

14 0.70 1501.73 1514.06 1500.38 1653.73

15 0.80 1742.36 1751.44 1756.81 1912.14

16 0.90 1981.62 1995.36 1992.33 2170.11

Table 3. Results obtained in case of 30 elements

Problem NO. Complexity EPC MEPC1 MEPC2 CS

17 0.20 1243.77 1244.20 1240.92 1416.35

18 0.30 1892.66 1888.89 1887.01 2156.63

19 0.40 2452.75 2460.71 2458.43 2800.52

20 0.50 3137.64 3150.20 3144.74 3574.28

21 0.60 3823.16 3840.35 3840.50 4356.61

22 0.70 4510.58 4539.36 4537.98 5136.24

23 0.80 5201.03 5237.51 5242.36 5916.99

24 0.90 5892.03 5942.50 5945.68 6692.67

Table 4. Results obtained in case of 40 elements

Problem NO. Complexity EPC MEPC1 MEPC2 CS

25 0.20 2659.34 2688.08 2688.04 3110.47

26 0.30 4108.99 4145.67 4153.25 4793.71

27 0.40 5374.10 5430.81 5436.64 6274.72

28 0.50 6833.19 6901.61 6924.44 7960.46

29 0.60 8286.32 8381.90 8389.70 9654.20

30 0.70 9754.97 9867.63 9893.70 11349.13

31 0.80 12695.63 12854.96 12863.97 14737.86

32 0.90 12695.56 12854.79 12841.51 14716.40

Table 5 provides the results obtained in case of DSM with

size 50 elements, MEPC2 provides the best solution in all test

instances.

Table 6 shows the results obtained in case of DSM with size

60 elements, MEPC2 provide the best solution in all test

instances.

Table 7 provides the results obtained in case of DSM with

size 70 elements, EPC provides the best solution in all test

instances.

Table 5. Results obtained in case of 50 elements

Problem NO. Complexity EPC MEPC1 MEPC2 CS

33 0.20 4872.99 4876.53 4864.79 5696.09

34 0.30 7554.15 7555.88 7549.51 8813.82

35 0.40 10162.66 10150.55 10136.22 11835.57

36 0.50 12644.24 12633.26 12594.36 14694.53

37 0.60 15289.76 15304.14 15277.54 17788.42

38 0.70 17993.41 17961.41 17936.48 20855.22

39 0.80 20669.70 20642.17 20633.62 23953.84

40 0.90 23357.20 23331.84 23317.28 27031.44

40

Table 6. Results obtained in case of 60 elements

Problem NO. Complexity EPC MEPC1 MEPC2 CS

41 0.20 8241.80 8124.36 8120.49 9563.00

42 0.30 12502.10 12339.54 12331.14 14516.15

43 0.40 16467.73 16317.96 16308.94 19150.40

44 0.50 20845.65 20624.13 20628.78 24177.89

45 0.60 25181.64 24938.64 24912.80 29206.28

46 0.70 29511.19 29265.34 29228.18 34227.98

47 0.80 33886.56 33588.34 33565.04 39268.96

48 0.90 38153.21 37935.76 37926.04 44266.25

Table 7. Results obtained in case of 70 elements

Problem NO. Complexity EPC MEPC1 MEPC2 CS

49 0.20 12278.74 12388.62 12521.29 14662.28

50 0.30 18047.36 18241.68 18415.55 21553.46

51 0.40 24429.92 24699.62 24877.97 29149.01

52 0.50 30813.92 31164.59 31339.48 36730.60

53 0.60 37200.45 37629.73 37839.29 44338.85

54 0.70 43605.67 44144.83 44415.53 51914.27

55 0.80 50024.42 50648.82 50870.36 59507.85

56 0.90 56462.69 57172.20 57357.32 67122.44

Table 8. Results obtained in case of 80 elements

Problem NO. Complexity EPC MEPC1 MEPC2 CS

57 0.20 17525.86 17749.66 17898.10 21063.75

58 0.30 26259.91 26574.60 26728.03 31517.85

59 0.40 34918.14 35395.07 35505.06 41883.51

60 0.50 44020.18 44620.30 44742.08 52743.66

61 0.60 53128.16 53814.11 53995.54 63606.21

62 0.70 62230.02 63063.00 63233.70 74434.30

63 0.80 71355.15 72318.92 72423.36 85317.54

64 0.90 80514.41 81606.40 81709.90 96163.83

Table 9. Results obtained in case of 90 elements

Problem NO. Complexity EPC MEPC1 MEPC2 CS

65 0.20 24075.11 24283.99 24383.92 28879.44

66 0.30 36262.51 36570.27 36728.63 43434.52

67 0.40 48085.50 48547.90 48629.22 57602.77

68 0.50 60507.28 61114.71 61271.23 72469.39

69 0.60 72976.99 73738.22 73855.36 87363.44

70 0.70 85388.53 86332.14 86468.65 102199.42

71 0.80 97831.44 98974.95 99099.94 117038.63

72 0.90 110266.79 111648.85 111760.94 131906.45

Table 10. Results obtained in case of 100 elements

Problem NO. Complexity EPC MEPC1 MEPC2 CS

73 0.20 32358.58 32231.73 32253.43 38386.95

74 0.30 47918.90 47820.50 47828.16 56879.90

75 0.40 64576.49 64427.24 64460.62 76554.42

76 0.50 81195.57 81094.70 81116.32 96239.47

77 0.60 97831.45 97738.73 97727.19 115896.80

78 0.70 114485.53 114454.57 114445.83 135621.28

79 0.80 131159.43 131109.21 131117.61 155255.84

80 0.90 147849.93 147819.83 147780.66 174927.68

Table 8 provides the results obtained in case of DSM with

size 80 elements, EPC provide the best solution in all test

instances.

Table 9 provides the results obtained in case of DSM with

size 90 elements, EPC provide the best solution in all test

instances.

Table 10 provides the results obtained in case of DSM with

size 100 elements, MEPC1 provides the best solution 7 out of

41

8 problems.

Results given in Tables 1 to 10 shows that, EPC

outperforms the other three proposed algorithms in 50% of the

tested problems, MEPC1 outperforms the other 3 proposed

algorithms in 10% of the tested problems and finally MEPC2

outperforms the other 3 proposed algorithms in 40% of the

tested problems.

Sensitivity analysis is performed to examine the effect of

changing parameters on the quality of solutions. Regarding CS,

there are two parameters that need setting, namely, the number

of nests and the probability of discovery (Pa). The number of

nests (n) represents the population size. Sensitivity analysis is

performed by solving the same test instances using CS with

different values of (n) to be 25, 50, 75 and 100. Sensitivity

analysis shows that changing the number of nests does not

have a significant impact on the objective function value for

all tested cases. The second parameter (pa) represents the

probability of discovery. The sensitivity analysis is performed

by solving the test instances using CS at values of (pa) in the

range [0.1, 0.9], with an increment of 0.1. Results show that

high values of (pa) tend to get rid of solutions without trying

to improve them locally. Therefore, the value of (pa) in the

range [0.1, 0.5] for these test instances, achieves the required

balance between exploration and exploitation.

Regarding EPC, MEPC1 and MEPC2, sensitivity analysis

is performed for two parameters, namely, the number of

penguins (colony size) and the mutation factor ф. The

sensitivity analysis involved changing the number of penguins

from 20 to 100 and the value of the mutation factor ф from

0.01 to 0.09. Several runs are performed on the same test

instances mentioned above with different values of number of

penguins and ф. These runs conclude that, changing the

number of penguins or changing the value of the mutation

factor does not have a significant effect on the results obtained.

The performance of the four algorithms is ranked using the

Friedman test [35]. The Friedman test is a non-parametric

method for identifying treatment discrepancies through

several attempts. Table 11 shows the ranking of algorithms

based on the results obtained from Table 1 to 10 (80 problems)

using the Friedman test. Table 11 shows that EPC algorithm is

first in the ranking; MEPC2 comes next, followed by MEPC1

and, finally CS.

Table 11. Ranking of algorithms based on performance using

Friedman's test

Algorithms EPC MEPC1 MEPC2 CS

Ranking 1.83125 2.1375 2.03125 4

To find significant differences between the results obtained

by the algorithms in solving the 80 test problems, statistical

analysis is used. To detect significant differences in the results,

Friedman test is employed. When applying Friedman test

using the online Friedman calculator, the result is significance

at p < 0.05. This means that the results are important.

Given The null hypothesis for the Friedman test is that there

is no a significant difference between the results, Table 12

shows the results of the Friedman test The Chi-Square value is

146.32, with 3 degrees of freedom, and also there is

asymptotic significance of the test (p-value) with very close to

zero value. Given the close to zero value of the asymptotic

significance, the hypothesis is rejected. Therefore, it can be

concluded that there is a significant difference in the

performance of algorithms.

Table 12. Results of Friedman’s tests based on performance

Test

method

Chi-

Square

Degrees of

freedom

(DF)

P-value Hypothesis

Friedman 146.32 3 0.00001 Rejected

7. CONCLUSION AND FUTURE WORK

This work provided a comparison between four population-

based optimization algorithms. This is the first research that

used EPC, MEPC1 and MEPC2 in solving discrete

optimization problem. The research aimed to find the optimal

number of clusters (modules) in DSM and the best assignment

of each element to a specific cluster. A product is represented

using DSM, DSM is a product representation tool; it provides

graphical representation to the system elements. The objective

function was to minimize the total coordination cost. The

utilized algorithms were tested and compared on three

problems found in literature and eighty test instances

randomly generated. Results showed that the EPC algorithm

was the first in the Friedman ranking test, MEPC2 comes next,

followed by MEPC1, then CS. Future work may include multi-

objective EPC algorithm to find the optimal assignment of

each element in the cluster and the optimal number of clusters

which minimize total coordination cost of the product and

maximize product sustainability and provide hybridization

between CS and EPC to solve discrete optimization algorithms.

REFERENCES

[1] Chang, T.R., Wang, C.S., Wang, C.C. (2013). A

systematic approach for green design in modular product

development. The International Journal of Advanced

Manufacturing Technology, 68(9): 2729-2741.

https://doi.org/10.1007/s00170-013-4865-5

[2] Shaik, A.M., Rao, V.K., Rao, C.S. (2014). Development

of modular manufacturing systems—a review. The

International Journal of Advanced Manufacturing

Technology, 74: 1-4. http://doi.org/10.1007/s00170-014-

6289-2

[3] Abdelsalam, H., Rasmy, M., Mohamed, H.G. (2014). A

simulation-based time reduction approach for resource

constrained design structure matrix. International Journal

of Modeling and Optimization, 4(1): 51-55.

http://doi.org/10.7763/IJMO.2014.V4.346

[4] Wahdan, H.G., Abdelsalam, H.M., Kassem, S.S. (2017).

Product Modularization using cuckoo search. In

Operations Research and Enterprise Systems. vol 695.

Springer, Cham. http//doi.org/10.1007/978-3-319-

53982-9_2

[5] Wahdan, H., Kassem, S.S., Abdelsalam, H. (2016). A

Cuckoo search clustering algorithm for design structure

matrix. 5th the International Conference on Operations

Research and Enterprise Systems (ICORES 2016), Italy,

Rome, pp. 36-43.

http//doi.org/10.5220/0005693000360043

[6] Eppinger, S., Whitney, D., Smith, R., Gebala, D.A.

(1994). A model based method for organizing tasks in

product development. Research in Engineering Design,

6(1): 1-3. https://doi.org/10.1007/BF01588087

[7] Idicula, J. (1995). Planning for concurrent engineering.

42

Singapore: Gintic Institute Research report.

[8] Gutierrez, C.I. (1998). Integration analysis of product

architecture to support effective team co-location.

Cambridge: Masters thesis, Massachusetts Institute of

Technology.

[9] Yassine, A.A., Yu, T.L., Goldberg, D.E. (2007). An

information theoretic method for developing modular

architectures using genetic algorithms. Research in

Product Design, 18(2): 91-109.

http//doi.org/10.1007/s00163-007-0030-1

[10] Sosa, M.E., Rowles, C.M. (2003). Identifying modular

and integrative systems and their impact on design team

interactions. ASME J Mech Des, 125(2): 240-252.

https://doi.org/10.1115/1.1564074

[11] Fabrice, A., Steven, B.S., Henri, J.T. (2006). Design

structure matrix flow for improving identifiaction and

specification of modules. International Design

Engineering Technical Conferences & Computers and

Information in Engineering Conference, pp. 1-13.

Philadelphia, Pennsylvania, USA: ASME 2006.

[12] Borjesson, F. (2009). Improved output in modular

function deployment using heuristics. International

Conferance on Engineering Design, Stanford, USA, pp.

24-27.

[13] Liang, L.Y. (2009). Grouping decomposition under

constraints for design/build life cycle in project delivery

system. International Journal of Technology

Management, 48(2): 168-187.

https://doi.org/10.1504/IJTM.2009.024914

[14] van Beek, T.J., Erden, M.S., Tomiyama, T. (2010).

Modular design of mechatronic systems with function

modeling. Mechatronics, 20(8): 850-863.

https://doi.org/10.1016/j.mechatronics.2010.02.002

[15] Pandremenos, J., Chryssolouris, G. (2012). A neural

network approach for the development of modular

product architectures. International Journal of Computer

Integrated Manufacturing, 14(3): 1-8.

https://doi.org/10.1080/0951192X.2011.602361

[16] Borjesson, F., Hölttä-Otto, K. (2012). Improved

clustering algorithm for design structure matrix. ASME

2012 International Design Engineering Technical

Conferences & Computers and Information in

Engineering Conference, Chicago, IL, USA, pp. 1-10.

https://doi.org/10.1115/DETC2012-70076

[17] Borjesson, F., Sellgren, U. (2013). Fast hybrid genetic

clustering algorithm for design structure matrix. 25th

International Conference on Design Theory and

Methodology. Portland, Oregon, USA.

https://doi.org/10.1115/DETC2013-12041

[18] Yang, Q., Yao, T., Lu, T., Zhang, B. (2014). An

overlapping-based design structure matrix for measuring

interaction strength and clustering analysis in product

development project. IEEE Transactions on Engineering

Management, 61(1): 159-170.

http//doi.org/10.1109/TEM.2013.2267779

[19] Kim, S., Baek, J.W., Moon, S.K., Jeon, S. (2015). A new

approach for product design by integrating assembly and

disassembly sequence structure planning. Proceedings of

the 18th Asia Pacific Symposium on Intelligent and

Evolutionary Systems, pp. 247-257.

https://doi.org/10.1007/978-3-319-13359-1_20

[20] Qiao, L., Efatmaneshnik, M., Ryan, M., Shoval, S.

(2017). Product modular analysis with design structure

matrix using a hybrid approach based on MDS and

clustering. Journal of Engineering Design, 28(6): 433-

456. http://dx.doi.org/10.1080/09544828.2017.132585

[21] Sakao, T., Song, W., Matschewsky, J. (2017). Creating

service modules for customising product/service systems

by extending DSM. CIRP Annals, 66(1): 21-24.

https://doi.org/10.1016/j.cirp.2017.04.107

[22] Ezzat, O., Medini, K., Boucher, X., Delorme, X. (2019).

Product and service modularization for variety

management. Procedia Manufactoring, 28: 148-153.

https://doi.org/10.1016/j.promfg.2018.12.024

[23] Wahdan, H., Abdelslam, H., Abou-El-Enien, T., Kassem,

S. (2019). Sustainable product design through non-

dominated sorting cuckoo search. Journal Européen des

Systèmes Automatisés, 52(5): 439-448.

https://doi.org/10.18280/jesa.520502

[24] Kongsin, T., Klongboonjit, S. (2020). Machine

Component Clustering with Mixing Technique of DSM,

Jaccard Distance Coefficient and k-Means Algorithm.

EasyChair Preprint no. 2296.

[25] Thebeau, R. (2001). Knowledge management of system

interfaces and interactions for product development

process. Massachusetts Institute of Technology.

[26] Borjesson, F., ltta-Otto, K.H. (2014). A module

generation algorithm for product architecture based on

component interactions and strategic drivers. Research in

Engineering Design, 25(1): 31-51.

https://doi.org/10.1007/s00163-013-0164-2

[27] Elbeltagia, E., Hegazyb, T., Grierso, D. (2005).

Comparison among five evolutionary-based

optimization algorithms. Advanced Engineering

Informatics, 19: 43-53.

https://doi.org/10.1016/j.aei.2005.01.004

[28] Yang, X., Deb, S. (2009). Cuckoo search via levy flights.

The World Congress on Nature and Biologically Inspired

Computing (NABIC ’09). Coimbatore, India: IEEE, pp.

210-214. https://doi.org/10.1109/NABIC.2009.5393690

[29] Yang, X.S., Deb, S. (2010). Engineering optimisation by

cuckoo search. Int J Math Model Numer Optim, 1(4):

330-343.

[30] Harifi, S., Khalilian, M., Mohammadzadeh, J.,

Ebrahimnejad, S. (2019). Emperor penguins colony: A

new metaheuristic algorithm. Evolutionary Intelligence,

12(2): 211-226. https://doi.org/10.1007/s12065-019-

00212-x

[31] Wahdan, H.G., Abdelslam, H.E., Abou-El-Enien, T.H.,

Kassem, S.S. (2020). Two-modified emperor penguins

colony optimization algorithms. Revue d'Intelligence

Artificielle, 34(2): 151-160.

https://doi.org/10.18280/ria.340205

[32] Chen, H., Li, S., Tang, Z. (2011). Hybrid gravitational

search algorithm with random-key encoding scheme

combined with simulated annealing. International

Journal of Computer Science and Network Security,

11(6): 208-217.

[33] Beckmann, D., Dagen, M., Ortmaier, T. (2018). A

comparison of discretization methods for parameter

estimation of nonlinear mechanical systems using

extended kalman filter: Symplectic versus classical

approaches. In: Madani K., Peaucelle D., Gusikhin O.

(eds) Informatics in Control, Automation and Robotics.

Lecture Notes in Electrical Engineering, vol 430.

Springer, Cham. https://doi.org/10.1007/978-3-319-

55011-4_18

[34] Burnwal, S., Deb, S. (2012). Scheduling optimization of

43

flexible manufacturing system using cuckoo search-

based approach. International Journal of Advanced

Manufacturing Technology, 64: 1-9.

https://doi.org/10.1007/s00170-012-4061-z

[35] Derrac, J., García, S., Molina, D., Herrera, F. (2011). A

practical tutorial on the use of nonparametric statistical

tests as a methodology for comparing evolutionary and

swarm intelligence algorithms. Swarm and Evolutionary

Computation, 1(1): 1-13.

https://doi.org/10.1016/j.swevo.2011.02.002

44

