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Magnetic Levitation System (MLS) objective is to levitate objects to the desired height 

without any contact. MLS is highly nonlinear and inherently unstable. Such a system 

imposes a challenge when designing robust and high-performance controllers. This paper 

presents the design of a Sliding Mode (SM) controller with an Integral term called SM-I 

controller to achieve the desired levitation against nonlinearities and uncertainties of the 

system. The controller parameters are tuned using the Equilibrium Optimizer (EO) 

algorithm. The Effectiveness of the proposed controller is validated by simulation results. 

Simulations are performed for servo tracking with and without perturbations in the MLS 

parameters. The proposed controller is compared with the conventional SM, LQR, and 

PID controllers to show its superiority. The results prove that the SM-I is more efficient 

than the other controllers.  
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1. INTRODUCTION

MLS has a practical significance in many engineering areas 

such as high-speed maglev trains, levitation of wind tunnel 

models, frictionless bearings, vibration isolation of sensitive 

machinery, suspension, and manipulation [1-6]. The 

widespread use of MLS is because it eliminates mechanical 

contact between moving and stationary parts. Consequently, 

MLS reduces the friction problem and isolates vibrations. 

Hence, MLS offers several advantages such as working in a 

high vacuum environment, reduction in noise, and high 

accuracy positioning system [7]. MLS uses the principle of 

electromagnetism to levitate ferromagnetic objects at a certain 

position within air-space [8]. 

MLS is considered as a nonlinear system that has an 

unstable equilibrium point [9] with a very small degree of 

natural damping and fast dynamics. Therefore, controlling 

such systems is a strenuous problem [10]. MLS has witnessed 

a dramatic increase in the amount of research in the last two 

decades and has been considered as a valuable testbed for 

control techniques.  

A variety of control strategies have been proposed and 

implemented to control the MLS. A digital fractional-order 

PID controller is designed [11] and implemented. Self-tuning 

robust integral of signum of error (RISE) based controller is 

discussed by Bidikli and Bayrak [8]. To obtain a smoother 

control signal, the authors used the tanh instead of signum 

function. Four novel fractional-order sliding mode controllers 

are presented [12] and experimental results are provided. A 

novel neural network-based controller is presented by Hayat et 

al. [13] and a model that considers the angular position of the 

ball is derived. The neural network is used to estimate the 

electromagnetic parameters. A sliding mode controller is 

designed to reject the disturbances [14]. The controller 

performance was compared with a PID controller. Step and 

square trajectories are used in the comparison. The controllers' 

parameters are chosen to render the closed-loop characteristic 

polynomial with no focus on the system robustness. An 

improved adaptive fuzzy backstepping control is shown in the 

cited reference [15]. Sine trajectory was only used to compare 

the performance of the proposed controller with sliding mode 

and command filtered adaptive backstepping controllers. The 

parameters of the proposed controller are tuned only. 

Feedback linearization based linear quadratic regulator with 

integral action (FL-LQR-I) was designed [16]. The controller 

performance was compared with LQR and PID controllers for 

three reference trajectories (Step, square, and sine). Salp 

Swarm Algorithm (SSA) were utilized to tune the controllers' 

parameters. Motivated by the aforementioned research, this 

paper presents a sliding mode controller with an integral term 

(SM-I). The proposed controller is compared with LQR and 

PID controllers using step, sine, and square trajectories. All the 

controllers' parameters are tuned using EO to ensure a fair 

comparison. The proposed (SM-I) controller can track step, 

sine, and square trajectories even when all the MLS 

parameters are changed by 30% while the change in the ref. 

[16] is 10% only. Moreover, it offers a better tracking response

than the one in the ref. [16] in terms of overshoot and settling

time.

It is arduous to manually tune or design the gains of the 

nonlinear controller. To overcome this issue, an optimization 

method can be utilized to tune the nonlinear controller gains. 

These are numerous types of optimization techniques and 

there are several factors for choosing between them. EO, 

developed by Afshin Faramarzi et al. [17], is a physics-based 

optimization method that is inspired by control volume mass 

balance models used to estimate the dynamic and equilibrium 

states. The EO provides some advantages such as the ease of 

implementation, the capability of offering a balance between 

the exploitation and exploration operators as well as the 

diversity among the individuals in a population. 

The main contributions of this paper include: i) proposing a 

new application of the EO algorithm to tune the gains of the 

sliding mode control of the MLS, ii) introducing a novel 
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performance index that evaluates both the control performance 

and control effort called the Integral Absolute Controller 

Output-weighted Error (IACOE) and iii) reducing the 

chattering, i.e., smoothing the system output, by letting the EO 

find the best slope (μ) for signum function in (13). 

The remainder of this paper is structured as follows:  

Section 2 presents the modelling of the magnetic levitation 

system. Sections 3 and 4 show the design and analysis of the 

proposed controller. Section 5 presents the EO. Section 6 

demonstrates and discusses the results of the simulation in 

detail. Section 7 presents the conclusions of the paper and 

highlights the future work to be pursued. 

 

 

2. MLS MODEL 
 

The MLS and its diagram used in this work are illustrated 

in Figure 1. The nonlinear mathematical model of MLS, which 

is derived based on the works [18-20], is stated below. The 

state equations that define the nonlinear physical model of the 

MLS are obtained from the principal laws of physics of a 

sphere motion in the electromagnetic field.  

 

 
 

Figure 1. MLS and magnetic levitation diagram 

 

The Lagrangian function, which represents the kinetic 

energy minus the potential energy, describes the 

electromagnetic forces and ball dynamics (see the right side of 

Figure 1) in the following:  

 

𝑇 =
1

2
𝑚�̇�2 +

1

2
𝐿(𝑥)�̇�2 +

1

2
∫ 𝑅

𝑡

0

�̇�2𝑑𝑡 + 𝑚𝑔𝑥 + 𝑞𝑢 

 

where, m denotes the mass of the ball, g is the gravity constant, 

x describes the distance of the ball from the electromagnet, L(x) 

is a function that describes the dependence of coil inductance 

on x, u represents the voltage, 𝐼 = �̇� denotes the current in the 

coil, R describes the resistance of the electromagnet coil, q 

represents the electric charge, 𝐹𝑒𝑚 is the electromagnetic force, 

and 𝐹𝑔 is the gravity force.  

The variables  𝑞(𝑡) and  𝑥(𝑡) must fulfil the Lagrangian 

equations:  
𝑑

𝑑𝑡

𝑑𝑇

𝑑�̇�
−

𝜕𝑇

𝜕𝑥
= 0 and  

𝑑

𝑑𝑡

𝑑𝑇

𝑑�̇�
−

𝜕𝑇

𝜕𝑞
= 0 which yield 

Newton’s second law and Kirchhoff’s voltage law as follows: 

 

𝑑2𝑥

𝑑𝑡2
=

1

2𝑚

𝑑𝐿

𝑑𝑥
𝐼2 + 𝑔 (1) 

 
𝑑𝐼

𝑑𝑡
=

1

𝐿
(−

𝑑𝐿

𝑑𝑥

𝑑𝑥

𝑑𝑡
𝐼 − 𝑅𝐼 + 𝑢) (2) 

 

The electromagnetic force is described by: 

𝐹(𝑥, 𝐼) =
1

2

𝑑𝐿

𝑑𝑥
𝐼2 

 

The exponential function is a good approximation 

of 𝐿(𝑥) as follows: 

 

𝐿(𝑥) = 𝐿0 + 𝐿1𝑒
−𝑎𝑥       𝑎 > 0 (3) 

 

where, 𝐿0 is the inductance of the coil when the ball is very far 

away (𝑥 = ∞), L1 is the incremental inductance when there is 

a touching between the coil and the ball (x=0), 𝑎 denotes the 

length constant,  𝐿1 ≈ 𝐹𝑒𝑚𝑃1 , and  𝑎 ≈
1

𝐹𝑒𝑚𝑃2
, 

where 𝐹𝑒𝑚𝑃1 and 𝐹𝑒𝑚𝑃2 are  electromagnetic force parameters 

which are gained by measuring the dependence of coil current 

on ball position in steady-state. Since 𝐿(𝑥) is decreasing, its 

derivative is always negative. The exponential alternative of 

(3) will be used by having: 

 
𝑑𝐿

𝑑𝑥
= −𝑎𝐿1𝑒

−𝑎𝑥 (4) 

 

where, 
𝑑𝐿

𝑑𝑥
≈ −

𝐹𝑒𝑚𝑃1

𝐹𝑒𝑚𝑃2
𝑒

−(
𝑥1

𝐹𝑒𝑚𝑃2
)
. The experimentally received 

approximation in [19] simplifies Eq. (2) as follows:  

 
𝑑𝐼

𝑑𝑡
= −

1

𝑓(𝑥)
(𝑘𝑢 + 𝑐 − 𝐼) (5) 

 

where, c and k are given by approximation of real measured 

data, and f(x) is the time constant that has an exponential 

alternative similar to (4). By introducing the state variables as 

below and combining (1), (2), (4) and (5)  with slightly 

different notation as follows:  𝑥1 = 𝑥; is the position of the 

ball, 𝑥2 = �̇�1 ; is the velocity of the ball, and 𝑥3 = 𝐼; is the 

current of the coil. The resulting nonlinear mathematical 

model is written as follows: 

 

�̇�1 = 𝑥2 

�̇�2 = −
𝐹𝑒𝑚

2𝑚
+ 𝑔 

�̇�3 =
1

𝑓(𝑥1)
(𝑘𝑢 + 𝑐 − 𝑥3) 

(6) 

 

where,  𝐹𝑒𝑚 = 𝑥3
2 𝐹𝑒𝑚𝑃1

𝐹𝑒𝑚𝑃2
𝑒

−(
𝑥1

𝐹𝑒𝑚𝑃2
)

, and  𝑓(𝑥1) =

𝑓𝑃1

𝑓𝑃2
𝑒

−(
𝑥1

𝑓𝑃2
)
.  𝑓𝑃1 and  𝑓𝑃2 are given by approximation of real 

measured data. For more details about the MLS Model, please 

refer to the ref. [18]. 

 

 

3. SLIDING MODE CONTROL 
 

Starting with the following single-input single-output 

system, which is in the normal form: 

 

𝜉�̇� = 𝜉𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1 

𝜉�̇� = 𝑎(𝜉) + 𝑏(𝜉)𝑢 + 𝛿(𝑡, 𝜉, 𝑢) 

𝑦 = 𝜉1 

(7) 

 

where,  𝜉 = col(𝜉1, . . . , 𝜉𝑛) ∈ 𝐷𝜉 ⊂ 𝑅𝑛 for a 

domain  𝐷𝜉  and 𝑦 is the output. The functions a and b are 

locally Lipschitz and 𝑏 ≠ 0 over 𝐷𝜉  and 𝛿 represents a time-

132



 

varying disturbance assumed to piecewise continuous in t and 

locally Lipschitz in (𝜉, 𝑢). The system (7) is obtained from (6) 

by using the feedback linearization technique, which is 

explained in detail in the ref. [16]. Suppose 𝑟(𝑡) is the desired 

reference signal, then the change of variables: 

 

𝑒1 = 𝜉1 − 𝑟 = 𝑦 − 𝑟,  e2 = 𝜉2, ... , e𝑛 = 𝜉𝑛 

 

transforms the system (7) into the form: 

 

�̇�𝑖 = 𝑒𝑖+1       for 1 ≤ 𝑖 ≤ 𝑛 − 1 

�̇�𝑛 = 𝑎(𝜉) + 𝑏(𝜉)𝑢 + 𝛿(𝑡, 𝜉, 𝑢) 
(8) 

 

The goal is to design a controller that constrains the 

trajectories of the system to a sliding manifold or surface. 

Starting with the linear part of (8) as follows: 

 

�̇�𝑖 = 𝑒𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1 (9) 

 

𝑒𝑛 can be designed to stabilize the origin of (9) when it is 

viewed as the control input as follows: 

 

𝑒𝑛 = −(𝑘1𝑒1+. . . +𝑘𝑛−1𝑒𝑛−1) (10) 

 

where,  𝑘1 to 𝑘𝑛−1 are selected such that the 

polynomial 𝜆𝑛−1 + 𝑘𝑛−1𝜆
𝑛−2+. . . +𝑘1 is Hurwitz. The sliding 

manifold is then designed as [21], 

 

𝑠 = (𝑘1𝑒1+. . . +𝑘𝑛−1𝑒𝑛−1) + 𝑒𝑛 = 0 

 

and its derivative  

 

�̇� = ∑ 𝑘𝑖𝑒𝑖+1
𝑛−1
1 + 𝑎(𝜉) + 𝑏(𝜉)𝑢 + 𝛿(𝑡, 𝜉, 𝑢)  

 

The motion on the manifold s=0 is independent of a and b. 

The task now is to design a controller to bring the system 

trajectories to the aforementioned manifold and maintain it 

there. Let 𝑉 =
𝑠2

2
 be a Lyapunov function candidate and the 

control input 𝑢 be chosen as: 

 

𝑢 =
1

𝑏(𝜉)
[−𝑎(𝜉) + 𝑣] 

 

Then, �̇� becomes, 

 

�̇� = 𝑠 [∑ 𝑘𝑖𝑒𝑖+1

𝑛−1

1

+ 𝑣 + 𝛿(𝑡, 𝜉, 𝑢)] ≤ |𝑠|𝜚(𝜉) + 𝑠𝑣 

 

where,  𝜚(𝜉) ≥ |∑ 𝑘𝑖𝑒𝑖+1
𝑛−1
1 + 𝛿(𝑡, 𝜉, 𝑢)|, ∀𝑡 > 0, 𝑢 ∈

𝑅 and 𝜉 ∈ 𝐷𝜉 . The selection of 𝑣 is done to meet the following: 

the term sv  is negative and dominates the positive 

term  |𝑠|𝜚(𝜉) when  |𝑠| ≠ 0 and the net negative term to 

drive |𝑠|to zero in finite time. This can be accomplished by 

choosing  

 

𝑣 = −𝛽(𝜉) 𝑠𝑔𝑛(𝑠) (11) 

 

where,  𝛽(𝜉) ≥ 𝜚(𝜉) + 𝛽0, 𝛽0 > 0 and the signum 

function 𝑠𝑔𝑛(⋅) is defined by: 

 

𝑠𝑔𝑛(𝑠) = {
  
1,
0,

−1,
       

𝑠 > 0
𝑠 = 0
𝑠 < 0

 

 

whenever |𝑠| ≠ 0, then  

 

�̇� ≤ |𝑠|𝜚(𝜉) − [𝜚(𝜉) + 𝛽0]𝑠 𝑠𝑔𝑛(𝑠) ≤ −𝛽0|𝑠| ≤ −𝛽0√2𝑉 

 

The inequality  �̇� ≤ −𝛽0√2𝑉 guarantees that all the 

trajectories starting away from the manifold s=0 reach it in a 

finite time and those on the manifold cannot leave it. The 

control law (11) is discontinuous and oscillates with very high 

(ideally infinite) frequency. This cannot be realized practically 

due to limited actuator bandwidth. This yields deviation of the 

trajectory of the sliding manifold causing it to oscillate around 

it in what is called chattering. To avoid the infinite-frequency 

oscillation in the control law (11), the signum function is 

replaced by a high slope saturation function as follows: 

 

𝑣 = −𝛽(𝜉)sat (
𝑠

𝜇
) (12) 

 

where, sat(⋅) denotes the saturation function defined by: 

 

sat (
𝑠

𝜇
) = {

𝑠

𝜇

𝑠𝑔𝑛 (
𝑠

𝜇
)
       

if |
𝑠

𝜇
| ≤ 1

if |
𝑠

𝜇
| > 1

 (13) 

 

as 𝜇 → 0, sat (
𝑠

𝜇
)  approaches sgn(𝑠). The control law (12) is 

called SM and 𝛽(𝜉) = 𝑘1|𝜁1| + 𝑘2|𝜁2| + 𝛽0 for the system (6), 

i.e., 𝑛 = 3. The parameters 𝑘1, 𝑘2, 𝛽0, and 𝜇 are tuned by EO. 

The derivative �̇� of the Lyapunov function 𝑉 =
𝑠2

2
 while using 

the control law (12) is given by �̇� = −𝛽0|𝑠| when |𝑠| ≥ 𝜇, i.e., 

outside the boundary layer  {|𝑠| ≤ 𝜇} , Hence, 

whenever  |𝑠(0)| > 𝜇, |𝑠(𝑡)| is strictly decreasing until it 

reaches the set {|𝑠| ≤ 𝜇} in a finite time and remains inside it 

thereafter.   

To study the behaviour of 𝑒(𝑡), let 𝜁 = col(𝑒1, . . . , 𝑒𝑛−1), 

which satisfies the equation 

 

𝜁̇ = (𝐴𝑐 − 𝐵𝑐𝐾)𝜁 + 𝐵𝑐𝑠 

 

where,  𝐾 = [𝑘1, 𝑘2, . . . , 𝑘𝑛−1] ,  𝐴𝑐 = [
0 1
0 0

]
𝑛=3

, and  𝐵𝑐 =

[
0
1
]
𝑛=3

. The matrix (𝐴𝑐 − 𝐵𝑐𝐾) is Hurwitz by the design of 

(10). Let the Lyapunov function candidate  𝑉0 =
𝜁𝑇𝑃𝜁 where 𝑃 the solution of the Lyapunov equation 𝑃(𝐴𝑐 −
𝐵𝑐𝐾) + (𝐴𝑐 − 𝐵𝑐𝐾)𝑇𝑃 = −𝐼 . The derivative of  𝑉0 satisfies 

the inequality, 

 

�̇�0 = −𝜁𝑇𝜁 + 2𝜉𝑇𝑃𝐵𝑐𝑠−≤ (1 − 𝜃)‖𝜁‖2,  
∀‖𝜁‖ ≥ 2‖𝑃𝐵𝑐‖|𝑠|/𝜃 

 

where,  0 < 𝜃 < 1. Using Rayleigh-Ritz theorem,  𝜁𝑇𝑃𝜁 ≤
𝜆𝑚𝑎𝑥(𝑃)‖𝜁‖2 . For any  𝜎 ≥ 𝜇, {‖𝜁‖ ≤ 2‖𝑃𝐵𝑐‖𝜎/𝜃} ⊂
{𝜁𝑇𝑃𝜉 ≤ 𝜆𝑚𝑎𝑥(𝑃)(2‖𝑃𝐵𝑐‖/𝜃)2𝜎2} .  Choosing  𝜌1 =
𝜆𝑚𝑎𝑥(𝑃)(2‖𝑃𝐵𝑐‖/𝜃)2 and  𝑐 such that  𝑐 > 𝜇 yields the 

set  𝛺 = {𝜁𝑇𝑃𝜉 ≤ 𝜌1𝑐
2} × {|𝑠| ≤ 𝑐} , which is positively 

invariant since  �̇� < 0 on the boundary  {|𝑠| = 𝑐} and  �̇�0 <
0 on the boundary  {𝜁𝑇𝑃𝜉 = 𝜌1𝑐

2} . if  𝑒(0) ∈ 𝛺 , 
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then  𝑒(𝑡) enters the set  𝛺𝜇 = {𝜁𝑇𝑃𝜉 ≤ 𝜌1𝜇
2} × {|𝑠| ≤ 𝜇} in 

finite time because it is positively invariant. Inside  𝛺𝜇  to 

calculate the ultimate bound on |𝑒1|, the following equation 

[21] is utilized: 

 

𝑚𝑎𝑥
𝑥𝑇𝑃𝑥≤𝑐

|𝑏𝑇𝑥| = √𝑐 ‖𝑏𝑇𝑃
−1
2 ‖ 

 

Thus, 𝑚𝑎𝑥
𝜁𝑇𝑃𝜁≤𝜌1𝜇2

|𝑒1| = √𝜌1𝜇
2 ‖𝑏𝑇𝑃

−1

2 ‖ where  𝑏𝑇 =

[1,0, . . . ,0]. Setting �̑� = ‖𝑏𝑇𝑃
−1

2 ‖ √𝜌1 shows that the ultimate 

bound on |𝑒1| is �̑�𝜇. Ultimate boundedness can be concluded 

as the disturbance 𝛿 could be nonvanishing at the origin. 

 

 

4. SLIDING MODE CONTROL WITH INTEGRAL 

ACTION 
 

The sliding mode controller of section 3 assures that the 

regulation error 𝑦 − 𝑟 is ultimately bounded by �̑�𝜇 with �̑� > 0. 

Using the integral action, it can be assured that the error 

converges to zero as time tends to infinity. Augmenting the 

integrator �̇�0 = 𝑦 − 𝑟 with (8) yields 

 

�̇�𝑖 = 𝑒𝑖+1  for 0 ≤ 𝑖 ≤ 𝑛 − 1 

�̇�𝑛 = 𝑎(𝜉) + 𝑏(𝜉)𝑢 + 𝛿(𝑡, 𝜉, 𝑢) 

 

which preserves the normal form structure with a chain of 𝑛 +
1 integrators. The design of sliding mode can be performed in 

a similar way to section 3. The sliding manifold is taken as 

[21]. 

 

𝑠 = (𝑘0𝑒0 + 𝑘1𝑒1+. . . +𝑘𝑛−1𝑒𝑛−1) + 𝑒𝑛 = 0 

 

where, 𝑘0 to 𝑘𝑛−1 are chosen such that the polynomial 𝜆𝑛 +
𝑘𝑛−1𝜆

𝑛−1+. . . +𝑘1𝜆1 + 𝑘0 is Hurwitz. The control law u can 

be designed as: 

 

𝑢 =
1

𝑏(𝜉)
[−𝑎(𝜉) − 𝛽(𝜉)sat (

𝑠

𝜇
)] (14) 

 

where,  𝛽(𝜉) ≥ 𝜚(𝜉) + 𝛽0, 𝛽0 > 0, 𝜚(𝜉) ≥ |∑ 𝑘𝑖𝑒𝑖+1
𝑛−1
0 +

𝛿(𝑡, 𝜉, 𝑢)| ∀𝑡 > 0, 𝑢 ∈ 𝑅 and 𝜉 ∈ 𝐷𝜉 ;  and 𝑠𝑎𝑡 (
𝑠

𝜇
) is as in 

(13). The control law (14) is called SM-I and 𝛽(𝜉) = 𝑘0|𝜁0| +
𝑘1|𝜁1| + 𝑘2|𝜁2| + 𝛽0 for the system (6), i.e.,  𝑛 = 3 . The 

parameters  𝑘0, 𝑘1, 𝑘2, 𝛽0, and 𝜇 are tuned by EO. The 

behaviour of 𝑒(𝑡) is studied similarly as in section 3. It can be 

shown that there are two compact positively invariant sets 𝛺 =
{𝜁𝑇𝑃𝜉 ≤ 𝜌1𝑐

2} × {|𝑠| ≤ 𝑐} and  𝛺𝜇 = {𝜁𝑇𝑃𝜉 ≤ 𝜌1𝜇
2} ×

{|𝑠| ≤ 𝜇} for  𝑐 > 𝜇 such that every trajectory starts 

in 𝛺 enters 𝛺𝜇  in a finite time. Inside 𝛺𝜇, the system possesses 

an equilibrium at  (𝜁 = 𝜁, 𝑠 = �̄�) where  𝜁 =
col(�̄�0, 0, . . . ,0) and  �̄� = 𝑘0�̄�0 . The change of variables  𝜐 =
𝜁 − 𝜁 and 𝜏 = 𝑠 − �̄� is used to shift the equilibrium point to 

the origin. Then, the closed-loop system is given by: 

 
�̇� = (𝐴𝑐 − 𝐵𝑐𝐾)𝜐 + 𝐵𝑐𝜏 

�̇� = −𝛽(𝜉)
𝜏

𝜇
+ [∑ 𝑘𝑖𝑒𝑖+1

𝑛−1

1

+ 𝛿(𝑡, 𝜐, 𝑢)] 

 

where, 𝛿(𝑡, 0, 𝑢) = 0. Composite Lyapunov function can be 

constructed as 𝑉 = 𝜐𝑇𝑃𝜐 +
𝜏2

2
 whose derivative satisfies, 

 

�̇� = 2𝜐𝑇𝑃[(𝐴𝑐 − 𝐵𝑐𝐾)𝜐 + 𝐵𝑐𝜏] − 𝛽(𝜉)
𝜏2

𝜇
+ 

𝜏 [∑ 𝑘𝑖𝑒𝑖+1

𝑛−1

1

+ 𝛿(𝑡, 𝜉, 𝑢)] 

   ≤ 𝜐𝑇[(𝐴𝑐 − 𝐵𝑐𝐾)𝑇𝑃 + 𝑃(𝐴𝑐 − 𝐵𝑐𝐾)]𝜐 + 

2‖𝑃𝐵𝑐‖‖𝜐‖|𝜏| −
𝛽(𝜉)

𝜇
|𝜏|2 + |𝜚(𝜉)||𝜏| 

 

since  𝜚(𝜉)is locally Lipschitz and smooth, it can be upper 

bounded by: 

 

|𝜚(𝜉)| ≤ �̂�1‖𝜐‖ + �̂�2|𝜏| 
 

where, �̂�1 > 0 and �̂�2 > 0. Thus, �̇� becomes 

 

�̇� ≤ −‖𝜐‖2 + 2(‖𝑃𝐵𝑐‖ +
�̂�1

2
)‖𝜐‖|𝜏| − (

𝛽(𝜉)

𝜇
− �̂�2) |𝜏|2 

≤ − [
‖𝜐‖
𝜏

]
𝑇

[
 
 
 
 1

−(‖𝑃𝐵𝑐‖ +
�̂�1

2
)

−(‖𝑃𝐵𝑐‖ +
�̂�1

2
)

𝛽(𝜉)

𝜇
− �̂�2 ]

 
 
 
 

[
‖𝜐‖
𝜏

] 

 

The right-hand side of  �̇� is negative-definite for  𝜇 <
�̑�0

[�̂�2+(‖𝑃𝐵𝑐+
�̂�1
2

‖)
2

]

 where  𝛽(𝜉) < �̑�0. Hence, every trajectory 

in  𝛺𝜇  converges to the equilibrium point  (𝜐 = 0, 𝜏 =

0) as 𝑡 → 0. Since 𝑒 = 0 at this point, it can be concluded that 

the error converges to zero, i.e., 𝑦 → 𝑟. 

 

 

5. EQUILIBRIUM OPTIMIZER (EO) 

 

EO is a meta-heuristic algorithm, recently proposed by 

Afshin Faramarzi et al. [17], which is based on a simple well-

mixed dynamic mass balance on a control volume. More 

details about the EO inspiration is stated in the ref.  [17]. The 

following steps show the mathematical model of the EO 

algorithm: 

 

Step 1: Initialization 
In this step, EO uses the initial population to start the 

process of optimization. The vector of initial concentrations is 

constructed randomly in the search space as follows:  

 

𝐶𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐶𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑𝑖(𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛) 

𝑖 = 0, 1, 2, … . . , 𝑛  
 

where,  𝐶𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 denotes the initial concentration vector of a 

particle 𝑖, 𝑟𝑎𝑛𝑑𝑖 specifies a random vector in the range of [0, 

1], 𝐶𝑚𝑎𝑥, 𝐶𝑚𝑖𝑛 are the maximum and minimum and values for 

each dimension in the problem, and 𝑛 denotes the number of 

particles in the population. 

 

Step 2: Equilibrium pool and candidates (𝐶𝑒𝑞,𝑝𝑜𝑜𝑙) 

EO seeks for the equilibrium state of the system, which is 

desired to be the global optimum and close to the best solution. 

A vector named the equilibrium pool is constructed from five 

candidates, which support having better diversification and 
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exploitation capabilities as follows: 

 

𝐶𝑒𝑞,𝑝𝑜𝑜𝑙 = {𝐶𝑒𝑞(1),𝐶𝑒𝑞(2),𝐶𝑒𝑞(3),𝐶𝑒𝑞(4),𝐶𝑒𝑞(𝑎𝑣𝑒)}  

 

Step 3: Updating the concentration 

The next term (F) supports EO in having a plausible balance 

between exploitation and exploration.  

 

 𝐹
→

= 𝑒([−𝜆
→

(𝑡−𝑡0)]) 

 

where, 𝜆 is assumed to be a vector with random numbers in the 

range of [0, 1], t is a variable that retains a reverse 

proportionality with the iteration numbers, and 𝑡0 is a vector 

that supports to guarantee the convergence by improving the 

exploitation and exploration capability of the algorithm while 

slowing down the search speed. Finally, the updating rule of 

EO is as follows: 

 

𝐶
→

= 𝐶
→

𝑒𝑞 + (𝐶
→

0 − 𝐶
→

𝑒𝑞). 𝐹
→

+
𝐺
→

𝜆
→

𝑉
(1 − 𝐹

→

) 

 

where, V is considered as a unit, �⃗� is the generation rate, which 

is used to improve the exploitation phase. For more details 

about the EO and its pseudo-code please refer to the cited ref. 

[17].  

 

 

6. RESULTS AND DISCUSSION 

 

In this section, simulation  studies by using the MATLAB 

software are performed to demonstrate the effectiveness of the 

derived nonlinear controller (SM-I). The MLS parameters are 

as follows:  𝑚 =  0.02855 𝑘𝑔 ,  𝑓𝑝1
 =  1.4142 ∗

10−4 𝑚. 𝑠 ,  𝑓𝑝2
=  4.5626 ∗ 10−3𝑚 ,  𝑓𝑒𝑚𝑃1 = 1.7521 ∗

10−2𝐻 ,  𝑓𝑒𝑚𝑃2 =  5.8231 ∗ 10−3𝑚 ,  𝑘 =  2.5165 𝐴/𝑉 ,  𝑐 =
 0.0243 𝐴 , and  𝑔 =  9.8100 𝑚/𝑠2 .  The MLS used has the 

following limitations: 𝑥1𝑀𝐼𝑁 = 0 𝑚 ,  𝑥1𝑀𝐴𝑋 =
 0.0200 𝑚 ,  𝑥3𝑀𝐼𝑁 =  0.0388 𝐴 ,  𝑥3𝑀𝐴𝑋 =  2.345 𝐴 ,  𝑈𝑀𝐼𝑁 =
 0.0 𝑉, and 𝑈𝑀𝐴𝑋 =  5.0 𝑉. The initial conditions of the MLS 

states are 𝑥(0) = [0.004 m, 0 𝑚/𝑠, 0.608 A ]𝑇 . The sampling 

frequency is chosen as 𝑓 = 1 𝑘𝐻𝑧. 

Two simulation  scenarios are considered to validate the 

theoretical background and the possible advantage of the 

proposed control method. The first scenario considers taking 

the MLS without any perturbation in its parameters to study 

the proposed controller under the calculated MLS parameters. 

The second scenario demonstrates the capability of the 

proposed control to handle the uncertainty in MLS parameters 

which is a good measure of the robustness of the proposed 

controller. In both scenarios, three reference trajectories are 

tested and comparative simulation studies are investigated. 

These reference trajectories are Step, Sinusoidal, and Square, 

which are represented in the following equations:  𝑥𝑟(𝑡) =
0.009𝑢(𝑡) for Step,  𝑥𝑟(𝑡) = 0.0025 𝑠𝑖𝑛(0.5𝜋𝑡) + 0.009 for 

Sinusoidal, and  𝑥𝑟(𝑡) = 0.0025sign(𝑠𝑖𝑛(0.5𝜋𝑡)) +
0.009 for Square. 

In these comparative simulation studies, the proposed 

controller (SM-I) is compared with SM, LQR, and PID 

controllers. Because they are widely used in controlling the 

MLS, the LQR and PID controllers are selected for the 

comparison. The purpose of comparing the SM-I and SM 

controllers is to demonstrate the enhancement in the 

robustness of the system in the presence of the integral term.  

To ensure a fair comparison, the gains of the SM-I, SM, 

LQR, and PID controllers are tuned using EO algorithm under 

analogous conditions. The EO is run many times for each 

controller to obtain the  minimum cost function with different 

lower and upper bounds. It is essential to select the correct cost 

functions or performance indexes to obtain the best 

performance of the system and to fulfil the design expectations 

for the controller.  The performance index used in this work is 

the Integral Time-weighted Square Error (ITSE) since it 

provides shorter settling and rise times due to its large 

controller output, namely a faster response of the system. The 

error used in ITSE is the error in the ball position.  ITSE is 

calculated as 𝐽 = ∫ 𝑡. 𝑒2𝑑𝑡
𝑡2
𝑡1

 where 𝑒 is as defined above, and 

t is the period (𝑡1, 𝑡2 ∈ 0, 1.5 for step reference trajectory 

and 𝑡1, 𝑡2 ∈ 0, 14 for square and sine reference trajectories).  

The EO algorithm parameters such as the maximum 

iteration and the number of search agents affect the speed of 

the algorithm to find the optimal solution and the possibility to 

find the global optimal. The selection of these parameters 

value is application related. MLS is a nonlinear system with a 

high possibility of multi-local optimum which makes the 

selection of suitable EO parameters is more difficult. Since, 

the proposed work is a new application of the recently 

introduced EO algorithm, the selection of the EO parameters 

is based on trial and error, and personal experience. 

Accordingly, the EO parameters are chosen as 150 and 15 for 

the maximum iteration  and the number of search agents 

respectively. Table 1 demonstrates the upper and lower bounds 

for the tuned parameters while Table 2 shows best-obtained 

values of the tuned gains. K3 = 𝛽0 in Table 1 and Table 2. 

 

Table 1. The bounds of the tuned gains 

 

Controller 

Lower bounds, Upper bounds 

K1, Q1,1 

Kp 

K2, Q2,2  

KI 

K3, Q3,3 

 KD 

µ, R K0 

SM+I 0, 104 0, 103 0, 103 10-3, 1 5*103, 104 

SM 0, 104 0, 103 0, 2*103 10-3, 1 --- 

PID 0, 103 0, 103 0, 103 --- --- 

LQR 1, 104 1, 104 1, 50 1, 20 --- 

 

Table 2. The tuned values of the controllers’ gains 

 

Controller 
Parameters 

K1, P K2, I K3, D µ K0 

SM+I 5000 142.6 1900 0.903 3x103 

SM 5500 130.3 1986 0.988 --- 

PID 256.1 1000 6.06 --- --- 

LQR 168.7 3.82 0.548 --- --- 

 

6.1 Reference trajectory tracking test (without 

perturbation) 

 

In this test, the controllers’ reference trajectory tracking 

performance is evaluated with the aforementioned reference 

trajectories applied to the MLS that possesses no perturbation 

in its parameters. The LQR and SM controllers provide a 

shorter settling time a smaller overshoot than the SM-I and 

PID controllers as shown in Figure 2. However, in the same 

Figure, the SM-I and PID controllers offer a shorter rise time 

of 50.4ms and 38.6ms respectively, which is desirable in the 

MLS application, compared with the SM and LQR controllers 
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that offer a longer rise time of 54.3ms and 68.7ms respectively. 

The rise time is calculated for the interval [0% 90%] of the 

steady-state value. As observed in Figures 3 and 4, the 

deviation between the desired and measured ball position by 

using the LQR controller is very large as compared to the other 

controllers. 

The SM-I controller in Figure 3 shows a better tracking 

performance to the Sinusoidal trajectory than the PID, LQR, 

and SM controllers, particularly in the growing and dropping 

intervals. As noticed in Figure 4, the SM-I the controller has 

successfully followed the Square trajectory with an acceptable 

deviation in the falling and rising stages. 

 

 
 

Figure 2. MLS response for step trajectory without 

parameter perturbations 

 

 
 

Figure 3. MLS response for sine trajectory without 

parameter perturbations 

 

 
 

Figure 4. MLS response for square trajectory without 

parameter perturbations 

 

6.2 Robustness test 

 

The three references trajectories, in this test, are fed to the 

MLS, which retains an uncertainty in its parameters. The 

values of 𝑘, 𝑐, 𝑓𝑃1
, 𝑓𝑃2

, 𝑓𝑒𝑚𝑃1, and 𝑓𝑒𝑚𝑃2, are changed by +30%. 

The controllers’ performance is evaluated under this 

perturbation. 

As can be observed in Figures 5-7, the SM and LQR 

controllers are not able to track the reference trajectories 

without an SSE, which is significantly large in the case of the 

LQR controller. On the other hand, The PID controller 

provides a better tracking performance for the three reference 

trajectories than the SM and LQR controllers; however, the 

settling time and overshoot are still unacceptable. The SM-I 

controller offers a superior tracking performance for the three 

reference trajectories in both steady and transient response. 

The SM-I controller has shown robustness to parameters 

change, which can be seen by comparing it with the other 

controllers. Additionally, it can be observed from Figure 7 that 

there is a variance in the control performance between the 

falling and rising stages. The main reason for this difference 

may be the electromagnet retains nonlinearity and 

asymmetrically in its magnetic field. 

 

 
 

Figure 5. MLS response for step trajectory with parameter 

perturbations 

 

 
 

Figure 6. MLS response for sine trajectory with parameter 

perturbations 

 

 
 

Figure 7. MLS response for square trajectory with parameter 

perturbations 

 

The comparison of the controllers is also numerically 

supported as shown in Table 3 and 4. These numerical values 

are created from the evaluation of the SM-I, SM, LQR, and 
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PID controllers’ effort and performance with two test 

functions.  

 

Table 3. IAE with perturbation 
 

Controller 
∫ |𝒆(𝒕)|𝒅𝒕

𝒕𝟐

𝒕𝟏

 

Step Sine Square 

SM 97.03x10-5 644.8x10-5 67.11x10-4 

SM+I 26.36x10-5 67.49x10-5 14.5x10-4 

PID 53.69 x10-5 106x10-5 21.97x10-4 

LQR 266.3 x10-5 2219 x10-5 244.8x10-4 

 

Table 4. IACOE with perturbation 

 

Controller 
∫ |𝒆(𝒕)𝒖(𝒕)|𝒅𝒕

𝒕𝟐

𝒕𝟏

 

Step Sine Square 

SM 17.12x10-5 151.8x10-5 154.7x10-5 

SM+I 4.683x10-5 14.79x10-5 33.86x10-5 

PID 10.58x10-5 23.57x10-5 45.53x10-5 

LQR 53.44x10-5 443x10-5 447.60x10-5 

 

The first function takes the area under the curve of the error, 

i.e., the absolute numerical difference between the desired and 

measured ball position, into consideration which is also called 

the Integral Absolute Error (IAE) and is written as follows: 

 

∫ |𝑒(𝑡)|𝑑𝑡
𝑡2

𝑡1

 

 

The numerical values of the IAE of the SM-I, SM, LQR, 

and PID controllers for the sinusoidal and square reference 

trajectories are presented in Table 3. As seen in Table 3, the 

SM-I controller provides the smallest ball position IAE 

compared with the other controllers. This indicated that the 

SM-I controller follows the three reference trajectories with 

the smallest divergence compared with the other controllers.  

As a measurement for control effort, many researchers have 

introduced performance indices such as the Integral absolute 

controller output (IACO) and the peak value of the controller 

output. When these performance indices are utilized in this 

work, it is noticed that the LQR controller offers the smallest 

control effort although it fails to track the reference trajectories 

without a large steady-state error. Therefore, it may be 

unreasonable to say that LQR offers the best control effort. 

Consequently, it is required to introduce a performance index 

that is not only constructed from the controller output. 

The Integral Absolute Controller Output-weighted Error 

(IACOE) is a newly introduced performance index in this 

paper to evaluate both the control performance and control 

effort. IACOE (second test function) considers taking the area 

under the curve produced from the instantaneous 

multiplication of the controller output and the error resulting 

from the absolute difference between the reference trajectory 

and actual ball position as follows: 
 

∫ |𝑒(𝑡)𝑢(𝑡)|𝑑𝑡
𝑡2

𝑡1

 

 

Table 4 presents the numerical values of the IACOE of the 

SM-I, SM, LQR, and PID controllers for the sinusoidal and 

square reference trajectories. The results in Table 4 provide the 

superiority of the SM-I controller over the SM, LQR, and PID 

controllers. LQR shows the worst performance. The SM 

controller is not performing well which shows the benefit of 

adding an integral part to construct the proposed controller. 

The PID controller has successfully followed the three 

reference trajectories with an acceptable controller effort but it 

needs to be more improved. 

 

 

7. CONCLUSIONS 
 

The design of a robust sliding mode controller with an 

integral term to control the MLS subjected to parameter 

uncertainties was presented in this paper. The proposed 

controller’s stability was guaranteed by using the Lyapunov 

method. The parameters of the MLS were tuned using EO to 

minimize the ITSE cost function, which led to minimize the 

tracking error and improve the robustness of the system. 

Simulation results verified the effectiveness of the proposed 

control scheme. The SM-I controller was compared with the 

SM, LQR, and PID controllers for three reference trajectories 

tracking of the MLS with and without a perturbation in the 

MLS parameters. The SM-I controller outperformed the other 

controllers despite the 30% change in the MLS parameters. As 

future work, the real MLS device, presented in Figure 1, will 

be used to validate the performance of the proposed controller. 
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