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ABSTRACT. More than hundred algorithms were developed to infer Gene Regulatory Networks 

(GRN) describing relations between genes. GRN construction has been a field of interest to 

researchers since the beginning of the current century. Many competitions were held to 

encourage the development of GRN inference algorithms, such competitions offer synthetic 

data to enable the validation of proposed algorithms. A GRN is constructed from an adjacency 

matrix which contains relations between genes. The developers of many of the GRN inference 

algorithms set a threshold on the adjacency matrix to construct GRN based on high gene-gene 

relation weights. This threshold strategy was followed in previous studies to increase the 

accuracy of any algorithm but yet based on no well-known rule. A different perspective here is 

to compare different GRN inference algorithms without setting any threshold. Comparison in 

this work is among different GRN inference algorithms by implementing all algorithms with no 

threshold on values of adjacency matrices: Differential Equation methods (TSNI), Granger 

Causality, GP4GRN, GENIE3, NIMEFI (SVR), and PLSNET. Another comparison between 

different distance metric equations to create adjacency matrix is also studied in an attempt to 

construct GRN. GP4GRN and GENIE3 participate in producing best results for dream4 

InSilico_Size10 while GENIE3 produce best results for all networks of dream4 

InSilico_Size100. 

RÉSUMÉ. Plus de cent algorithmes ont été développés pour déduire des réseaux de régulation 

de gènes (GRN) décrivant les relations entre gènes. La construction de GRN est un domaine 

d’intérêt pour les chercheurs depuis le début du siècle actuel. De nombreux concours ont été 

organisés pour encourager le développement d'algorithmes d'inférence GRN. Ces concours 

offrent des données synthétiques pour permettre la validation des algorithmes proposés. Un 

GRN est construit à partir d'une matrice d'adjacence qui contient les relations entre les gènes. 

Les développeurs de nombreux algorithmes d'inférence GRN ont défini un seuil pour la matrice 

d'adjacence afin de construire un GRN basé sur des poids de relation gène-gène élevés. Cette 

stratégie de seuil a été suivie dans des études précédentes pour augmenter la précision de tout 

algorithme, sans pour autant s'appuyer sur aucune règle bien connue. Une autre perspective 

consiste à comparer différents algorithmes d'inférence GRN sans définir de seuil. La 

comparaison dans ce travail est faite entre différents algorithmes d'inférence GRN en 

implémentant tous les algorithmes sans seuil sur les valeurs des matrices d'adjacence: 
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Méthodes d'équation différentielle (TSNI), causalité de Granger, GP4GRN, GENIE3, NIMEFI 

(SVR) et PLSNET. Une autre comparaison entre différentes équations métriques de distance 

pour créer une matrice d'adjacence est également étudiée dans le but de construire un GRN. 

GP4GRN et GENIE3 contribuent à produire les meilleurs résultats pour dream4 

InSilico_Size10, tandis que GENIE3 fournit les meilleurs résultats pour tous les réseaux de 

dream4 InSilico_Size100. 
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1. Introduction 

Interference of Gene Regulatory Network (GRN) is essential to understand genetic 

changes in the cell. This makes GRN an important phase in designing drugs and 

vaccines in the medical field. GRN is treated in computations as a matrix (adjacency 

matrix). This adjacency matrix has zero diagonal if effect of each gene on itself is 

neglected. The elements of the adjacency matrix are the weights of the links 

connecting genes in a sparse network. A sparse network (GRN) can be generated as 

suggested by many researchers from the fully connected network by removing all 

edges below a definite threshold. Thus, most important links in gene regulatory sparse 

network can be obtained by increasing this threshold. Although threshold makes 

comparing different methods of inferring GRN subjected to bias.   

Thinking of how to represent relation between genes, scientists in early researches 

used correlation and its types as Partial correlation (PCIT), (Reverter & Chan, 2008), 

mutual information, (Meyer et al., 2008), Boolean Network, (Akutsu et al., 1998; 

Thomas, 1991), Bayesian network, (Jing et al., 2010), Dynamic Bayesian Network, 

(Yghoobi et al., 2012) and network based on Linear Differential Equations, (Bansal 

et al., 2006). 

Later, GENIE3 and other algorithms have been developed since 2010, where it 

achieved improvement in GRN inference results. GENIE3 algorithm which 

decomposes GRN of N genes into N different regression problems. Each subproblem 

is solved by tree based ensemble method, (Huynh-Thu et al., 2010), ENN et al. 

gorithm is improvement of GENIE3 algorithm combines Gradient Boosting with 

regression Stumps to select subset of edges for building global GRN, (Sławek & 

Arodź, 2013), NIMEFI algorithm solve P subproblems of GRN by Support Vector 

Regression (E-SVR) or Ensemble Elastic Net, (Ruyssinck et al., 2014), PLSN et al. 

gorithm which use Partial least squares (PLS) based feature selection method to solve 

P subproblems, (Guo et al., 2016) nonlinear correlation coefficient derived from two-

way analysis of variance(ANOVAs) between transcription factor TF and target gene 

TG,  (Küffner et al., 2012).  Network Deconvolution used to improve results of 

inference of other methods, (Feizi et al., 2013).  Models depended on computational 

swarm intelligence (Particle Swarm Optimization PSO (Kesavan et al., 2016; Liang 

et al., 2016) or Ant Colony Optimization ACO) used also to infer GRN, 

(Kentzoglanakis & Poole, 2012). There are many methods to infer GRN because 

inferring GRN is still a field of research. DREAM Challenges (DREAM3, DREAM4 
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and DREAM5) in Synapse site give us data which can be used for evaluation any 

method, computation the accuracy of this method and comparing its results with other 

methods results (Samee et al., 2012). In this paper comparison between algorithms 

will be according to the area under the ROC curve only. 

DREAM4 competition time series Insilco 10 and 100 gene used here to compare 

some algorithms based on the corresponding GRN design as a whole without ordering 

of links in network and taking a threshold. 

2. Materials and methods  

2.1. Dataset used in comparison 

InSilico_Size10 and InSilico_Size100 sub-challenges of DREAM4 were used in 

this comparison. Each sub-challenge consists of five networks. Here two files of each 

network were used. First file contains time series for genes and second file contain 

gold standard of network. In time series file, each simulation contains 21 time point 

(from t=0 to t=1000). At t=0 perturbation is applied time points show how the network 

response to perturbation until t=500, after t=500 perturbation is removed until t=1000 

time points show how network relaxes. This simulation is repeated 5 times for 

network of size 10 genes (InSilico_Size10) and repeated 10 times for network of size 

100 genes (InSilico_Size100), 

(http://wiki.c2b2.columbia.edu/dream/data/DREAM4.). 

2.2. Distance metric equations to represent relation between genes 

Statistical method to compute distance (used as relation to get adjacency matrix). 

After getting adjacency matrix gold standard of each network of DREAM4 is 

compared with adjacency matrix of each network. Area under the ROC curve is 

recorded of networks of DREAM4 InSilico_Size10 in table1 and DREAM4 

InSilico_Size100 in table2.  

Euclidean and Standard Euclidean Distances: The Euclidean distance between 

two vectors, G1 and G2, with N samples calculated as in (Deza & Deza, 2009):  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑ (𝐺1𝑖 − 𝐺2𝑖)
2𝑁

𝑖=1                                           (1) 

Usually Euclidean distances are computed from raw data not from standardized 

data. Standardization is essential to balance the contributions of the variables in the 

computation of distance when variables are on different measurement scales.  The 

Euclidean distance which computed on standardized variables is called the 

standardized Euclidean distance, (Greenacre & Primicerio, 2014). 

The city block distance between two point G1 and G2, with N samples is defined 

as: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ |𝐺1𝑖 − 𝐺2𝑖|𝑁
𝑖=1                                            (2) 
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The City block distance (also named by Manhattan distance) is explained if there 

are two points in XY plane. The City block distance is calculated as the distance in x 

plus the distance in y (McCune & Grace, 2002),  

Chebyshev distance Cyrus is calculated on a vector space where the distance 

between two vectors is the greatest of their differences along any coordinate 

dimension, and is defined between two point G1 and G2, with N samples or 

dimensions as: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = max
𝑖

(|𝐺1𝑖 − 𝐺2𝑖|) = lim
𝑘→∞

(∑ |𝐺1𝑖 − 𝐺2𝑖|
𝑘𝑁

𝑖=1 )
1/𝑘

            (3) 

Cosine Distance: is one minus the cosine of the included angle between two 

vectors. The cosine distances between the vector G1 and G2 are defined as follows: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 −
𝐺1𝐺2́

√(𝐺1𝐺1́ )(𝐺2𝐺2́ )
                                            (4) 

Correlation Distance: correlation distance is measuring of the dependence 

between random vectors (Székely et al., 2007). Given an M by N data matrix G, which 

is treated as m (1-by-n) row vectors G1, G2, ..., Gm, the correlation distances between 

the vector G1 and G2 are defined, (Lian et al., 2017):  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 −
(𝐺1−𝐺1̅̅ ̅̅ )(𝐺2−𝐺2̅̅ ̅̅ )́

√(𝐺1−𝐺1̅̅ ̅̅ )(𝐺1−𝐺1̅̅ ̅̅ )́ √(𝐺2−𝐺2̅̅ ̅̅ )(𝐺2−𝐺2̅̅ ̅̅ )́
                       (5) 

Table 1. Distance between each pair of genes of dream4 InSilico_Size10 gene as 

adjacency matrix and its ROC  

Distance type Net1 Net2 Net3 Net4 Net5 

Euclidean 0.4914 0.5669643 0.5024 0.55924 0.55303 

Standard Euclidean 0.4914 0.581845 0.5039 0.575155 0.55114 

cityblock 0.5259 0.56399 0.51804 0.56101 0.55303 

chebychev 0.4694 0.583333 0.46471 0.515031 0.5322 

cosine 0.4051 0.6369 0.63569 0.6088 0.5701 

correlation 0.4145 0.50893 0.6200 0.564545 0.6572 

spearman 0.4051 0.529762 0.671765 0.62467 0.6705 

 
The Spearman correlation assesses monotonic relationships while Pearson's 

correlation assesses linear relationships. Spearman's correlation between two 

variables is equal to the Pearson correlation between the rank values of those two 

variables. Spearman's correlation (whether linear or not). A perfect Spearman 

correlation of +1 or −1 occurs when each of the variables is a perfect monotone 

function of the other If there are no repeated data values. distance of Spearman=1- the 

Spearman's correlation. 
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Table 2. Distance between each pair of of dream4 InSilico_Size100 gene as 

adjacency matrix and its ROC 

Distance type Net1 Net2 Net3 Net4 Net5 

Euclidean 0.55524 0.504 0.47235 0.4848 0.46046 

Standard Euclidean 0.555 0.5036 0.47190 0.48476 0.4600 

cityblock 0.5594 0.5044 0.47655 0.4883 0.46779 

chebychev 0.5233 0.5055 0.469834 0.4754 0.45777 

cosine 0.424 0.5098 0.4920 0.4770 0.5073 

correlation 0.493 0.4706 0.5394 0.52664 0.5063 

spearman 0.492 0.4708 0.5356 0.526385 0.4973 

2.3. Algorithms used to infer GRN 

GENIE3: 

GENIE3 decomposes the inference of GRN into different regression problems, in 

each there is one only (target gene) is predicted from all the other genes (input genes), 

GENIE3 is built on tree-based ensemble methods Random Forests or Extra-Trees. 

Putative regulatory links are then aggregated over all genes to provide a ranking of 

interactions from which the whole network is reconstructed. 

NIMEFI: 

NIMEFI (Network Inference using Multiple Ensemble Feature Importance 

algorithms). NIMEFI algorithm decomposes the inference of GRN into separate 

regression problems for each gene. NIMEFI use support vector regression, the elastic 

net, symbolic regression and compare it with random forest regression used in 

GENIE3 algorithm. NIMEFI use ensemble feature selection (EFS) method. 

PLSNET: 

PLSNET is a new ensemble GRN inference method use Partial least squares 

basedfeatureselectionalgorithmtakingrandompotentialregulatorygenes. PLSNET 

decomposes the GRN inference problem with N genes into N subproblems and solves 

each of the subproblems by using Partial least squares (PLS) based feature selection 

algorithm, (Guo et al., 2016).  

TSNI (Time Series Network Identification) 

It uses ordinary differential equation to represent relation of gene with other genes 

and other perturbation. It uses smoothed interpolating for increasing the number of 

samples by using piecewise cubicspline interpolation. Finally TSNI apply Principle 

Component Analysis (PCA) to reduce dimensionality of the problem and solve the 

equation (Bansal et al., 2006). 
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Granger causal connectivity analysis (GCCA) 

According to Granger causality, a variable G1 ‘Granger causes’ a variable G2 if 

information of G1 in the past helps in predicting the future of G2 with better accuracy 

than is possible when considering only information of G2 in the past only (Granger, 

1969) the temporal dynamics of two time series G1 (t) and G2 (t) (both of length T) 

is described by a bivariate autoregressive model: 

𝐺1(𝑡) = ∑ 𝐴11,𝑗𝐺1(𝑡– 𝑗)𝑝
𝑗=1 + ∑ 𝐴12,𝑗𝐺2(𝑡– 𝑗)𝑝

𝑗=1 +  𝜀1(𝑡)                (6) 

G2(t) = ∑ A21,jG1(t –  j)
p
j=1  + ∑ A22,jG2(t –  j)

p
j=1  +  ε2(t)               (7) 

If the variance of ε1 (or ε2) is reduced by the inclusion of the G2 (or G1) terms in 

the first (or second) equation, then it is said that G2 (or G1) Granger causes G1 (or 

G2). 

If there are more than two variables then multivariate autoregressive (MVAR) 

models will be used. G2 Granger causes G1 if knowing G2 reduces the variance in 

G1’s prediction error ε1 when all other variables G3……Gn are also included in the 

regression model (Seth, 2010). 

GP4GRN: 

It dependS on using of Bayesian analysis, ordinary differential equations (ODEs) 

and non-parametric Gaussian process modeling. The main differences between this 

method and other methods based on ODE as TSNI, (Bansal et al., 2006) and 

Inferelator, (Bonneau, 2006), are nonparametric modeling and Bayesian analysis. 

Bayesian approach is suitable for uncertainty of measurements and assuming 

normally distributed noise (Äijö & Lähdesmäki, 2009) 

Table 3. AUROC curve of some algorithms for DREAM4 Insilco 10 genes 

Algorithms Network1 Network2 Network3 Network4 Network5 

GEINE3 0.8384 0.6726 0.7184 0.730 0.83 

NIMEFI (SVR) 0.5671   0.5372 0.5388 0.4235 0.5483 

TSNI (average of five 

simulation) 

0.6659 0.4807 0.6784 0.5464 0.4924 

Granger causality 

(average of five 

simulation) 

0.5333 0.5574 0.4987 0.3876 0.2938 

Granger causality  0.4836 0.4130 0.3724 0.4505 0.2853 

GP4GRN 0.8873 0.6994 0.7161 0.7165 0.7325 
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Table 4. AUROC curve of some algorithms for dream4 Insilco 100 gene 

Algorithms Network1 Network2 Network3 Network4 Network5 

GEINE3 0.762 0.689 0.744 0.719 0.78 

NIMEFI (SVR) 0.4696   0.5272 0.5809 0.5609 0.5514 

PLSNET 0.7118 0.6048 0.6505 0.6787 0.67386 

TSNI 0.6445 0.5320 0.5325 0.5320 0.5078 

Granger causality  0.5578 0.5405 0.4853 0.5188 0.5024 

3. Results and discussions 

After applying GRN inference algorithms on Dream4 InSilico_Size10: GP4GRN 

gave best results for network1 and network2, GENIE3 gave best results for network 

3, 4 and 5, while GENIE3 produce best results for all networks of dream4 

InSilico_Size100. 

In granger causality as a lot of other algorithms, the number of time points 

(samples) must be greater than the number of genes (unknowns variables). So, granger 

causality algorithm used all time samples (210) to calculate GRN of 100 genes of 

Dream4 competition data [InSilico_Size100].Results of all algorithms include all time 

samples (105 sample) of Dream4 InSilico_Size10 come from five simulations and 

(210 sample) for Dream4 InSilico_Size100 come from10simullation to calculate 

GRN directly  without dividing in simulations except in results of  TSNI and Granger 

causality of 10 genes algorithms which applied on each simulation and average is 

taken in results.  

Bold number represent highest accuracy algorithm in each network based on area 

under ROC curve, GP4GRN takes lot time to infer GRN of 100 gene, it takes 15 day 

to infer first network of DREAM 4 InSilico_Size100 and produce AUROC=0.685 

which less than GIENE 3. There are no results of PLSNET in DREAM4 

InSilico_Size10 because it is designed for large scale networks.  

All algorithms gave us adjacency matrix and ranked list except NIMEFI which 

gave us ranked list only. Here converting from ranked list results of NIMEFI to 

adjacency matrix has occurred without any truncation limit, this process takes some 

efforts but it is essential in comparison of algorithms without any threshold. 

Correlation distance in table 1and2 is different with person correlation in table 

3and4 as shown in previous explanation and equations.  

4. Conclusion 

 A new idea of distance metric equation failed in GRN inference because it cannot 

compete with GIENE3, PLSNET and GP4GRN in inferring GRN. GIENE3 recorded 
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highest AUROC with DREAM 4 InSilico_Size100. Whereas, GP4GRN and GIENE3 

recorded highest AUROC with DREAM 4 InSilico_Size10. Although NIMEFI (SVR) 

was introduced as improving of GIENE3 but it gave bad results with DREAM4. 

Although PLSNET gave best result with DREAM5 which has the largest number of 

genes but it gave bad results with DREAM4. Applying algorithms draw us to conclude 

that GP4GRN is suitable for small networks while PLSNET is best for large networks. 
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