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ABSTRACT. The onset of bioconvection contains both nanoparticles and gyrotactic 

microorganisms confined within a Hele-Shaw cell is investigated by incorporating the effects 

of Brownian diffusion and thermophoresis by using the zero flux nanoparticle boundary 

conditions. The linear analysis is based on the normal mode technique and the resulting 

equations are solved numerically by the higher order Galerkin weighted Residual method. The 

critical Hele-Shaw Rayleigh number is presented in terms of bioconvection parameters, 

nanofluid parameters, and Hele-Shaw parameters. It is found that the highly promoted 

disturbance in the presence of gyrotactic microorganisms enhances heat transfer in nanofluids. 

Gyrotactic microorganisms enhance the bioconvection and this effect is larger if both the 

concentration and average speed of microorganisms have larger values. Wavenumber is the 

function of Hele-Shaw Rayleigh number, bioconvection Péclet number and Gyrotaxis number. 

A comparison is also made between the different bioconvection Péclet number and 

bioconvection Hele-Shaw number. The present study may found applications in bio-convection 

nanotechnological devices. 

RÉSUMÉ. Le début de la bioconvection contenant à la fois des nanoparticules et des micro-

organismes gyrotactiques confinés dans une cellule de Hele-Shaw est étudié en incorporant les 

effets de la diffusion brownienne et de la thermophorèse en utilisant les conditions limites de 

flux nul nanoparticule. L'analyse linéaire est basée sur la technique du mode normal et les 

équations résultantes sont résolues numériquement par la méthode résiduelle pondérée de 

Galerkin d'ordre supérieur. Le nombre critique de Hele-Shaw Rayleigh est présenté en termes 

de paramètres de bioconvection, de paramètres de nanofluide et de paramètres de Hele-Shaw. 

Il est constaté que la perturbation hautement valorisée en présence de micro-organismes 

gyrotactiques améliore le transfert thermique dans les nanofluides. Les micro-organismes 

gyrotactiques améliorent la bioconvection et cet effet est plus important si la concentration et 

la vitesse moyenne des micro-organismes ont des valeurs plus grandes. Le numéro d'onde est 

la fonction du numéro de Hele-Shaw Rayleigh, du numéro de Péclet de bioconvection et du 

numéro de Gyrotaxis. Une comparaison est également faite entre les différents nombres de 
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Péclet de bioconvection et nombres de Hele-Shaw de bioconvection. La présente étude pourrait 

être appliquée dans les appareils nanotechnologiques à bioconvection. 
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1. Introduction 

Bioconvection is a phenomenon that occurs when convection instability is induced 

by self-propelled up swimming microorganisms that are denser than cell fluid. Due to 

up-swimming, the microorganisms involved; such as gyrotactic microorganisms, like 

algae, tend to focus on the upper portion of the fluid layer thus causing a top-heavy 

density stratification that becomes unstable. Platt (1961) introduced the term 

bioconvection and studied the moving polygonal patterns in dense cultures of 

Tetrahymena. Childress, Levadowsky, and Spiegel, (1975) studied the linear stability 

of the stratified layer when the virtual thickness is greater compared with the depth of 

the subsurface layer. Pedley, Hill, and Kessler (1988) introduced the theoretical bio-

convective model for the gyrotactic microorganism.  Later, Hill, Pedley, and Kessler 

(1989) discussed the overstability and oscillatory modes of a suspension of 

microorganisms. Bioconvection modes for different types of micro-organisms have 

been reported in a large number of articles Hillesden and Pedley (1996), Hill and 

Häder (1996), Bees and Hill (1997), Ghorai and Hill (1999). Kuznetsov and 

Avramenko (2002) gave the numerical results which show macroscopic fluid 

circulation is induced due to large permeability. Later, Kuznetsov and Avramenko 

(2003) investigated the behavior of gyrotaxis and found that the eccentricity of the 

cells depends on Darcy number, while rates of cell deposition and declogging do not 

depend on Darcy number. The correlation between the temperature gradient in the 

fluid layer and the density difference induced by the up swimming microorganisms 

was studied by Kuznetsov (2006).  

Choi (1995) defined a new class of fluid which consists of nano-sized particles 

and the base fluid, known as a nanofluid. Das et al. (2003) considered 1–4% alumina 

nanoparticles of less than 10 nm in size and achieved a 10-30% increment in thermal 

conductivity. Incorporating the effect of thermophoresis and Brownian motion, 

Buongiorno (2006) developed a mathematical model for nanofluid. Using Buongiorno 

model, Tzou (2008) and Nield and Kuznetsov (2009, 2010) investigated the thermal 

Rayleigh instability of nanofluid. This model has also been used by Nield and 

Kuznetsov (2010) who studied the effect of double diffusion; Yadav et al. (2015) who 

studied the effect of viscosity variation and thermal conductivity; Saini and Sharma 

(2017) who studied the thermal instability in Rivlin-Erickson Elastico-Viscous 

nanofluid with the effect of throughflow. These referred papers provide the numerical 

range for parameters and present mathematical formulation of the conservation 

equations. Baehr and Stephan (2006) were perhaps the first who gave the concept of 
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physically realistic boundary conditions (zero nanoparticle flux on the boundaries). 

After the work of Baehr and Stephan (2006), Nield and Kuznetsov (2014a, 2014b) 

revised their work by using more realistic boundary conditions. Due to the vast range 

of applications, nanofluids have attracted the attention of many researchers in the 

recent past. They are widely used in engineering (such as cooling, microheat pipes, 

microchannel heat sinks, microreactors), biomedical (such as cancer therapy, 

sterilization of medical suspensions), process industries, polymer coatings, aerospace 

tribology, microfluid delivery devices etc (Ebrahimi, Sabbaghzadeh, Lajevardi, and 

Hadi, 2010; Fan, Chen, Ding, Plucinski, and Lapkin, 2010).  

Kuznetsov (2010) developed a new theory which incorporates the Brownian 

motion and thermophoresis in nanofluid bioconvection. The top-heavy distribution of 

nanoparticles lowers the Rayleigh number, while bottom heavy distribution increases 

the Rayleigh number. Kuznetsov (2011) observed that adding the microorganisms to 

a nanofluid increase the stability of a suspension. On the other hand, (Tham, Nazar, 

and Pop, 2013) considered the mixed convection flow over a solid field and found 

that gyrotactic has a strong influence of the velocity of microorganisms transport rate. 

Nanofluid with bioconvection may find useful applications in different bio-

microsystems, such as; enzyme biosensors, chip-size micro-devices for evaluating 

nanoparticle toxicity, evaluating toxic and inflammatory responses of the lung to silica 

nanoparticles, mass transport enhancement and mixing etc. (Huh et al. 2010; Sokolov, 

Goldstein, Feldchtein, and Aranson 2009). 

The first detailed observations of Hele-Shaw convection were carried out in Hele-

Shaw (1898). Wooding (1960) investigated the instability in vertical Hele-Shaw cell 

of viscous liquid.  Hartline and Lister (1977) discussed thermal convection in Hele-

Shaw cell and found that the system of equations is identical to the equations of a fluid 

flow through porous media. (Kvernvold, 1979; Aniss, Souhar, and Brancher, 1995; 

Yadav and Kim, 2015) studied the problem related to mechanics approximated by 

Hele-Shaw cell. The present study focuses on analytical and numerical investigations 

of the effect of gyrotactic microorganisms confined in a Hele-Shaw cell with realistic 

boundary conditions. The present study found applications bio-convection 

nanotechnological devices. 

2. Problem formulation  

We consider a horizontal nanofluid layer with gyrotactic microorganism confined 

between in the Y-direction by vertical impermeable boundaries at Y*=0 and Y*=b<<d 

(see Fig.1). We take temperatures T*
0 and T*

d (T*
0>T*

d) at the lower and upper 

boundary respectively.  The base fluid is water so that microorganisms can stay alive 

in it. Nanoparticles have no effect on the velocity and direction of gyrotactic 

microorganisms. Suspension of nanoparticles is assumed to be dilute, stable and do 

not to agglomerate. We use the Brinkman model and the Oberbeck–Boussinesq 

approximations are used. 

The dimensionless governing equations for a water-based nanofluid containing 

nanoparticles and gyrotactic microorganisms within Hele-Shaw cell approximation 
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are written below (Pedley et al., 1988; Nield and Kuznetsov, 2009; Yadav and Lee, 

2016). 

                                                           (1) 

 
  (2) 

                    (3) 

                                  (4) 

                                      (5) 

where v is the dimensionless velocity, �̂�  is the unit vector indicating swimming 

direction of microorganism, �̂� is the vertically upward unit vector. On the boundaries, 

the temperature is assumed to be constant and the nanoparticles flux is assumed to be 

zero. The dimensionless boundary conditions are: 

         (6a) 

         (6b) 

Dimensionless variables in the equations are as follows: 

   (7) 

Here t* is the time, αm is the thermal diffusivity of nanofluid, p* is the pressure, 

K=b2/12 is the permeability of the Hele-Shaw cell, μ is the viscosity, V* is the velocity, 

T* is the temperature of nanofluid, ϕ* is the nanoparticles volume fraction, n* is the 

microorganism concentration, θ is the average volume of microorganism, (ρc)f is the 

volumetric heat capacity for the nanofluid, km is the  thermal conductivity of nanofluid. 
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Figure 1. Schematic diagram of the problem 

The dimensionless parameters in Eqs. (1)-(6) namely, the Prandtl number Pr, Hele-

Shaw number HS, Hele-Shaw Rayleigh number RH, basic density Rayleigh number 

Rm, bioconvection Rayleigh number Rb, nanoparticle Rayleigh number Rn, Lewis 

number Le, bioconvection Lewis number Lb, bioconvection Péclet number Qb and 

modified diffusivity Ratio NB, are defined as 

    (8) 

where g is the gravity vector, βT is the volumetric thermal expansion coefficient,  ρp is 

density of nanoparticles, 𝜌𝑓0
is the density of the nanofluid, (ρc)p is the volumetric 

heat capacity for the nanoparticles, (ρc)f is the volumetric heat capacity for the 

nanofluid, Δρ=ρcell-ρf is the difference between cell density and a fluid density, Dm is 

the diffusivity of microorganism, DB is the Brownian diffusion coefficient, 𝑊𝑐�̂� is the 

vector of microorganism’s average swimming velocity relative to the nanofluid (Wc 

is assumed to be constant), DT is the thermophoresis diffusion coefficient. 

The basic state of nanofluid is assumed to be time-independent and is described 

by 

               (9) 
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                          (10) 

                                           (11) 

                                                     (12) 

Eq. (12) is integrated, then the solution of  is obtained 

                                                (13) 

Here  is the integration constant is given by 

                                                      (14) 

Where is the average dimensionless concentration of microorganisms in 

the nanofluid layer. On solving the Eqs. (10)-(11), the solutions are  

 .                                         (15) 

Considering, in the usual manner, Perturbations are superimposed on the basic 

solution, as follows:  

                    (16) 

Substituting Eq. (16) in Eqs. (10)-(12) and utilizing Eq. (15) and neglecting the 

product of prime quantities 
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                               (20) 

                         (21) 

Applying the procedure outlined in Pedley, Hill, and Kessler (1988) for average 

swimming direction vector, the perturbation of the swimming direction of a gyrotactic 

microorganism can be expressed as  

     (22) 

In Eq. (22), 𝛼0  is the measure of cell eccentricity, G=BD/H2 is the Gyrotaxis 

number. 

Eliminating the horizontal components of velocity and pressure Eqs. (17)-(18) are 

reduced to the following equation. 

             (23) 
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                           (26) 

                          (27) 

          (28) 

         (29) 

where D=d/dz and, 𝑎 = √𝑘𝑥
2 + 𝑘𝑦

2 isdimensionless horizontal wave number. 

3. Solution of stability problem 

3.1. Single-term galerkin method 

The system of equations (26)-(29) along with thermal, nanoparticle volume 

fraction, microorganism concentration conditions given by Eq. (24) are solved by 

using the single-term Galerkin-type weighted residuals method. Accordingly 

and N are taken as: 
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The corresponding critical wave number is obtained as 

(32) 

where, 

 

Eq. (32) shows that critical wave number depend on bioconvection Rayleigh 

number, bioconvection Péclet number, Gyrotaxis number, and Hele-Shaw number. 
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It is clear from the Eqs. (32)-(33) that the Hele-Shaw number has a stabilizing 

effect and nanofluid parameters (𝐿𝑒 , 𝑁𝐴, 𝑅𝑛)  have a destabilizing effect on the 

bioconvection. The behavior of bioconvection Péclet number and bioconvection Hele-

Shaw Rayleigh number cannot be studied directly. To simplify the expression, 

assuming that the minimum of Hele-Shaw Rayleigh number occurs approximately at 

3.12 and the value of a Gyrotactic number is taken as G = 0.03. Under these values, 

Eqs. (34)-(35) simplify as follows 

4

,

=   0.22(Q 0.1), 2.55(Q 1), 1.04 10 (Q 10)H

b b b

b H

R

R


− = − = −  =


   (37) 

It shows that bioconvection Péclet number has a destabilizing effect corresponding 

to all swimmers and this effect is more predominant for fast swimmers ( 10)bQ = .

4

,

=   0.22(Q 0.1), 2.55(Q 1), 1.04 10 (Q 10)H

b b b

b H

R

R


− = − = −  =


   (38) 

It is observed that for all three values of bioconvection Péclet number, the 

bioconvection Rayleigh number has a destabilizing effect. 

3.2. Revisited non-oscillatory instability: Six-term Galerkin weighted method 

Using the single-term Galerkin weighted method it is not possible to obtain exact 

analytical solutions, therefore we using Six-term Galerkin weighted method. On using 
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six-term Galerkin approximation, we have obtained a system of twenty-four linear 

algebraic equations in the twenty-four unknowns. This system of homogeneous 

algebraic equations can have a nontrivial solution if and only if   

                                             (39)   
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Using the six-term Galerkin weighted residual method for the case of regular fluid 

(Rn=0, Rb=0) and Da=∞, Rayleigh number attains its minimum value of 1707.76 at 

a=3.116. This critical value of Rayleigh number is same as obtained by Rayleigh-

Bernard Problem (Chandrasekhar, 1961). In a regular fluid for the cases, Da=0.1, and 

Da=1 Rayleigh number attains its minimum values of 215.67, 1751.87 at a=3.15, and 

a=3.12. This critical values of Rayleigh number same as the value obtained by Guo 

and Kaloni (1995). Thus the use of a six-term Galerkin weighted residual method 

reduces the error by more than a factor of two. 

To see the effect of swimming speed of gyrotactic microorganisms on the onset of 

bioconvection, the values of RH,c for different values of bioconvection Rayleigh 

2 2
1 1 1 6

2 2
6 1 6 6

2 2
1 1 1 6

2 2
6 1 6 6

,

,

H H

H H

nH nH

nH nH

R a W R a W

G

R a W R a W

R a W R a W

H

R a W R a W

  −    −  
 

=  
 
 −    −   

  −    −  
 

=  
 
 −    −   

2 2 2 4 2 2 2 2 4 2( 2 ) ( ) ( 2 ) ( )1 1 1 1 1 1 1 1 1 1 1 6 1 6 1 6 1 6 1 6

2 2 2 4 2 2 2 2 4 2( 2 ) ( ) ( 2 ) ( )6 1 6 1 6 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6

H D W D W a DW DW a W W DW DW a W W H D W D W a DW DW a W W DW DW a W Ws s

I

H D W D W a DW DW a W W DW DW a W W H D W D W a DW DW a W W DW DW a W Ws s

  − + − −   − + − − 

=

 − + − −   − + − − 






 

2 2
1 1 1 6

2 2
6 1 6 6

,

bH bH

b b

bH bH

b b

R R
a W N a W N

L v L v

J

R R
a W N a W N

L v L v

 
 −   −  
 
 =
 
  −   − 
 
 

2 2 2 2
1 1 1 1 1 6 1 6

2 2 2 2
6 1 6 1 6 6 6 6

2 2
1 1 1 1 1 1 1 6 1 6 1 6

6

((1 ) ) ((1 ) )

((1 ) ) ((1 ) )

1 1
( ) ( )

1
(

Qz Qz

Qz Qz

b b

b

e Qv Ga N W GN D W e Qv Ga N W GN D W

K

e Qv Ga N W GN D W e Qv Ga N W GN D W

DN DN QN N a N N DN DN QN N a N N
L L

L

DN DN
L

  + −   + − 
 

=  
 
 + −   + −  

 − − −   − − − 

=

 − 2 2
1 6 1 6 1 6 6 6 6 6 6

1
) ( )

b

QN N a N N DN DN QN N a N N
L

 
 
 
 
 
 − −   − − − 
  



Numerical study of bioconvection saturated     585 

number and Hele-Shaw number are compared in Table 1. It is observed that faster 

swimming bacterial species have the more destabilizing effect than the slowly 

swimming bacterial species.  

4. Results and discussion 

Based on the data presented in Pedley, Hill, and Kessler (1988), Guo and Kaloni 

(1995), Buongiorno (2006), the following values of the parameter for the alumina-

water nanofluid are utilized:  

 

We have fixed the parameters as:𝐿𝑒 = 500, 𝐿𝑏 = 4, 𝑄𝑏 = 3.0, 𝑅𝑛 = 1, 𝑅𝑏 = 3.0, 
𝑁𝐴 = 2, 𝑁𝐵 = 0.01, 𝐻𝑠 = 0.9. The values of bQ  are in the range between 0.1 to 10. 

In Fig.2, the effect of bioconvection Rayleigh number on Hele-Shaw Rayleigh number 

is analyzed graphically with respect to (a) 𝑄𝑏 = 0.1 (b) 𝑄𝑏 = 1 (c)𝑄𝑏 = 10. Hele-

Shaw Rayleigh number attains its minimum value at a = 3.12 in all cases. The critical 

Hele-Shaw Rayleigh number decreases with increase in the bioconvection Rayleigh 

number, hence its effect is to accelerate the onset of bioconvection. This result is 

expected from the physical point of view also because an increase in bioconvection 

Rayleigh number enhances the concentration of gyrotactic microorganisms at the top 

and develops top-heavy density stratification. From Figs. (2a)-(2c) it is also found that 

a bioconvection Péclet number accelerates the onset of bioconvection. Fast swimmers 

produce stronger disturbance, it thus facilitates the development of bioconvection 

resulting in a lower Rayleigh number at a larger value of bioconvection Péclet number.  

 

Figure 2(a). Variation of 𝑹𝑯,𝒄 with 𝒂𝒄 for slow swimmers 
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Figure 2(b). Variation of 𝑹𝑯,𝒄 with 𝒂𝒄 for intermediate swimmers 

 

Figure 2(c). Variation of 𝑹𝑯,𝒄 with 𝒂𝒄 for fast swimmers  

 

Figure 3. Variation of critical Hele-Shaw Rayleigh number with nanoparticle 

Rayleigh number for different values of Lewis number 
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Figure 4. Variation of critical Hele-Shaw Rayleigh number with wave number for 

different values of Hele-Shaw number 

Fig. 3 shows the variations of 𝑅𝐻when𝐿𝑒 = 500,1000,1500. It is observed that 

critical Hele-Shaw Rayleigh number decreases with increasing value of Lewis number. 

Lewis number reduces the mass diffusivity of the nanofluid which increases the 

nanoparticle volume fraction and subsequently increases the amount of heat transfer. 

Thus, Lewis number accelerates the onset of bioconvection. Nanoparticle Rayleigh 

number accelerate the onset of bioconvection, this result is expected from a physical 

point of view also, because an increase in a volumetric fraction increases the Brownian 

motion of nanoparticles which produce a destabilizing effect, as shown in Fig. 3. 

Fig. 4 shows the variations of 𝑅𝐻  when 𝐻𝑆 = 0.01,0.1,1. Hele-Shaw Rayleigh 

number increases with increasing values of Hele-Shaw number. This result is 

expected physically because an increase in permeability of the Hele-Shaw cell, 

increase the width of the Hele-Shaw cell, which slows down forming of bioconvection 

pattern. Therefore, Hele-Shaw number hinders the development of bioconvection. 

To see the effect of swimming speed of gyrotactic microorganisms on the onset of 

bioconvection, the values of 𝑅𝐻,𝑐 for different values of bioconvection Rayleigh 

number and Hele-Shaw number are compared in Table 1. It is observed that fast 

swimming bacterial species have a more destabilizing effect than the slow-swimming 

bacterial species. 

Table 1. Comparative results of the RH,c for Rb and Hs with G=0.03, Le=500, 

NA=2, and Rn=1 for the (i) Q=0.1, (ii) Q=1, and (iii) Q=10 using one-term and 

six-term weighted residual method 
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Table 2 shows that critical wave number increases with increasing values of 

bioconvection Péclet number, bioconvection Rayleigh number and Gyrotaxis number, 

thus higher concentration and swimming speed of microorganisms reduce the size of 

cells.  

Table 2. Numerical values of αc for different values of Rb, G, Qb using six-term 

Galerkin weighted residual method 

G Qb Rb αc 

0.01   3.116 

0.02   3.116 

0.03   3.117 

 0.1  3.113 

 3  3.116 

 10  3.125 

  1 3.118 

  20 3.124 

  30 3.127 

5. Conclusions 

In this study, we investigate the convection of nanofluid containing gyrotactic 

microorganism, occupying a vertically oriented Hele-Shaw cell. The main 

conclusions of the present study are as follows: 

One-term Six-term One-

term 

Six-

Term 

One-term Six-term 

0.

1 

10 -783.32 -785.18 -808.83 -809.78 -107781 -107764 

30 - 787.41 -789.81 -857.82 -860.63 -321781 -321724 

50 -791.33 -793.98 -908.80 -911.20 -535781 -535684 

1 10 791.57 750.99 768.17 727.17 -106227 -106227 

30 787.88 746.67 717.81 676.84 -320206 -320187 

50 783.93 742.87 666.43 625.07 -534206 -534147 

 

10 745.52 706.46 722.48 682.96 -106252 -106292 

30 741.98 702.64 671.41 631.46 -320252 -320292 

50 737.37 698.48 620.54 580.96 -534252 -534292 


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1. The Lewis number, bioconvection Rayleigh number accelerates the onset of 

bioconvection.  

2. The Hele-Shaw number hinders the development of bioconvection and 

stabilizes the onset of bioconvection. 

3. The nanoparticle Rayleigh number destabilizes the onset of convection. It may 

be quality to the fact that increasing the volume fraction of nanoparticles, increase the 

irregular random motion of the particle and subsequently increase the amount of heat 

transfer. 

4. The speed of microorganisms accelerates the onset of bioconvection. 

5. The critical wave number is insensitive to the variation of nanoparticle Hale-

Shaw Rayleigh number, Lewis number, modified particle density increment, and 

modified diffusivity ratio. It shows that Brownian motion and thermophoresis of 

nanoparticles do not change the cell size. 

6. The critical wave number is strongly dependent on Hele-Shaw Rayleigh number, 

Gyrotaxis number, and Bioconvection Péclet number.  

7. The gyrotactic microorganisms increase the critical wave number. Therefore in 

the presence of microorganisms the size of convection cells becomes smaller. 
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