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ABSTRACT. This paper establishes a prediction model for land and ocean temperature time series 

based on the improved autoregressive integrated moving average (ARIMA) model. First, the 

temperature time series was normalized and differenced before passing the stationarity test by 

augmented Dickey-Fuller (ADF) method, while the model parameters were determined by the 

autocorrelation coefficient and the partial autocorrelation coefficient. After that, the model was 

trained by the historical temperature data series, and applied to predict the temperatures in 

future. To validate the model, several experiments were conducted using the average land and 

ocean temperature data of Lawrence Berkeley National Laboratory. The results of the ARIMA-

based model were contrasted against those of the support vector regression (SVR) and the 

random forest (RF). The comparison shows that the ARIMA-based model was 10%~30% 

smaller than the SVR and the RF in the values of RMSE and MAE, and 1%~10% higher in the 

value of R2. This means our model outperformed the two benchmark algorithms. 

RÉSUMÉ. Cet article établit un modèle de prévision pour les séries temporelles de température 

des terres et des océans sur la base du modèle amélioré à moyenne mobile intégré et 

autorégressif (ARIMA). Premièrement, les séries temporelles de température ont été 

normalisées et différenciées avant de réussir le test de stationnarité par la méthode améliorée 

Dickey-Fuller (ADF), tandis que les paramètres du modèle ont été déterminés par le coefficient 

d’autocorrélation et le coefficient d’auto-corrélation partielle. Après cela, le modèle a été 

formé par la série de données historiques de température et appliqué pour prévoir les 

températures dans le futur. Pour valider le modèle, plusieurs expériences ont été menées à 

l'aide des données de température moyenne des terres et des océans du Laboratoire national 

Lawrence Berkeley. Les résultats du modèle basé sur ARIMA ont été comparés à ceux de la 

régression vectorielle (SVR) et de la forêt aléatoire (RF). La comparaison montre que le modèle 

basé sur ARIMA était inférieur de 10% à 30% aux valeurs de SVR et de RF dans les valeurs de 

RMSE et MAE, et supérieur de 1% à 10% dans la valeur de R2. Cela signifie que notre modèle 

a dépassé les deux algorithmes de référence. 

KEYWORDS: autoregressive integrated moving average (ARIMA) model, temperature prediction, 

time series analysis, difference, stationarity test. 

MOTS-CLÉS: modèle à moyenne mobile intégré et autorégressif (ARIMA), prévision de la 

température, analyse des séries temporelles, différence, test de stationnarité. 

DOI:10.3166/I2M.17.443-453 © 2018 Lavoisier 



444     I2M. Volume 17 – n° 3/2018 

 

1. Introduction 

The accurate measurement of land and ocean temperatures enable meteorologists 

to forge a better understanding of the meteorological changes and their influencing 

factors. For instance, the causes of steady-state temperature anomaly and the sea 

surface temperature departure in the western Pacific warm pool area can be derived 

inversely from the temperature time series (Mohammadi et al., 2015; Mesbah & 

Soroush, 2016). The key to these studies lies in the analysis and prediction of the 

temperature time series. The common methods for this research point include extreme 

learning machine (Xue & Forman, 2015), vector machine regression (Erdemir & 

Ayata, 2016), data assimilation (Xu et al., 2017), neural network (Korteby et al., 2016; 

Shirvani et al., 2015), and autoregressive integrated moving average (ARIMA) model 

(Das M., Ghosh, 2017; Wang et al., 2016). For time sequence analysis in the general 

sense, the existing strategies range from Bayesian network (Rheinwalt et al., 2016), 

echo state network (Tu and Yi, 2017), nonlinear time series (Grigorievskiy et al., 

2013), vector autoregression, multi-core extreme learning machines. Inspired by the 

previous research, this paper establishes an ARIMA-based prediction model for land 

and ocean temperatures according to the unique features of land and ocean 

temperature series. The model was proved effective and reliable through sufficient 

experiments. 

2. ARIMA-based prediction model 

For simplicity, the temperature time series is denoted as {xi} (1in) with xi being 

the temperature at time ti. 

2.1. Data preprocessing 

(1) Normalization 

All data were normalized at the beginning. The normalization limits the data to a 

certain scale, such that the algorithm can achieve desirable result. In addition, the 

normalization facilitates the performance evaluation of different algorithms, for 

different algorithms have the same data scale on different datasets. The normalization 

function can be expressed as: 

       

' min

max min

x x
x

x x

−
=

−
                                               (1) 

where x is the original value; xmin and xmax are the minimum and maximum values of 

the dataset, respectively; x’ is the normalized value. After normalization, all 

temperature data fall in [0~1]. 
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Figure 1. Average land temperature from 2011 to 2015 

(2) k-step difference 

Figure 1 shows an obvious periodicity in the data of the temperature series. The 

period is 12 months, exactly one year. 

To fully extract the periodic information and trend effect from the temperature 

series, the data in the original series were subjected to k-step difference (k＝12 for the 

period is 12 months): 

            i i k ix x x+ = −
                                                   (2) 

where 1in-12 with n being the size of the dataset; {xi} is the original dataset; {xi} 

is the differenced dataset. It can be seen from Figure 2 that data is not stable. 

 

Figure 2. Average land temperature after 12-step difference 
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2.2. Stationarity test 

The stationarity test is a must because only stationary series is applicable to the 

prediction model. Here, the augmented Dickey-Fuller (ADF) method is adopted for 

stationarity test: 

For any time series process: 

1 1 ...i i p i p ix x x  − −= + + +
                                     (3) 

The corresponding feature equation is: 

1

1 ... 0p p

p   −− − − =
                                       (4) 

If all the eigenvalues of the equation are in a circle, i.e. |λi|<1,i=1,2,…p, then the 

series is stationary; otherwise, the series is not stationary and satisfies ∑ 𝜙𝑝
𝑝
𝑖=1 = 1. 

Assuming that ρ=ϕ1+ϕ2+…+ϕp-1, the hypotheses for the test can be established as: 

H0: ρ=0 (The series {xi} is not stationary.) 

H1: ρ<0 (The series {xi} is stationary.) 

The ADF test statistic can be defined as: 

         
( )S





=

                                                        (5) 

where 𝑆(�̂�) is the sample standard deviation of parameter ρ. The stationarity test 

results of Python’s ADFuller are listed in Table 1 below. 

Table 1. Stationarity test results 

index value 

Test statistic  -15.788 

P-test probability 1.109×10-28 

Lag K 24 

Sample size 3119 

Test critical values: 1%level -3.4324 

5%level -2.8625 

10%level -2.5673 
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As shown in the table, the test probability was way below 1%, and the test statistic 

was smaller than the three critical values corresponding to the significance levels of 

10%, 5%, and 1%. Thus, the series after the 12-step difference is stationary.  

2.3. ARIMA-based temperature time series prediction model 

The AR (p) model can be expressed as: 

0 1 1 ...i i p i p ix x x   − −= + + +
                               (6) 

The MA (q) model can be expressed as: 

1 1 2 2 ...i i i q i qx        − − −= + − − −
                         (7) 

The centralized ARIMA (p, q, d) model can be expressed as: 

1 1 1 1 2 2... ...i i p i p i i i q i qx x x        − − − − −= + + − − −             (8) 

where xi is the temperature at time ti; εi is the white noise; AR is the autoregression; p 

is the autoregressive coefficient; MA is the moving average; q is the number of 

moving average terms; d is the difference order. Among them, p and q can be 

determined according to the following table. 

Table 2. Reference table for model parameter determination 

model Autocorrelation coefficient Partial autocorrelation coefficient 

AR(p) trailing P order truncated 

MA(q) Q order truncated trailing 

ARMA(p,q) trailing trailing 

 

Each parameter in the above formulas should be trained by the training dataset to 

derive the optimal values of ϕi and θi. Then, these optimal values, coupled with the 

data of the historical moments, can be used to predict the temperatures at the other 

moments by the formulas. 

The p and q values in the model can be determined by the autocorrelation 

coefficient and the partial autocorrelation coefficient. The autocorrelation coefficient 

can be expressed as: 
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where 

1,2,3 1k n=  −
; 1
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The partial autocorrelation coefficient can be expressed as: 
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3. Experimental verification 

3.1. Dataset 

To ensure the effectiveness of our experiments, the data compiled and updated by 

the Berkeley Earth team under Lawrence Berkeley National Laboratory are adopted 

in this research. The data includes 3,192 entries on each month of the years 1750~2015. 

Each entry covers the average land temperature and the average ocean temperature of 

that month. 

Two datasets were developed to fully validate our model, namely, the average land 

temperature forecast dataset and the average land and ocean temperature dataset. For 

the former dataset, the average monthly land temperatures of the years 1750~2010 

were taken as the training dataset, while those of the years 2011~2015 were taken as 

the test dataset. For the latter dataset, the average monthly land and ocean 

temperatures of the years 1750~2010 were taken as the training dataset, while those 

of the years 2011~2015 were taken as the test dataset. 
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3.2. Benchmark algorithms 

(1) Support vector regression (SVR) 

The SVR hypothesis can tolerate any deviation less than   between the model 

output f(x) and the true value y, creating an interval with a width of 2 . If the training 

sample falls into this interval, the prediction is considered as correct. Hence, the SVR 

problem can be formalized as: 
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                               (12) 

where C is the regularization constant; ξi and 𝜉𝑖 are relaxation variables. 

(2) Random forest (RF) 

The RF is an integrated learning algorithm involving a series of regression trees. 

The prediction values of all trees are averaged as the output of the algorithm. Through 

self-service resampling, this algorithm overcomes the over-fitting of regression trees 

and greatly enhances the model performance. In addition, the RF can process high-

dimensional data and is thus suitable for numerical and categorical variables. 

3.3. Evaluation indices 

To compare the effects of different algorithms, the prediction results were 

evaluated by such three indices as the root mean square error (RMSE), the mean 

absolute error (MAE) and the coefficient of determination (R2). For simplicity, the 

prediction value and the true value are respectively denoted as fi and yi in the 

calculation formulas of these indices. 

(1) RMSE 

The RMSE refers to the expected value of the square of the difference between the 

estimated value and the true value of the parameter. It can reflect the degree of change 

of the data. The RMSE value is negatively correlated with the accuracy of the 

prediction model based on the test data. The calculation formula of the RMSE can be 

expressed as: 
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(2) MAE 

As the average of absolute errors, the MAE can accurately demonstrate the actual 

error in the prediction results. The calculation formula of the MAE can be expressed 

as: 

1

1 n

i i

i

MAE f y
n =

= −
                                        (14) 

(3) R2 

R2 is the ratio of the regression sum of the squares to the total sum of squares. As 

a fitness statistic of the regression equation, this index reflects how much the deviation 

of the dependent variable y is explained by the estimated regression equation. The 

closer the value of R2 is to one, the greater the ratio of the regression sum of the 

squares to the total sum of squares, the closer the regression line is to each observation 

point, the better the explanation of the true value deviation by the predicted value 

variation, and the higher the fitness of the regression. The calculation formula of R2 

can be expressed as: 

2

2 1

2

1

( )

1

( )

n

i i

i

n

i

i

y f

R

y y

=

=

−

= −

−




                                        (15) 

where �̅� =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1  is the average of the true values. 

3.4. Experimental results and analysis 

Figures 3 and 4 respectively compare the values predicted by the ARIMA-based 

model using the said two datasets against the true values. Tables 3 and 4 respectively 

list the values of the three evaluation indices obtained by the ARIMA-based model, 

the SVR and the RF using the said to datasets. 
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Figure 3. Land temperatures predicted by the ARIMA-based model 

 

Figure 4. Ocean temperatures predicted by the ARIMA-based model 

Table 3. Land temperatures predicted by obtained by the ARIMA-based model, the 

SVR and the RF 

 ARIMA SVR RF 

RMSE 0.3144 0.4662 0.3630 

MAE 0.2580 0.4000 0.2800 

R2 0.9944 0.9876 0.9925 
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Table 4. Ocean temperatures predicted by obtained by the ARIMA-based model, the 

SVR and the RF 

 ARIMA SVR RF 

RMSE 0.1129 0.2562 0.3223 

MAE 0.0860 0.2030 0.2200 

R2 0.9919 0.9346 0.8925 

 

From Figures 3 and 4, it can be seen that the land and ocean temperatures predicted 

by the ARIMA-based model were close to the true values, indicating that our model 

fulfills the prediction purpose. Tables 3 and 4 show that the ARIMA-based model was 

10%~30% smaller than the SVR and the RF in the values of RMSE and MAE, and 

1%~10% higher in the value of R2. This means our model outperformed the two 

benchmark algorithms. 

4. Conclusions 

In view of the features of land and ocean temperature time series, this paper 

normalizes and differences the research data, and realizes the accurate prediction of 

land and ocean temperatures by the improved ARIMA algorithm. Compared with 

popular machine learning algorithms like the SVR and the RF, the proposed ARIMA-

based prediction model achieves improvement in all evaluation indices, namely, the 

RMSE, the MAE and R2. In future research, the influencing factors of land and ocean 

temperatures will be evaluated and included to enhance the prediction accuracy of our 

model. 
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