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ABSTRACT. The aim of this study is to analysis of finite difference scheme of unsteady MHD flow 

of Casson nano-fluid attribute of Brownian motion and thermophoresis through a moving 

cylinder. The governing model for the flow is metamorphosed into non-dimensional impetus, 

strength and mass-diffusion equations and evolved numerically by employing explicit finite 

difference fetch with the aid of a computer programming language Compact visual FORTRAN 

6.6a. In order to optimize the strait parameters and exactness of the strait, the stability and 

convergence test have sustained. It is clear that with primary boundary postulates, 

U=V=T=C=0, and small difference time Δt=0.0005, ΔX=0.202, and ΔR= 0.251, the strait has 

converged for Prandtl number, Pr ≥0.02   and Lewis number, Le ≥  0.018. The acquired 

results of this study are discussed for several values of natural parameters viz. Prandtl number, 

Casson fluid parameter, Lewis number, magnetic parameter, Brownian motion and 

thermophoresis number on the impetus, strength, mass-diffusion, skin friction, Nusselt number 

by means of several time steps. Moreover, the graphical representations of the solution are 

shown by conducting tecplot 9.0. 

RÉSUMÉ. Le but de cette étude est d’analyser le schéma de différences finies du flux 

MHD instable de l’attribut nano-fluide de Casson du mouvement brownien et de la 

thermophorèse dans un cylindre en mouvement. Le modèle directeur du flux est 

métamorphosé en équations non dimensionnelles d'impulsion, de force et de diffusion 

de masse et a évolué numériquement en utilisant la recherche par différence finie 

explicite à l'aide d'un langage de programmation informatique Compact visual 

FORTRAN 6.6a. Afin d’optimiser les paramètres et la précision du détroit, les tests 

de stabilité et de convergence ont été maintenus. Il est clair qu'avec les postulats de 

limite primaire U=V=T=C=0, et une petite différence de temps Δt=0.0005, 

ΔX=0.202 , et ΔR= 0.251, le détroit a convergé pour le nombre de Prandtl, Pr≥0.02 

et le nombre de Lewis , Le≥ 0,018. Les résultats acquis de cette étude sont discutés 

pour plusieurs valeurs de paramètres naturels, à savoir. Nombre de Prandtl, 

paramètre de fluide de Casson, nombre de Lewis, paramètre magnétique, mouvement 

Brownien et numéro de thermophorèse sur l'impulsion, force, diffusion de masse, 
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frottement de la peau, nombre de Nusselt par plusieurs pas de temps. De plus, les 

représentations graphiques de la solution sont montrées en effectuant le tecplot 9.0. 
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1. Introduction 

Nanofluids are tread as a two components mixture made of a base fluid and nano-

particles (1-100 nm). The fundamental characteristics of the nanofluid are the raise of 

the thermal conductivity of the fount fluid, minimal impeding in flow passing, 

extensive stability and equity. In order to get better execution of heat generating, the 

nano-fluid are utilized in several artificial applications such as chemical production, 

power generator in power plant, productions of micro-electronics, automotives, 

advance nuclear system, and nano-drug delivery. Sakiadis (1961) was the pioneer who 

established the concept of 2D boundary layer flow on continuous solid surface. The 

basic differential and integral momentum equations of boundary layer theory are 

governed and these equations are solved for moving continues flat surface and moving 

continuous cylindrical surface as well as for both laminar and turbulent flow in the 

boundary layer.    

Choi (1995) was the pathfinder who introduced the term “nanofluid”. Buongiorno 

(2006) discussed about nano-particles details in convective transport in nano-fluids. 

Casson fluid (Casson, 1959) is remarkable (e.g., jelly, human blood, tomato sauce and 

honey and Cancer therapy, fibrinogen, blood cells etc.), are prescribed by a shear 

thinning fluid that is considered to hold an infinite viscosity when there exist a zero 

shear rate and flow does not occur for a yield stress below and an infinite shear rate 

when zero viscosity exists. Mathematics and medical science together with have 

worked on Casson fluid model. Holding the time-independing properties and exists a 

certain yield value, Casson fluid model has a great attention in polymer technology. 

Another examples of similar fluids are human blood near about zero shear rate 

(Cokelet et al., 1963), blood particles with cylindrical shape (Walwander et al., 1975), 

xanthan gum liquefaction (Garcia and Casas, 1994) and chocolate (Chevally, 1991). 

Chocolate and blood are treated as plastic flow of solids which is performed and 

described by Casson model. Across the space separating two regions of rotating 

cylinder, Casson fluid was accomplished by Eldabe and Salwa (1995). Aid of Casson 

model, Okay (1979) explored non-Newtomian blood model with capillaries in 

vulnerable wall. Employing lattice Boltzman process, faithful and vibrating blood 

flow of Casson model was detached by Boyd et al. (2007).  

In current years, several authors are looked about boundary-layer Casson model 

due to its wide range of applications. Chemically reacting Casson fluid presence in 

porous surface has been investigated by Emmanuel et al. (2015). Casson nano-fluid 

over a vertical cylinder which is exponentially stretching has been discussed by Malik 

et al. (2014). With the help of Laplace transformation, unsteady boundary layer flow 
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of Casson fluid effects of heat transfer is explained by Hussanan et al. (2014). Casson 

nanofluid with chemical reaction and heat source/sink past a stretching sheet was 

discussed by Hayat et al. (2015). MHD free convection, effects of radiation on a 

Casson fluid yield a horizontal circular cylinder with partial slip in non-Darcy porous 

medium with viscous dissipation have been performed by Makanda et al. (2015), 

Mahabaleshwar & Lorenzini (2017), Kataria and Patal (2016); Kataria and Patel 

(2016) studied soret, heat generation, thermal diffusion radiation, chemical reaction 

and MHD Casson fluid flow past an oscillating vertical porous plate. Availability of 

magnetic field, Casson fluid past a shrinking sheet that is exponentially accelerated 

has been discussed by Nadeem et al. (2012). Kumari et al. (2011) observed peristaltic 

pumping Casson model yields an inclined channel. On the other hand, inclined tube 

with multiple neoplasm Casson medel was developed by Sreenadh et al. (2011).  

To author’s best knowledge, the investigation of Magnetohydrodynamic flow of 

Casson nanofluid past a moving cylinder presence of Brownian and thermophoresis 

effects have kept unrecognized. Therefore, in line with this knowledge gap, it was 

thought desirable to investigate this problem and the specific aims of this paper were 

to: 

a) To establish a mathematical model to investigate Casson fluid model with 

the effects of magnetic field and nano-particles yields a moving cylinder. 

b) To introduce an explicit finite difference method to solve the governing 

model is associated with momentum, energy and concentration equations in numerical 

manner by developing an algorithm in computer programming language Compact 

visual FORTRAN 6.6a. 

c) To analyse stability and convergence test for the fluid flow system. 

e) To investigate the velocity, temperature, concentration distribution of Casson 

fluids together with skin friction, Nusselt number, streamlines and isotherms with 

different physical parameters. 

2. Mathematical model 

In this study, unsteady magnetohydrodymic (MHD) current of Casson nanofluid 

past a vertical cylinder has been concerned also the nanofluids is considered that two-

stuff of composition (base fluid and nanoparticle). This model does not contain any 

chemical reactions or radiation and thermal equilibrium exists in founding fluids. The 

x axis is chosen towards the cylinder which is upward direction whereas the radial co-

ordinate r is chosen normal to the surface, where the radius of the cylinder is r0. An 

identical external magnetic area B0 is applied on the cylindrical surface which is 

occupied to electrically non-conducting. The physical model and co-ordinate strait of 

this study is displayed in the posterior figure 1. 

The elementary temperature and pressure of the cylinder is T̅∞ and C̅∞ and the 

primary velocity of the cylinder is u0. The increased temperature and concentration of 

the cylindrical surface are reck of T̅w and C̅w respectively, where T̅w > T̅∞ and C̅w > 

C̅∞. 
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Under this assumptions, the flow model is given by ; 

Continuity Equation, 

                                               

( ) ( )ru rv
0

x r

 
+ =

                                               (1) 

 

Figure 1. Geometric configuration of flow model 

Momentum Equation, 
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Energy Equation, 
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Concentration Equation, 
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(4) 

The boundary conditions are, 
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where u and v indicate the velocity ingredients along the x and r directions, β, the 

material parameter, υ is the kinematic viscosity, B0, the applied magnetic field, ρ, the 

density of fluid, κ, the thermal conductivity, cp, the specific heat, τ=(ρc)p(ρc)f, the ratio 

of nanoparticle heat capacity to the fluid heat capacity, DB, Brownian diffusion 

coefficient, DT, the thermophoresis diffusion coefficient and Le, the Lewis number. 

In order to make non-dimensional form from dimensional equations, the subsequent 

dimensionless contents are introduced,  

2
0 0

x
X

u r


=

, 0

r
R

r
=

, 0

u
U

u
=

,

0vr
V =

 , 
2

0

t
t

r


=

, w

T T
T

T T





−
=

−
, w

C C
C

C C





−
=

−
  (6) 

Using the preceding non-dimensional contents, the governing model Eqs. (1)-(4) 

reduce into the dimensionless form, 

Continuity Equation, 

                                        

( ) ( )RU RV
0

X R

 
+ =

                                                (7) 

Momentum Equation, 
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Energy Equation, 
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Concentration Equation, 
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(10) 

And the corresponding boundary postulates in terms of dimensionless variables 

are, 
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a
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where, the  obtained physical parameter are given bellow, 

Magnetic parameter, 𝑀 =
𝜎𝐵0

2𝑟0
2

𝜌𝜐
, Prandtl number, 𝑃𝑟 =

𝜌𝑐𝑝𝜐

𝜅
, Brownian parameter, 

𝑁𝑏 =
𝜏𝐷𝐵(𝐶�̅�−𝐶∞̅)

𝜐
, thermophoresis parameter, 𝑁𝑡 =

𝜏𝐷𝑇(�̅�𝑤−�̅�∞)

�̅�∞𝜐
 and Lewis number,  

Le =
𝜐

𝐷𝐵
.  

The physical non-dimensional quantities namely skin frictions, Nusselt number 

and Sherwood number are carried out respectively by the subsequent form, 

                                           R 0
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 
= −  

                                           (12) 
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                                             R 0
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Stream function ψ gratifies the continuity equations which are linked directly with 

velocity ingredients, cay be expressed as, U =
𝜕Ψ

𝜕𝑌
, V = −

𝜕Ψ

𝜕𝑋
. 

3. Numerical technique 

An explicit finite difference scheme (Khan et al., 2012) is used to detach the 

governing non-linear partial differential Eqs. (7)-(10) along with boundary postulates 

Eq. (11). The finite difference equations for Eqs. (7)-(10) are expressed by the Eqs. 

(15)-(18) respectively. To obtain the finite difference equations, the province of the 

Casson nanofluid flow is partitioned into the grids or meshes lengthwise to the 

direction X and R that is apprehend axis and normal to the cylinder (Fig. 2). Here the 

level of the cylinder is Xmax =20.0 is considered, i.e X switch from 0 to 20 and Rmax 

=50.0 as corresponding to R→∞. The subscripts i and j denote the grid points toward 

the X and R coordinate respectively, where X=i∆X and R=1+(j-1)∆R, M =100 and N 

=200 grid spacing in the X and R directions respectively. The altitude is ∆X=0.202, 

∆R=0.251 and the small time difference ∆t=0.001. Let, U', T' and C' represent the 

worth of U, T and C respectively at ending time step respectively. 

By using the explicit finite difference approximation, the following appropriate 

form are obtained, 
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Figure 2. Finite difference space 

Momentum equation, 
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Energy equation, 
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Concentration equation, 
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Finally, the primary and boundary postulates becomes the following formations, 

When, t0 then, 𝑈𝑗
0 = 0,  𝑇𝑗

0 = 0,  𝐶𝑗
0 = 0 everywhere 

When, t>0 then, 𝑈𝑗
0 = 1,  𝑇𝑗

0 = 1,  𝐶𝑗
0 = 1 for all R=1  

                                 𝑈𝑗
𝑛 = 0,  𝑇𝑗

𝑛 = 0,  𝐶𝑗
𝑛 = 0 as R→∞ 

4. Stability and convergence analysis 

To get the solution, an explicit finite difference approximation is applied and the 

exploration is kept scrappy if not the process of stability test are mentioned. To 

construct the fixed mesh type, the stability inference are performed as pursue. In 

general, the clops of the Fourier tract for U, T and C at a time arbitrary namely t=0, 

considered eiαX aloof from a fix value, where i2=-1. At time t, then the term occurs  

( ) i X i RU F t e e =
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Afterwards, passing a time pas, these terms metamorphose to, 
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After substituting Eqs. (19) and (20) to the Eqs. (15)-(18), we get, 

Momentum equation, 
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Concentration equation, 

( ) ( ) ( )i X i X i R i R i X i Ri X i R H 1 e e e H e 1 e eH H e e
U V

t X R

−        − − −
+ + =

    

( )

( )

( )

( )

( )

( )

i R i X i Ri X i R

2

i R i X i Ri X i R

2

H e 1 e e2H cos R 1 e e1 1

Le R RR

G e 1 e e2G cos R 1 e eNt 1

Nb R RR

   

   

 − − 
+ + 

 
 

 − −   
+  

   
   

( ) ( ) ( )

( )

( ) ( )

( )

( )

i X i R

2

i R i R

2

1 e e 1 2 cos R 11
H H[1 U t V t {

X R Le R

e 1 e 12 cos R 11 Nt 1
}] t G t

R R NbLe R RR

−  

 

− −  −
 = −  −  +

  

 − − −   
+  +   

    
   

                            3 4H A H A G = +
                                              (23) 

where, 

( ) ( ) ( )

( )

( )i X i R i R

3 2

1 e e 1 e 12 cos R 11 1
A 1 U t V t t

X R Le R RR

−    − − − − 
= −  −  + +  

   
 

( )

( )

( )i R

4 2

e 12 cos R 1Nt 1
A t

Nb R RR

 − −   
= +   

   
   

Eqs. (21)-(23) can be expressed on the matrix form, 

1

2

4 2

F A 0 0 F

G 0 A 0 G

H 0 A A H

     
      =
     
           i.e. 

T  = 
 

∆t is very small, so A4→0. The eigenvalues of the matrix T 'are λ1=A1, λ2=A2 and 

λ3=A3. For stability test, each eigenvalues λ1, λ2 and λ3 must not exceed unity in 

modulus, then, 

1A 1
, 2A 1

 and 3A 1
 

Let, 
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1

t
a

R R


=

 , 
1

U t
b

X


=

 , 
1

V t
c

R

− 
=

 , 1d t= 
, 

( )
1 2

2 t
e

R


=


 

Then, we get, 

( ) ( )

( ) ( ) 

i X i R
1 1 1

i R
1 1 1

A 1 b 1 e c e 1

1
1 e cos R 1 a e 1 Md

−  



= − − − −

 
+ +  − + − − 

   

( ) ( ) ( ) ( ) 

( ) ( )

i X i R i R
2 1 1 1 1

2 2
i R i R1 1

1
A 1 b 1 e c e 1 e cos R 1 a e 1

Pr

e e
CNb e 1 TNt e 1

2 2

−   

 

= − − − − +  − + − −

− − −
 

( ) ( ) ( ) ( ) i X i R i R
3 1 1 1 1

1
A 1 b 1 e c e 1 e cos R 1 a e 1

Le

−   = − − − − +  − + −
 

The coefficient of a1, b1 and c1 are non-negative. So the maximum modulus of A1, 

A2 and A3 occurs when αΔx=mπ and βΔR=nπ, where n is integer. The values of 

|A1|,|A2| and |A3| are greater when m and n both are odd integer, in which case, 

( )1 1 1 1 1 1

1 M
A 1 2 b c 1 e a d

2

  
= − + + + + +  

    

( )2 1 1 1 1 1 1

1
A 1 2 b c e a CNbe TNte

Pr

 
= − + + + − − 

   

( )3 1 1 1 1

1
A 1 2 b c e a

Le

 
= − + + + 

   

To satisfy probable values are A1=-1, A2=-1 and A3=-1, the stability conditions 

are, 

( ) ( ) ( )
2 2 2

t t 1 2 t t 2 t 2 t
U V CNb TNt 1

X R Pr R RR R R

       
+ + + − −  

        

( )
2

t t 1 2 t t
U V 1

X R Le R RR

     
+ + +  

      

Applying primary boundary postulates, U=V=T=C=0, and small time pas 

Δt=0.0005, ΔX=0.202, ΔR=0.251, then the model will converge for Pr≥0.02 and 

Le≥0.018. Finally, the convergence and stability solutions have been presented with 

graph in figures 3 - 18. 
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5. Results and discussions 

Two-dimensional laminar boundary layer flow of unsteady, MHD Casson fluid 

over an moving cylinder has been investigated numerically. To express the physical 

sagacity into this study, the velocity profiles, temperature profiles, skin friction 

profiles and Nusselt number have been plotted using several values of the parameters 

namely Casson fluid parameter β, Prandtl number Pr, magnetic parameter M, 

Brownian parameter Nb, thermophoresis parameter Nt and Lewis number Le of the 

cylinder. The value of the main parameters considered as Pr = 0.71 (for air), β = 0.7; 

1.4; 2.0; 3.0, M = 0.0; 1.0, 2.0, 3.0, Nb = 0.1; 2.0; 4.0; 6.0; 8.0, Nt = 0.1; 2.0; 4.0; 6.0; 

8.0 and Le =1.0; 3.0; 5.0.  The outcomes of the above parameters on the velocity 

profiles, temperature profiles, skin frictions profiles and Nusselt number profiles are 

represent in figures 3 - 18. In this present work, Casson nano-fluid is studied and 

evolved by explicit finite difference simulation.  With the development in Casson fluid 

parameter β, the viscosity of the fluid particles raise up which slow down the flow. In 

figure 3, it is seen that the momentum boundary layer decreases with rising values of 

Casson fluid parameter β. The decreasing rate of velocity profile from β = 0.7 to 1. 4 

is 10%, β =1.4 to 2.0 is 3.3% and β =2.0 to 3.0 is 2% at R =2. The effect of velocity 

profile has been shown for changing parameters of magnetic field strength M in figure 

4. The results are here kept that the velocity profile decreases with increase of 

magnetic parameter M. 

 

Figure 3. Velocity profiles for various values of β against R when M = 1.0, Pr = 

0.71, Nb = 0.1, Nt = 0.1 and Le =1.0 

Due to the fact that appearance of roundabout magnetic field creates a resistive 

force on the wall surface. Lorentz force is named after this phenomena, which leads 

to retard the movement of fluid. The red line shows that Magnetic field strength is 

absent here. As a results, increment of Magnetic parameter, the momentum thickness 

falls at the rate of 7.0% from M=0.0 to 1.0, 5.0% from M =1.0 to 2.0 and 4.0% from 
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M =2.0 to 3.0 at R =2. The behavior of the temperature profiles for several values of 

Brownian parameter Nb are demonstrated in figure 5. It is fact that Nb is directly 

proportional to Brownian diffusion coefficient DB that enhances mass transfer. 

Therefore growing value of DB increases Nb, which accelerates mass transfer. Also 

temperature profiles raise with the development of Brownian parameter Nb at the rate 

of 7% from Nb =2.0 to 4.0, 4% from Nb = 4.0 to 6.0 and 3.5% from Nb=6.0 to 8.0 at 

R=2. Again the behavior of the temperature profiles for several values of 

thermophoresis parameter Nt are demonstrated in figure 6. As Nt and thermophoresis 

diffusion coefficient DT are directly proportional, the increasing value of DT 

increases Nt, which accelerates mass transfer. Then the increasing rate of temperature 

profile for different values of Nt is 3.3% from Nt=0.5 to 2.0, 3.0% from Nt =2.0 to 

4.0 and 2.5% from Nt =4.0 to 6.0 at R=2. The presence of Prandtl number, Pr, The 

thermal conductivity of fluid collapse, as a result, thermal boundary layer falls. For 

this reason temperature profiles decrease due to improvement in Prandtl number, Pr 

(figure 7). The curve to curve decreasing rate is 4.5% from Pr =1.0 to 2.1, 3.3% from 

Pr =2.1 to 3.0 and 3.7% from Pr =3.0 to 4.1 at R =2. 

 

Figure 4. Velocity profiles for various values of M against R when β = 2, Pr = 0.71, 

Nb = 0.1, Nt = 0.1 and Le =1.0 

Figure 8 evinces the concentration profiles for various worth of thermophoresis 

parameter Nt. It is executed that with the increase of Nt concentration profiles increase 

and the increasing rate is 1.5% from Nt = 0.5 to 1.0, 5.0% from Nt = 1.0 to 2.0 and 

2.5% from Nt = 2.0 to 4.0 at R = 2. On the other hand, figure 9 indicates that 

concentration profiles collapse due to rising value of Lewis number Le. The reason is 

that Lewis number has opposite properties compared to Brownian diffusion 

coefficient DB. Then Le increases when DB decreases that is why concentration 

profiles decrease and the decreasing rate is 14.5% from Le =1.0 to 3.0, 6.0% from Le 

=3.0 to 5.0 and 3.0% from Le=5.0 to 7.0 at R=2. The effect of the skin friction has 

presented in figure 10-11 for separate values of β and M respectively. For the 
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amplification of both parameter β and M skin friction falls. With the development of 

β, viscosity of the fluid rise up, so skin friction decreases. For the strong magnetic 

parameter, skin friction decreases due to drag force effect. The change of Casson 

parameter 15.6%, 6.64% and 6.17% decrease for curve to curve at t =1.0. Also for the 

skin friction, the curves fluctuate occur 16.5%, 13.41% and 11.52% decrease at t=1.0. 

Figure 12 represents the Nusselt number for Pr = 0.71 is more improvement curve 

than that of Pr =7.0. The change of Prandtl number, the decreasing rate of Nt is 3.6% 

from Pr = 0.71 to 3.0 and 2.6% from Pr =3.0 to 7.0 at t =1.0. Also in figure 13-14 

illustrate the Nusselt number for dissimilar values of Nb and Nt respectively. 

 

Figure 5. Temperature profiles for various values of Nb against R when M =1.0, Pr 

= 0.71, β = 2.0, Nt = 0.1 and Le =1.0 

 

Figure 6. Temperature profiles for various values of Nt against R when M =1.0, Pr 

= 0.71, β =2.0, Nb =2.0 and Le = 1.0 
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Figure 7. Temperature profiles for various values of Pr against R when M =1.0, Nt 

= 0.1, β = 2.0, Nb = 2.0 and Le =1.0 

 

Figure 8. Concentration profiles for various values of Nt against R when M =1.0, Pr 

=0.71, β =2.0, Nb =2.0 and Le =1.0 

For both cases, the Nusselt number falls with the development of Brownian 

parameter and thermophoresis parameter. The change of Brownian parameter, the 

decreasing rate of Nusselt number is 22% from Nb = 0.1 to 0.3, 21.8% from Nb = 0.3 

to 0.5 and 21.6% from Nb = 0.5 to 0.7 at t =1.0. On the other hand, the curve to curve 

decreasing rate with the increase of thermophoresis parameter is 18.25% from Nt = 

0.2 to 0.2, 17.94% from Nt = 0.4 to 0.6 and 17.61% from Nb = 0.6 to 0.8 at t =1.0. 
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The non-dimensional equation has been solved by after different transformations. This 

is why, X and R axis are dimensionless that indicate the mash point different from the 

numerical point of view. Furthermore, streamlines profiles are used to improve 

visualization of fluid fields. It shows the approach of fluid particle velocity 

correspondingly. The stream lines may be acquired by marking tangent line to the 

vexillary. The changing manner of boundary layer can be presented by means of an 

isotherm, where the constant temperature are assumed. An isotherm at zero degree 

centigrade is called the freezing level.  

 

Figure 9. Concentration profiles for various values of Le against R when M =1.0, Pr 

= 0.71, β =2.0, Nb =2.0 and Nt = 0.1 

 

Figure 10. Skin friction profiles for various values of β against t when M=1.0, 

Pr=0.71, Nb=0.1, Nt=0.1 and Le=1.0 
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Figure 11. Skin friction profiles for various values of M against t when Pr = 0.71, β 

= 2.0, Nb = 0.1, Nt = 0.1 and Le =1.0 

 

Figure 12. Nusselt number profiles for various values of Pr against t when M =1.0, 

β = 2.0, Nb = 0.1, Nt = 0.1 and Le =1.0 
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Figure 13. Nusselt number profiles for various values of Nb against t when Pr = 

0.71, M =1.0, β = 2.0, Nt = 0.1 and Le =1.0 

 

Figure 14. Nusselt number profiles for various values of Nt against t when Pr = 

0.71, M = 1.0, β = 2.0, Nb = 0.1 and Le =1.0 
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Figure 15. (a) Streamlines for β=3.0 (red impact line) and β=2.0 (green dashed 

line) 

 

Figure 15. (b) Streamlines flood view 
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Figure 16. (a) Streamlines for M =3.0 (red dashed line) and M =1.0 (green solid 

line) 

 

Figure 16. (b) Streamlines flood view 

The corporeity of streamlines and isotherms have been displayed in figure 15-16. 

Streamlines decreases due to rising values of Casson fluid parameter from β =2.0 to β 

=3.0 but develop caused by improvement of magnetic parameter from M =1.0 to M 

=3.0 in figure 15(a)-16(a) respectively.  

Again, figure 15(b)-16(b) show the contour flood view for difference of Casson 

fluid parameter and Magnetic parameter respectively. The contours levels are also 
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provided in the legend of figure 15(b)-16(b). In figure 17(a)-18(a), isotherms lines is 

seen to be increased with the raise of both Brownian parameter from Nb =2.0 to Nb = 

4.0 and thermophoresis parameter Nt =2.0 to Nt = 4.0. The legend values of figure 

17(b)-18(b) are given in the contour levels. On the other hand, isotherms lines 

decreases for various values of Prandtl number from Pr = 1.2 and Pr = 2.1 in figure 

19(a)-19(b) shows the contour flood view for difference of Prandtl number. Table 2. 

shows the numerical values of skin friction and Nusselt number effects of Casson fluid 

parameter and Magnetic parameter, It is clear that skin friction falls for the both rising 

values β and M where the is no effect in local Nusselt number. 

 

Figure 17. (a) Isotherms for Nb =4.0 (red dashed line) and Nb =2.0 (green solid 

line)  

 

Figure 17. (b) Isotherms flood view 
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Figure 18. (a) Isotherms for Nt =4.0 (red impact line) and Nt =2.0 (green dashed 

line) 

 

Figure 18. (b) Isotherms flood view 



Unsteady magnetohydrodynamic casson nanofluid flow     203 

 

Figure 19. (a) Isotherms for Pr =2.1 (red dashed line) and Pr =1.2 (green solid 

line) 

 

Figure 19. (b) Isotherms flood view 
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Table 2. Computational numerical values with the changes of β and M for skin 

friction and Nusselt number 

β Cf Nu M Cf Nu 

0.7 -0.79393 2.04655 0.0 -0.84090 2.04655 

1.4 -0.94995 2.04655 1.0 -1.01627 2.04655 

2.0 -1.01627 2.04655 2.0 -1.15432 2.04655 

3.0 -1.07788 2.04655 3.0 -1.27028 2.04655 

Table 3. provides the numerical values of skin friction and Nusselt number effects 

of Brownian parameter, Nb, thermophoresis parameter, Nt and Prandtl number, Pr. It 

is clear that only Nusselt number changes for rising values of Nb, Nt and Pr. 

Table 3. Computational numerical values of skin friction and Nusselt number for 

Nb, Nt and Pr. 

Nb Nt Pr Cf Nu 

0.1 

0.3 

0.5 

0.7 

 

 

 

 

0.2 

0.4 

0.6 

0.8 

 

 

 

 

 

 

 

 

0.7 

3.0 

7.0 

-1.01627 

-1.01627 

-1.01627 

-1.01627 

-1.01627 

-1.01627 

-1.01627 

-1.01627 

-1.01627 

-1.01627 

-1.01627 

2.04655 

2.01020 

1.97417 

1.93849 

2.01214 

1.98006 

1.94842 

1.91722 

2.04655 

2.00658 

2.02565 

6. Conclusions 

From the current numerical inquisition, the subsequent conclusions have been 

skimmed: 

− With the increase of Casson fluid parameter and magnetic parameter, the 

momentum boundary layers decrease. 

− Thermal boundary layers increase for the increase of both Brownian parameter 

and thermophoresis parameter. 

− For the increment of thermophoresis parameter, concentration profiles increase 

but decrease with the raise of Lewis number. 
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− Skin friction profiles decrease with the improvement of both Casson fluid 

parameter and magnetic parameter. 

− The effect of Brownian parameter, thermophoresis parameter and Prandtl number, 

Nusselt number decrease. 

− With the increase of Casson fluid parameter, streamlines decrease but increase 

with the increase of magnetic parameter. 

− Isotherms increase with the increase of both Brownian parameter and 

thermophoresis parameter but decrease according to Prandtl number increases. 
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Nomenclature 

B0 External magnetic field, [
2Wbm−

] 

C Dimensionless concentration, [-] 

Cf Skin friction, [-] 

C̅ Concentration component 
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Cp Specific heat at constant pressure, [Jkg-1K-1] 

C̅w Concentration of the cylinder, [mol.]  

C̅∞ Concentration away from the cylinder 

DB Brownian diffusion coefficient 

DT thermophoresis diffusion coefficient 

Le Lewis number, [-] 

M Magnetic parameter, [-] 

Nb Brownian parameter, [-] 

Nt Thermophoresis parameter, [-] 

Nu Nusselt number, [-] 

Pr Prandtl number, [-] 

Sh Sherwood number, [-] 

T Non-dimensional temperature, [-] 

T̅  Temperature, [K] 

T̅∞ Temperature away from the cylinder 

T̅w Temperature of the fluid 

t ̅ Dimensional time, [s] 

t Non-dimensional time, [-] 

u0 Uniform velocity, [
1ms− ] 

U Non-dimensional velocity, [-] 

u,v Dimensional velocity of the fluid in x and r direction 

x, r Coordinate axis alone and normal to the cylinder 

X, R Non-dimensional coordinate axis alone and normal to the cylinder 

 

Greek symbols 

 

β Casson parameter, [-] 

Γ Rate time constant, [s] 

κ Thermal conductivity, [
1 1Wm K− −

] 

ρ      Density, [
3kgm−

] 

υ Kinematic viscosity, [
2 1m s− ] 
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