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The purpose of this study is to improve the control performance of a Doubly Fed 

Induction Generator (DFIG) in a Wind Energy Conversion System (WECS) by using 

both of the conventional Proportional-Integral (PI) controllers and an Artificial Neural 

Network (ANN) based controllers. The rotor-side converter (RSC) voltages are 

controlled using a stator flux oriented control (FOC) to achieve an independent control 

of the active and reactive powers, exchanged between the stator of the DFIG and the 

power grid. Afterward, the PI controllers of the FOC are replaced with two ANN based 

controllers. A Maximum Power Point Tracking (MPPT) control strategy is necessary 

in order to extract the maximum power from the of wind energy system. A simulation 

model was carried out in MATLAB environment under different scenarios. The 

obtained results demonstrate the efficiency of the proposed ANN control strategy.  
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1. INTRODUCTION

Variable speed wind turbines are generally a megawatt class,

especially in wind farms. Currently, doubly fed induction 

generator based wind turbines are the preferred choice for high 

capacity wind farms due of its unique features such as flexible 

control, low cost, high efficiency and ability to independently 

control active and reactive powers exchange with the grid 

system [1-3]. The DFIG stator winding is connected directly 

to the grid, while its rotor is connected indirectly to the same 

grid via a back-to-back power converter. The back-to-back 

converter has to handle only a fraction (30%) of the total 

power [4]. 

Regardless of the large advantages of DFIG, there is a 

challenging control problem, because of its nonlinear multi-

variable system and being highly coupled. Therefore, a 

decoupled active and reactive powers control technique is 

mandatory to achieve a constant operating frequency at 

variable wind speeds [4, 5]. 

Recently, several papers have studied the control techniques 

of DFIG [6-14]. Some used a simple field-oriented vector 

control using PI controllers [6-10]. Others used nonlinear 

model predictive control [11]. In addition, others used 

intelligent control techniques, such as genetic algorithm, fuzzy 

logic and artificial neural network [12-14]. 

This paper proposes a new control of a DFIG in a WECS 

using an ANN based controller. This new control is compared 

with the conventional PI controller. A brief overview of the 

artificial neural network is presented in section 2, followed by 

a brief description of the system including its modeling in 

sections 3. Both of the PI based control technique and ANN 

based control technique are presented in sections 4. Obtained 

simulation results of the proposed control techniques are 

presented and discussed in section 5. 

2. AN ARTIFICIAL NEURAL NETWORKS 

OVERVIEW

Artificial Neural Networks (ANNs) are mathematical 

representations inspired by the functioning of the human brain. 

Thus, ANNs are capable of modeling very complex functions 

[14]. ANNs have been applied successfully in various fields of 

modeling and prediction in various implications, also are being 

implemented to an increasing number of real-world issues of 

high complexity in many science and engineering applications. 

The ANN takes a number of artificial neurons, connected in 

densely parallel or in sequence arrangement in order to 

recognize the highly complex patterns occurring within the 

available data. Basic component of a neural network is the 

artificial neuron, also called node, which is a model of a 

biological neuron. Those nodes are combined to form a layer 

within the ANN. 

There are several types of ANNs, the most commonly 

implemented type of ANNs is Feed-Forward Neural Networks 

(FFNN), which consist of an input layer, one or more hidden 

layers, and an output layer. Each one of the layers consists of 

several neurons (Figure 1). Each neuron processes its input 

and generates an output value, which transmitted to the 

neurons in the subsequent layer. All neurons and layers are 

arranged in a feed-forward manner, and no feedback 

connections are allowed. The number of the hidden layers and 

the number of the neurons in each hidden layer depend mainly 

on the complexity of the issue. Figuring out the optimum 

number of neurons in hidden layer for ANN model is 

important task to avoid under-fitting and over-fitting [14-17]. 

There are many training algorithms available. One of the 

most popular and successful training algorithms for FFNNs is 

called back propagation. Herein, the Levenberg-Marquardt 

backpropagation training algorithm was chosen due to the fact 

that it is the fastest backpropagation algorithm in the toolbox, 
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and is highly recommended as a first-choice supervised 

algorithm [18-20]. 

Figure 1. Schematic representation of a multilayer Neural 

Network 

3. WIND ENERGY CONVERSION SYSTEM 

OVERVIEW

The studied system is shown in Figure 2. The system 

components are: the wind turbine, induction generator, voltage 

source converter and the electrical grid. The process of WECS 

is to transforms wind energy into mechanical energy by wind 

turbine blades and, eventually, into electrical energy through 

the generator. 

Wind turbines use a doubly fed induction generator 

consisting of a wound rotor induction generator and an 

AC/DC/AC converter. The stator winding is connected 

directly to the grid while the rotor is fed at variable frequency, 

phase, and magnitude through the converter. 

Figure 2. Wind energy conversion system based on a DFIG 

3.1 Modeling of wind turbine 

The mathematical equation of the mechanical power 

extracted from the wind power can expressed as follows: 

( )
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The mechanical torque Tt is: 
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where, v is wind speed, ρ is air density (1,225 kg/m3), R is blade 

radius, Ωt is angular speed of the turbine and Cp(λ,β) is the 

turbine power coefficient which is function of the pitch angle 

of the rotor blades β and the tip speed ratio λ. 

The turbine power coefficient can be described as [8]: 
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The maximum value of power coefficient Cp (Cp_max=0.35) 

is achieved for β equal to 2 degree and for λ equal to 7.07. Tip 

speed ratio λ is defined as: 

( )Rt

v


 
= (4) 

The system is composed by three-bladed wind turbine 

coupled to the rotor of the DFIG though a mechanical gearbox 

whose gear ratio G is chosen in order to set the generator shaft 

speed Ωmec within a desired speed range. 

The system dynamics is given by: 

d mecJ T T f
g em mecdt


= − −  (5) 

where, Tg is the mechanical torque of the generator, J and f are 

the moment of inertia of the system and the friction coefficient. 

The turbine model in the form of diagram blocks is 

represents in Figure 3. 

Figure 3. Wind Turbine model 

3.2 Modeling of double fed induction generator 

Park mathematical model of the DFIG is given by the 

following Eqns. [2-8]: 
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The DFIG electromagnetic torque can be expressed by: 

( )pM
T i ird sq rq sdem Ls

 = − (8) 

The stator active and reactive powers equations can be 

written as: 

P v i v is sd sd sq sq

Q v i v is sq sd sd sq

 =− −


=− +

(9) 
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where: 

• vsd,vsq,vrd,vrq: stator and rotor voltage components. 

• isd,isq,ird,irq: stator and rotor current components. 

• Φsd, Φsq, Φrd, Φrq: stator and rotor flux components. 

• ωs,ωr: stator and rotor pulsations. 

• Rs,Rr: are stator and rotor resistances. 

• Ls,Lr are stator and rotor inductances. 

• M is mutual inductance. 

 

The stator active and reactive powers vector uncoupled 

control can be accomplished by orienting the Park frame (d,q) 

so that the (d) axis is aligned with the stator flux [2-8]. Hence, 

the stator flux becomes: 

 

0
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By neglecting the stator windings resistances (for high 

power generators) the stator voltages equations become: 
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The stator currents depend on rotor currents via the 

following equation: 

 

M si i
sd rdL L

s s
M

i i
sq rqL

s


 = −


 =



 
(12) 

 

The stator active and reactive powers can be written as: 
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Combining (7) and (12) yields: 
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By substituting (14) in (6), we obtain: 
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where, 

2

1
M

L L
s r

 = −  is leakage factor. 

 

In steady state, the voltage expressions are given by: 
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These previous equations can represent the DFIG simplified 

Model scheme as shown in Figure 4. 

 

 
 

Figure 4. DFIG Simplified Model scheme 

 
 

4. CONTROL TECHNIQUES 

 

4.1 MPPT control strategy 

 

The Maximum Power Point Tracking (MPPT) control 

strategy is mandatory in order to extract the maximum power 

from the available wind energy. The MPPT control strategy is 

based on adjusting the rotor speed to track the optimal 

reference power. The rotor speed can be adjusted by 

controlling electromagnetic torque of the DFIG rotor [3-9]. 

Figure 5 shows the model scheme of the MPPT control 

strategy. 

 

 
 

Figure 5. Model scheme of MPPT control strategy 
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4.2 DFIG active and reactive powers control using PI 

based controllers 

 

As shown in Figure 4, a field-oriented control can be applied 

to the DFIG to control the active and reactive powers 

independently using the rotor voltages. 

Figure 6 shows the model scheme of the field oriented 

control of DFIG. 

 

 
 

Figure 6. Model scheme of DFIG active and reactive powers 

control using PI based controllers 

 

4.3 DFIG active and reactive powers control using 

artificial neural network based controllers 

 

The main idea of this control is to use two Artificial Neural 

Networks based controllers to control stator active and 

reactive powers independently. Figure 7 shows the model 

scheme of DFIG active and reactive powers control using 

ANN based controllers. The two Artificial Neural Networks 

are a Multilayer Perceptron networks (MLP) with a structure 

of (2-7-1). The first ANN inputs are the measured and 

reference active power, and the output is the Park quadratic 

voltage v’rq. Inputs of the second ANN are the measured and 

reference reactive power, and the output is the Park direct 

voltage v’rd. The active and reactive powers are independently 

controlled. Stator active power (Ps) is controlled via rotor Park 

quadratic voltage (vrq), while stator reactive power (Qs) is 

controlled via rotor Park direct voltage (vrd). 

The activation functions are the tan-sigmoid for input layer, 

the log-sigmoid for hidden layer and the linear for output layer. 

 
 

Figure 7. Model scheme of DFIG active and reactive powers 

control using ANN based controllers 

 

The training data are obtained with the help of a PI 

controller data and a simple stochastic search for optimal 

different references of the active and reactive powers and for 

different wind speed. In the end, we have acquired over than 

12483 samples for as ANN training data. 
 

 

5. RESULTS AND DISCUSSION 
 

The system modeling was developed and simulated in 

MATLAB/SIMULINK environment using the Simscape 

Power Systems toolbox for verifying the validity of the 

proposed control strategy. System parameters are given in 

Table 1. 

 

Table 1. Simulation parameters 

 

Variable Value 

U 690 V (50 Hz) 

Vdc 1,200 V 

Lfs 121 µH 

Lfr 57.3 µH 

Lm 12.12 mH 

P 2 

Rs 2.97 mΩ 

Rr 3.82 mΩ 

J 114 kg.m2 

 

 
(a) active power control ANN 
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(b) reactive power control ANN 

 

Figure 8. Training performance for DFIG 

 

 
 

Figure 9. DFIG stator active and reactive powers 

 

 
 

Figure 10. WECS Simulink model block diagram 

 

Figure 8 shows the training performance plot for DFIG 

active and reactive powers control ANNs. Training 

performance is based on mean square error between desired 

output and actual output of ANNs. From Figure 8a, it can be 

seen that best training performance for active power control 

ANN is equal to 0.30145e-5. Likewise, from Figure 8b, it can 

be seen that best training performance for reactive power 

control ANN is equal to 0.53278e-5. 
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Table 2. Comparative results between PI based control and 

ANN based control 

 
Variable PI ANN 

Active power response time [s] 0.071 0.028 

Reactive power response time [s] 0.071 0.021 

 

Figure 9 shows the step response simulation results of DFIG 

active and reactive powers control using the average model 

(IGBT’s of the RSC are represented by equivalent voltage 

sources). To verify the proposed control strategy, the ANN 

based control is compared with the PI based control. As can be 

seen below (Figure 9), stator active and reactive powers, tracks 

there references for both ANN based control and PI based 

control. However, the ANN based control provide a fast 

response and robust control. The overall measurement results 

are summarized in Table 2. 

Figure 10 shows the detailed WECS Simulink model in 

MATLAB/Simulink environment. This model includes 

detailed representation of power electronic IGBT converters, 

in order to achieve more accuracy. Pulse width modulation 

frequency is set to 10 kHz. 

A wind speed of 13 m/s has been applied on blades of the 

turbine, which corresponds to the nominal operation of the 

DFIG. The slip equal to -30% in hyper-synchronous mode, 

with a rotational speed equal to 1950 rpm, as shown in Figure 

11. 

As can be seen from Figure 12, both of the stator active 

power (Ps) and stator reactive power (Qs) are well regulated 

near their reference values. 

The reference stator active power (Ps
*) is generated using 

the MPPT control strategy. The WECS operates at unity power 

factor before the time t = 4.6 s and after the time t = 5.4 s 

because the reference reactive power Qs
* is equal to 0 VAR. In 

the time interval of t = [4.6 s, 5.0 s] and t = [5.0 s, 5.4 s], the 

reference stator reactive power is set to −1 MVAR and 1 MVAR 

respectively. A little variation of stator active power (Ps
*) can 

be observed, due to the important variation of rotor reactive 

power. 

Figure 13 shows the temporal evolutions of different 

electrical powers of the WECS. It can be seen that, the stator 

reactive power Qs changes correspondently to the changing in 

the rotor current ird and rotor reactive power Qr. It is also 

noticed that when the stator reactive power Qs equal to 0 VAR 

(before the time t = 4.6 s and after the time t = 5.4 s), the rotor 

reactive power Qr is not equal to 0 VAR, because the DFIG 

requires a reactive power for its magnetization. It also can be 

observed that, the WECS operated in nominal conditions and 

generate a total power Pdfig equal to 3 MW, which demonstrate 

the performance of the proposed control strategy. 

Figure 14 show stator and rotor voltage-current. It can be 

observed from Figure 14a, that the stator voltage-current are 

symmetric to ensure a unity power factor at the connection 

point of the stator with the electrical grid. 

 

 
 

Figure 11. Generator rotational speed 

 

 
 

Figure 12. Stator active and reactive powers 
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Figure 13. dq rotor currents, rotor active and reactive powers and total active and reactive powers 

 

 
(a) stator voltage-current 

 

 
(b) rotor voltage-current 

 

Figure 14. Voltage-current 

 

 
 

Figure 15. Power coefficient Cp and speed ratio λ 
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Figure 15 shows respectively power coefficient Cp versus 

time and speed ratio λ versus time. As remarked, power 

coefficient Cp pursues its maximal values offering maximal 

mechanical power to the DFIG rotor. In addition, speed ratio λ 

is at its optimal value equal to 7.07 at β equal to 2°. 

6. CONCLUSION

In this paper, we examine the control performance 

improvement of a DFIG in a WECS using a new Artificial 

Neural Network controller based approach. A particular 

attention is paid to control the power flow exchanged between 

the DFIG stator and the power grid. A flux-oriented control is 

applied to the rotor side converter to achieve an independent 

control of the active and reactive powers. In order to extract 

the maximum power from the WECS a MPPT control strategy 

is used to generate the optimal reference power. To verify this 

new proposed control approach, the ANN based control is 

compared with a PI control. Simulations are performed in 

MATLAB/SIMULINK environment using a 3MW WECS. 

Based on the obtained results, it can be concluded that the 

proposed ANN based control strategy has successfully 

improved the control performance of the studied WECS 

system. Further study using hybrid ANN control strategy 

would be of interest to enhance the control strategy. 
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