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 This paper is dedicated to the mathematical analysis of an axisymmetric, steady 

Newtonian fluid flow through a horizontal pipe within the occurrence of radiation, 

Dufour, and Soret effects. The flow is exposed to associate outwardly functional 

constant suction above the pipe along Z-direction. The homotopy analysis 

methodology (HAM) is utilized to get semi-analytical solutions for the coupled 

differential equations. The results of diverse rising constraints on velocities, thermal 

and solutal are discussed and pictured. The flow is studied through streamlines, 

isotherms and pressure contours area unit likewise shown as pictured. It is identified 

that the temperature can increase with an increase in Dufour parameter but decelerates 

with an improvement in the radiation parameter. For the given increase within the 

Soret number, the concentration decelerates. 

 

Keywords: 

Newtonian fluid, suction, pipe, thermal radiation, 

cross-diffusions, stream function, homotopy 

parameter 

 

 

 
1. INTRODUCTION 

 

The study of flow through permeable boundaries has several 

important industrial applications such as biophysics, 

lubrication technology, spatial dynamics, blood flow through 

arteries and veins, and control of boundary layers. From this 

viewpoint, the porous channel/pipe problems of similar model 

type have been studied by many researchers (Berman [1], 

Terril and Shrestha [2], Zaturska and Banks [3]. Bujurke et al. 

[4], Erdogan and Imrak [5], Devakar and Iyengar [6]). The 

other interesting problems for porous boundaries with 

different geometrics can be seen in Ramana Murthy et al. [7], 

Nagaraju and Ramana Murthy [8], Srinivas et al. [9], and 

Aparna et al. [10]. It is documented that heat and mass 

transport are mixed as a result of the fluid density depends on 

thermal and solutal. In the power and chemical industries, 

coupling laminar heat and mass transfer can be found. In many 

engineering applications such as heat exchangers, solar 

thermal collectors, and boilers, double-diffusive convection in 

circular tubes in laminar flow occurs. Of explicit interest is the 

problem of derivation within the thermal entrance 

incompressible flow along a pipe with a fully improved 

velocity distribution; this problem is resulted to as the Graetz 

problem. It has drawn interest not only from engineers but also 

from mathematicians due to the difficulties in deriving its 

solution. Ganesan and Loganathan [11] have studied the 

double-diffusive viscous flow through a semi-infinite vertical 

cylinder. The Double-diffusive natural convection was 

examined by Mani Sankar [12] through a vertical open-ended 

cylindrical annulus. He found that the number of Sherwood is 

decreasing as the radii ratio increases. Brahim and Jemni [13] 

investigated a two-dimensional Darcy–Brinkman–

Forchheimer heat tube's thermal analysis. Okafor et al. [14] 

studied the distribution of non-symmetric heat flux through a 

mixed horizontal convective tube. 

The Dufour effect is the heat flux caused by a gradient of 

concentration that was resulted in 1873 by Dufour as a coupled 

effect of irreversible systems; it is referenced to as the thermo-

diffusion effect. The effect of Dufour is of such magnitude that 

it cannot be disregarded. On the other hand, the Soret effect 

(thermo-diffusion) is a phenomenon experimental in mobile 

particle mixtures where different particle types react 

differently to the temperature gradient force. The effects of 

Soret and Dufour are important because the effect of Soret is 

used for the separation of isotopes, electrostatic precipitators, 

drug discovery, etc. Several researchers studied and reported 

results for such fluid flows, due to importance of the 

importance of the cross-diffusion effects for very light and 

medium molecular weights fluids (Nabil et al. [15], Rani and 

Reddy [16], Srinivas et al. [17], Odelu and Naresh kumar [18], 

Nagaraju et al. [19, 20].) 

Yang and Ebadian [21] examined in a circular tube the 

mixture of axial conductivity and axial radiation. Yih [22] 

used a convective isothermal vertical cylinder to investigate 

radiation and porous medium effects. Ganesan and 

Loganathan [23] examined the effect of radiation on flow past 

a semi-infinite vertical cylinder that was impulsively started. 

They identified the radiation parameter increases, the fluid's 

speed and the temperature rise sharply near the cylinder. The 

other interesting studies on radiative heat and mass transfer 

flow by diverse geometries can be found in Govardhan et al. 

[24], Nagaraju et al. [25], and Abdullah Al-Mamun et al. [26]. 

The survey exhibits that two-dimensional viscous flow with 

cross-diffusion and radiation has not been studied elsewhere. 

Therefore, the objectives of this study are to mathematically 

solve the steady viscous flow problem through a horizontal 
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pipe subjected to cross-diffusion and radiation for the fully 

developed region, and derive completely analytical solutions 

for the fluid thermal profile and concentration using HAM 

(Liao [27]). With the help of planned graphs, the consequence 

of connected parameters on the distribution of thermal and 

concentration was discussed thoroughly.  

 

 

2. MATHEMATICAL MODELING 
 

Fluid thought of during this study is Newtonian with fully 

developed flow through a horizontal pipe of radius ‘a’ in 

occurrence of cross-diffusion and thermal radiation. By 

constant wall temperature and concentration on the pipe 

surface, the heat and mass transfer method are studied. The 

fluid flow is subjected to constant external suction inside the 

conventional path through the wall. Backed by these 

assumptions, the dimensional equations of the fields of viscous 

liquid, thermal and solute are expressed as follows. 
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𝜕𝑅
=

𝜕𝐶
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U = v0, 𝑊 = 0, 𝑇 = 𝑇𝑤 and 𝐶 = 𝐶𝑤 at R = a (7) 

 

Introducing the dimensionless variables  

 

0U uv= , 0W wv= R ra= , 2

0P p v= , Z az= , 𝑻 =

𝜃(𝑇𝑤 − 𝑇∞) + 𝑇∞ , 𝐶 = 𝜙(𝐶𝑤 − 𝐶∞) + 𝐶∞ 
(8) 

 

We consider that qR under the Rossel and approximation 

has the following form: 
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Substitute in Eqns. (1)-(7), we get the governing 

dimensionless equations as: 
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The stream function ψ is defined to be: 
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From (11) and (12), the pressure (p) is removed, produces:  
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where, 𝐷2 =
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−

1

𝑟

𝑑

𝑑𝑟
 is a differential operator. 

At the surface of the pipe the shear stress, thermal, and 

solutal fluxes and can be derived from: 
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The dimensionless form of (21) is given by: 
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3. THE HOMOTOPY SOLUTION 

 

The given initial approximations of f0 (r), 𝜃0(𝑟) and ϕ0are 

derived for HAM solutions as: 
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with the auxiliary operators are: 
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where, 𝐶𝑖 (i = 1 to 12) are constants. hi (i=1, 2, 3) (regulator 

parameters) are used in zeroth-order deformation equations. 

The zeroth-order deformations; non-linear operators Ni(i=1 

to 3) are considered as described in the effort of Nagaraju et al. 

[28, 29]. 
 

 

4. DISCUSSION OF RESULTS 
 

The flow Eqns. (11)-(14) subject to the border line 

conditions (15) to (16) are coupled, hence the system of 

equations is solved semi-analytically using the Homotopy 

method. For the convergent series solutions, we have picked 

the values of h1=0.4, h2 = -0.5 and h3= -0.8 through the 

permissible range of h values based on h curves as shown in 

Figures 1(a)-1(c). 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 1. h-curves for (a) velocity, (b) thermal and (c) 

concentration 
 

Figures 2(a)–2(f) present the nature of f, 𝑓′, θ and 𝜙 under 

the influence of Re. Out of Figure 2(a) as Re enhances, the f 

increases. It is observed that 𝑓′enhances up to the point r = 0.6 

then there is a decrement in the axial velocity as Re increases 

from Figure 2(b). Figures 2(c)–2(f) shows that an increase in 

Re results in a rise in radial θ levels, 𝜙, and decreases in axial 

θ. 

 
(a) 

 
(b) 

 
(c) 

23



 

 
(d) 

 
(e) 

 
(f ) 

 

Figure 2. Variation of Reynold number on (a) f, (b) polar 

velocity, (c) radial θ, (d) axial θ, (e) radial 𝜙, and (f) axial 𝜙 

 

 
(a) 

 
(b) 

 

Figure 3. Variation of Dufour number on (a) radial θ, (b) 

axial θ 

 

From Figures 3(a)-3(b) we can see that radial and axial 

temperature increases as the Dufour number increases. From 

Figures 4(a)-4(b), we can observe that radial and axial 

temperature decreases as the radiation parameter rises. These 

results show that the radiation has significant dominance in the 

flow field. It can be shown in Figures 5(a)-5(b) that radial and 

axial θ enhances as the Prandtl number increases. 

It is clear from Figures 6 and 7, it can be resulted that radial 

and axial concentration decreases as Sc and Sr increases. It is 

identified that Nusselt and Sherwood number raises with 

Prandtl and Schmidt number raises in Figures 8 and 9 

respectively. It is noticed from Figure 10, that velocity 

streamlines are non-negative at 𝑧 ≤ 𝑁 and negative at 𝑧 > 𝑁. 
For 𝑧 = 𝑁, the Streamlines are numerically symmetric. It can 

be shown from Figure 11 that θ is symmetrical about the line 

𝑧 = 𝑁. From Figure 12, it is observed that concentration is 

symmetric about 𝑧 = 𝑁 and increments as 𝑟 < 0.8.  
 

 
(a) 

 
(b) 

Figure 4. Variation of Radiation on (a) radial θ, (b) axial θ 
 

 
(a) 

 
(b) 

 

Figure 5. Variation of Prandtl number on (a) radial θ, (b) 

axial θ 
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(a) 

 
(b) 

 

Figure 6. Impact of Sc on (a) radial 𝜙, (b) axial 𝜙 

 

 
(a) 

 
(b) 

 

Figure 7. Impact of Sr on (a) radial 𝜙, (b) axial 𝜙 

 
 

Figure 8. Changes of Pr on Nu 

 

 
 

Figure 9. Changes of Sc on Sh 

 

 
 

Figure 10. Velocity streamlines 

 

 
 

Figure 11. Contour graph for Temperature isotherms 

 

Table 1. Nature of skin friction coefficient, heat and mass transfer rates for various values of Re, Sr, and Df 

 
Re z Pr Sc Sr Df Rd Cf Nu Sh 

0.75 
 

1 

 

0.71 

 

0.5 

 

1 

 

0.06 

 

1.5 

-17.2233 3.85944 4.52758 

1.5 -5.98985 24.722 14.2953 

2.25 -1.81603 53.0241 27.0234 

 

1.5 

 

1 

 

0.71 

 

0.5 

 

1 

0.5 
 

1.5 

 

-- 

27.0956 48.0487 

1 29.7929 61.5916 

1.5 32.4902 75.2606 

 

1.5 

 

1 

 

0.71 

 

0.5 

0.5 
 

0.5 

 

1.5 

 

-- 

37.607 38.5889 

1 37.9793 50.872 

1.5 38.3515 63.1551 
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Figure 12. Contour graph for concentration 

 

The nature of the Cf, Nu, and Sh with the flow parameters 

can be seen in Table 1. The results from Table 1 that the Nu 

and Sh increase as Re, Sr and Df increase. 

 

 

5. CONCLUSION 

 

This paper addresses the mathematical analysis of an 

axisymmetric, steady Newtonian fluid flow through a 

horizontal pipe in the occurrence of radiation and Cross-

diffusion effects. Based on results through the HAM, 

summarily the findings as follows: 

i. The Reynolds number breaks the axial flow and 

increases the radial flow.  

ii. An increment in Pr and Df causes an increase in the 

temperature profiles whereas 𝜃 decreases as Rd 

increases. 

iii. The concentration profile rises upon increasing the Re, 

and decreases as Sr, and Scincreases. 

iv. The Skin-friction (Cf), Nusselt number (Nu), and 

Sherwood number (Sh) increase as Re raise.  

v. The Nusselt number (Nu), and Sherwood number (Sh) 

increases when Pr and Sc number raises. 
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NOMENCLATURE 

w, W Non-dimensional and dimensional axial 

velocity, m/s 

u,U non-dimensional and dimensional radial 

velocity, m/s 

Cp specific heat, J. kg-1. K-1 

k thermal conductivity, W.m-1. K-1 

Tw surface/wall temperature 

Nu local Nusselt number along the heat source 

D Diffusion coefficient 

Tm mean temperature 

CS Concentration susceptibility 

v0 suction/injection velocity 

Re Reynolds number 

Pr Prandtl number 

E2 Stoke’s operator 

T, C The fluid temperature and concentration 

N= U0/v0 Constant velocity 

U0 inlet velocity 

Df Dufour parameter 

Sc Schmidt number 

Rd radiation parameter  

Sr soret number 

T∞ temperature far away from the center 

Cw concentration at the wall 

C∞ concentration far away from the center. 

k* mean absorptioncoefficient. 

KT Thermal-diffusion ratio 

Greek symbols 

𝜌 fluid density, kgm−3 

𝜇 viscosity 

σ* Stefan-Boltzmann constant 
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