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 The main objective of this work is the application of a new architecture of genetic 

algorithms to the induction machine design in order to improve their performance. The 

latter is proposed by our research team based on modified crossing and mutation 

operators who have fixed values for conventional genetic algorithms. In addition, this 

version is characterized by a double loop and a random crossover. Firstly, to 

demonstrate the ability to locate the global optimum with this version algorithm a 

mathematical function was used. Then we approached the second phase which its 

application in real time to the induction motor optimized design problem. Knowing 

that, the machine is a highly coupled with multivariable system and constraints. 

Finally, the results obtained have been analyzed where we have found that satisfactory 

and can be declared that adaptation algorithm is effective in locating rapidly the region 

in which the global optimum exists in relation to the classical genetic algorithm. 
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1. INTRODUCTION 

 

Nowadays, industry and infrastructure consume more than 

31% of energy, and electric motors alone account for more 

than 60% of this consumption [1, 2]. In addition, the 

unavoidable disappearance of fossil reserves and the resulting 

inexorable cost increase compel manufacturers to make the 

best use of electrical energy. When making the decision to 

acquire a new machine, the investor should be led to consider 

the energy that will be consumed by this machine during its 

lifetime. Certainly, it is considered that since its acquisition 

until its dismantling, the purchase price represents 2 to 3% of 

the total cost [3], the rest being, mainly, the consumption of 

energy. This energy is necessarily attributed to the finished 

product and impacts the competitiveness of the company. 

Solutions exist to intelligently use available energy: Improve 

the efficiency of the machine, choose a running mode allowing 

to put in sleep the machines not much solicited, use the 

inverter, choose more energy-efficient movement strategies, 

use high efficiency motors [4, 5]. 

Since a simplicity of implementation, a small size, good 

performance and its excellent reliability. The induction motor 

is the most used motor in all industrial applications. Its only 

black spot is the reactive energy always consumed to 

magnetize the air gap [5, 6]. It is designed to operate at 

constant speed. However, it is increasingly associated with a 

drive which improves the flexibility of the machines. The use 

of a variable speed drive eliminates certain weaknesses of the 

induction motor: the starting current, the power factor and the 

voltage variations with inverter using the vector control [7].  

In a related, nowadays the comparing induction motors 

efficiency is more complicated by the fact that there are 

several ways to measured them. Knowing that, the same 

motors evaluated according to different standards will be 

classified differently [8, 9]. The main standards are: Canadian 

CSA C390/M1985; American IEEE/ 112B; European IEC-

34/2; JEC-37 Japanese. The Canadian Standards Association 

(CSA) takes into account the additional load losses which are 

indirectly measured. In addition the method used to measuring 

them is inspired by the IEEE. The CSA standard is, however 

more stringent than IEEE because it leaves little room for 

possible interpretation errors during yield. On the other hand, 

the IEEE standard calculates additional losses due to the load 

in an indirect way [1, 9]. It ranks second in terms of the caution 

of the results. 

To improve the motor efficiency, several works are 

published in this area [1-3]. It is done by control so by 

maintenance or through design optimization which is the 

subject of this article. Despite the fact that, exist many 

optimization method and there are effort for improvement the 

old methods. So in this paper, we will focus on improving the 

efficiency of a closed rotor slot induction motor by proposing 

a solution during the design phase. The proposed approach is 

based on double loop modified genetic algorithms.  

The results of the optimized design found are analyzed and 

validated or it can be declared that they are satisfactory. 

 

 

2. GENETIC ALGORITHM OPTIMIZATION 

TECHNIQUES  

 

The classical genetic algorithm (CGA) simulates biological 

evolutionary theories to solve optimization problems [10]. 

They provide solutions by generating a set of chromosomes 

referred to as a generation. Each string has it is own fitness 

measure that reflects how well a creature can survive under the 

surrounding environment. The new generation of the strings is 

created through three major operations; selection, crossover 

and mutation, which provide a powerful global search 

mechanism which corresponds to 1st loop in Figure 1. 
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Figure 1. Proposed genetic algorithm diagram 
 

Firstly, the selection is a process in which individual strings 

are copied into a mating pool according to their fitness values 

[10, 11]. Secondly, the crossover is a structured recombination 

operation. In the classical one-point crossover, a random 

position in a string is chosen and all characters to the right of 

this position are swapped. Finally, the mutation is an 

occasional random alteration of the value of a string position 

[1]. As this version is linked to random criteria, the obtained 

optimization results differ from one execution to another. That 

is to say, there is a convergence towards a local optimum. 

To remedy this problem, a new version has been proposed 

and applied in this paper. It is about modified genetic 

algorithms (MGA). So this improvement method always go to 

give a global solution for 80% of the test, by changing the 

probability of crossover Pc and mutation Pm operation in 

every one generation. The diagram of Figure 1 gives the 

clearest idea [1, 10]. The difference between the value of the 

current objective function and that of the previous generation 

is defined as "criteria 1" and maybe the generation number 

itself "criteria 2". 

 

2.1 Operator function 

 

In the proposed algorithm version, the second loop (SL) 

crossover operator Pc1 is calculated by the following function: 

 

( )( )
1 k

NG2* 1
Pc c

N

E
P

NGE+ −
= +

 

(1) 

where, Pc is the initial crossover value, NGE number of 

current generations for N number individuals and k is the bits 

number. 

In the next, we will try to show the proposed modified 

principle for k =6, N=8. Not limited to a single crossover, but 

a second crossover to eliminate the bad individuals according 

to generation number. 

 

Parents P(1) 

0 1 0 0 1 1 

Parents P(2)  

0 1 0 1 0 0 

0 1 0 1 0 0 

0 1 1 0 1 0 

1 0 0 1 0 0 

0 1 0 1 0 0 

0 1 1 1 1 1 

0 1 1 0 0 0 

  010100  Boy 

B(1) 

  010011  Boy 

B(2) 

 010010 

 011100 

 100100 

 010100 

011000 

011111 

010100 

Parents 

P'(1) 

010011 

010010 

Parents 

P'(2) 

011100 

100100 

010100 

011100 

011111 

010010 

Boy B'(1) 

010100 

010100 

Boy B'(2) 

011011 

100111 

010100 

011100 

011100 

Selection  CGA 

Crossover 

vector 

MGA 

(SL) Crossover vector  

 

In addition, the improvement mutation operator in the 

second loop according to stop criterion 2 Pm1 is given 

according this formula: 
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(2) 
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Such as Pm is the initial mutation value. 

 

2.2 Test function 

 

In order to validate the proposed algorithm, use a 

mathematical test function. This function knows has many 

local maximum as defined by:  
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where, the search space is such that: [x1,x2]∈{[-2,-2] and 

[2,2]}. 

Taking into account the modifications listed above, a 

program based on genetic algorithms has been developed. To 

check the validity of this program, a series of five consecutive 

executions was used and we obtained the following results: 

 

 
 

Figure 2. Best fitness function evolution with CGA 

 

 
 

Figure 3. Error evolution for CGA algorithm 

 

We can see in Figure 2 and 3 that for each execution the 

algorithm converges to a local optimum and the error is 

significant before becoming zero after 350 generations. That 

is to say that for each execution we have a maximum, this is 

justified by the stochastic criterion linked to classical genetic 

algorithms.  

On the other hand, in the case of the modified genetic 

algorithms Figure 4, one has the same results for the five 

executions after the 250 generations among the 400 considered 

witch illustrated in Table 1. This is proof of the proposed 

algorithm despite the major drawback which is the important 

execution time. 

 

 
 

Figure 4. Best fitness function evolution with MGA 

 

In addition we have in Figure 5 the error tends to a very low 

value and stable after a great initial value. Which makes us go 

deeper, that is applying this algorithm to the complex and 

restrictive problem. 

 

 
 

Figure 5. Error evolution for MGA algorithm 

 

Through the global results witch grouped in table 1, we can 

see that we have a vary results from one execution to another. 

On the other hand for the case of modified genetic algorithms, 

the results seem to be the same with a very small and negligible 

difference. 
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Table 1. Results for test function 

 
Execution 

 

 
Number 

CGA Results MGA Results 

x1 x2 

Max 

f(x1, 
x2) 

x1 x2 

Max 

f(x1, 
x2) 

1 
-

0.8571 
1.2380 0.7665 2 

-

0.0317 
1.9979 

2 2 0.6031 1.4664 2 
-

0.0952 
1.9820 

3 2 1.4285 0.6577 2 
-

0.0952 
1.9820 

4 2 1.6190 0.5522 
-

0.8571 
0.0317 1.9397 

5 2 0.0317 1.9979 
-

0.9841 
0.0952 1.9812 

 

So, this result are encouraging and paves the way for 

reverting to the application of genetic algorithms in 

optimization problem generally and precisely in the design 

optimized system field. The latter is the focus of our paper. 

 

 

3. INDUCTION MOTOR DESIGN OPTIMIZATION  

 

In order to design of electrical machines, Marcel JUFER 

and Jean-Claude propose a dimensioning of the stator iron then 

the rotor calculation method [1]. A second pedagogical 

method used at the polytechnic school from Montreal for 

didactic. The third procedure combines computation and 

computer-assisted design of an induction machine, and takes 

different stages of calculation in chronological order. This 

approach is based on the design principle of G. Kouskoff and 

Liwschitz. Except that we impose the geometric data of an 

already existing industrial machine, as constraints to which we 

must submit. The numerical results of the calculation are 

compared with those given by the classical test method and 

then processed by a simulated dynamic analysis of the 

behaviors of the machine in order to develop the correlation 

and concordance of these design results with those delivered 

by the manufacturer [12, 13]. Finally there is another method 

named Liwschitz method, based on the flowchart presented in 

Figure 6.  

The preceding method is coupled to the prescribed genetic 

algorithm version and is applied in our contribution on a 

closed rotor induction machine with: 5kW, 4 poles, 

1440trs/min, 380V, Δ coupled. In addition to that, this 

machine has a specificity concerning the stator slot depth. 

 

 
 

Figure 6. Proposed and apply induction motor design 

optimization flowchart 

Using empirical equations and a database to determine the 

main dimensions of this machine [1, 2], a design program has 

been developed by our group [14, 15]. 

Through the obtained results, we define the boundary limits 

and search space of the five optimization variables [1, 16]. 

These variables are geometric, magnetic and general with a 

constraint such as the starting torque which does not exceed 

90Nm. In addition to this, the motor efficiency (Eff) is the 

fitness function. For the consecutive five executions, we got 

the results grouped in the following. 

 

 
 

Figure 7. Best fitness function evolution with CGA 

 

 
 

Figure 8. Error evolution for CGA algorithm 

 

 
 

Figure 9. Results for design problem with MGA 
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Figure 10. Error evolution for MGA 

 

 
 

Figure 11. Crossover operator improvement in MGA 

algorithm 

 

 
 

Figure 12. Mutation operator evolution in MGA algorithm 

 

Through Figure 9, we note for the proposed version results 

that 350 generations are sufficient for the algorithm to 

converge, unlike for the classic version Figure 7 which 

requires a larger number. On the other hand the error is 

minimal it always remains lower by 10-3 and Pc value 

decreases to 0.69 depending on the stopped criteria. With 

respect in Figure 12 Pm reaches a maximum value of 0.02, it 

remains constant until 400 generations. 

Finally, we can declare that the developed algorithm is still 

effective for complex and multivariable problems. But the 

only downside is the simulation time, which can be a bit long. 

Since, in this paper, the finesse function is the machine 

efficiency. It is 0.874 compared to the existing machine (CM) 

Effi = 0.85. This improvement is accompanied by a low Pc and 

a higher Pm. Indeed, all the results found are shown in Table 

2. We note that the opening rotor notch is a key parameter to 

improve the induction machines efficiency because it is 

always in the lower limit as the interior diameter for all time, 

opposite for the air gap flux density [1, 16]. 

The obtained results by the combination between design 

program and the proposed optimization algorithm are used in 

another program based on the equivalent diagram method [1, 

12]. On which, the usual characteristics of the studied machine 

can be plotted in static mode. This is illustrated by the next 

figures. 

We can see the efficiency versus useful power for each 

machine on Figure 13. This figure shows that in the vicinity of 

the nominal point (5kW) the efficiency of the machine 

optimized by the modified genetic algorithms (MGA) is better 

compared to the design optimized by conventional genetic 

algorithms (CGA) as well as the machine exists. 

In addition, Figure 14 shows the characteristic of the stator 

phase currents for each machine. However, the difference is 

notable this for the maximum useful power and for the starting 

current or the difference reached 3A, this is encouraging for 

future application and for more complicated systems. 

 

 
 

Figure 13. Efficiency versus mechanical power  

 

Via the Park model (d, q) in order to modelling this motor 

then check the capacity of the optimized machine under 

dynamic conditions. We apply to the machines various torque: 

Nominal torque (Tn), starting torque (Ts) at t=1s, the 

maximum torque (Tmx) for t= 2s and the torque greater than 

the maximum torque (Tbg) at t=3s. 
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Table 2. Results of induction motor design optimization 

 
E

x
ec

u
ti

o
n

 N
u

m
b

er
 CGA Results 

Initial operators: Pc =0.85, Pm=0.01 

Variable vector X and limit 

 

 

Pc 

 

Pm 

 

Eff(X) 

x1 [m] 

Stator internal 

diameter 

[149e-3:153e-3] 

x2  

Geometric 

rapport 

[ 1.1: 1.3] 

x3 [m] 

Stator notch 

depth 

[17e-3: 21e-3] 

x4 [T] 

Induction in the 

gap 

[0.59: 0.63] 

x5 [m] 

Rotor notch 

opening 

[0.5e-3: 0.9e-3] 

1 0.1506 1.2968 0.0175 0.6236 0.000626 0.85 0.01 0.873 

2 0.1521 1.1984 0.0197 0.6249 0.000849 0.85 0.01 0.873 

3 0.1509 1.2619 0.0175 0.6090 0.000690 0.85 0.01 0.873 

4 0.1530 1.1920 0.0211 0.6299 0.000900 0.85 0.01 0.872 

5 0.1505 1.2619 0.0170 0.6261 0.000658 0.85 0.01 0.873 

MGA Results 

Initial operators: Pc =0.85,   Pm=0.01 

Variable Vector X final 

Pc 

final 

Pm 
Eff(X) 

 x1 x2 x3 x4 x5 

1 0.15220 1.2492 0.01712 0.61476 0.000607 0.741 0.2 0.874 

2 0.15173 1.1317 0.01764 0.59102 0.000510 0.752 0.2 0.874 

3 0.15109 1.1571 0.01715 0.61032 0.000523 0.752 0.2 0.874 

4 0.15065 1.1222 0.02080 0.62809 0.000569 0.752 0.2 0.874 

5 0.15013 1.3144 0.01715 0.62301 0.000531 0.696 0.2 0.874 

 

 
 

Figure 14. Stator phase current versus mechanical power  

 

The results of this test are the different characteristics of the 

three machines: the speed, the electric current, the 

electromagnetic torque and all the results are grouped in 

figures below. 

 

 
a- Electromagnetic torque versus time 

 
b- Rotor speed versus time 

 
c- Stator phase current versus time  

 

Figure 15. Results of dynamical mode 

 

We note that the machine optimized by the new version 

(MGA PC Variable) has better dynamical performance from 

the point of view overload (126.6Nm) and start-up capacity 
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(84.14Nm). These properties accompanied by a low speed 

variation and a less call current opposite to the machine 

optimized by the classical genetic algorithms (CGA PC fixe) 

and the classical machine (MC), this is be fond of second 

validation method. 

Then again, it can be observe that the speed of the machine 

optimized by MGA is less susceptible to the load deviation 

compared to the other two machines. This specificity is 

accompanied by a better starting capacity and overloading this 

is important for industrial applications. 

4. CONCLUSION

In this paper we tried to develop and apply in real time a 

version of genetic algorithms. Certainly, according to a 

stopping criterion a second loop with a second crossover has 

been proposed. The latter is random based on variable 

crossover and mutation operators. To test the ability to locate 

the global optimum by this version algorithm, an application 

to the mathematical function as used then optimizing design 

problem of an induction machine has been proposed. The 

found results either for static or dynamic analysis is 

satisfactory and open up perspectives towards other more 

complicated applications. 
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