Line to Ground and Line to Line Fault Analysis in IEEE Standard 9 Bus System

Sagnik Datta¹, Aveek Chattopadhyaya¹, Surajit Chattopadhyay², Arabinda Das³

¹ Electrical Engineering Department, Supreme Knowledge Foundation Group of Institutions, Mankundu, India
² Electrical Engineering Department, GKCIET, Malda, India
³ Electrical Engineering Department, Jadavpur University, Jadavpur, India

https://doi.org/10.18280/mmc_a.931-402	ABSTRACT
Received: 14 August 2020	Line to Ground (LG) and Line to Line (LL) faults are the two most frequently
Accepted: 5 December 2020	encountered faults in any power system network. For the purpose of designing

Keywords:

line to ground (LG) fault, line to line (LL) fault, digital signal processing, discrete wavelet transform (DWT), statistical analysis, skewness, kurtosis Line to Ground (LG) and Line to Line (LL) faults are the two most frequently encountered faults in any power system network. For the purpose of designing advanced protection systems, detection of the location as well as the identification of the type of fault, from a remote location is of paramount importance. In this paper a Discrete Wavelet Transform based statistical analysis has been carried out to detect the fault type and location of LG and LL faults. IEEE standard 9 bus system has been considered for this purpose. Faults are made to occur in the load buses and outgoing currents from the generator buses are analyzed by Discrete Wavelet Transform (DWT) as these current waveforms are non-stationary in nature. Statistical parameters are calculated from the approximate and detail coefficients which have been derived from the DWT. Based upon these parameters, a rule set has also been made. Simulation work is performed with the help of MATLAB. Methods proposed here can be helpful for designing better protection schemes.

1. INTRODUCTION

Electrical power system network consisting of several sources and loads helps in transfer of power from generating stations to consumers. Complexity in all the sectors of power system is increasing. Thus, for reliable operation of power system networks, proper identification of type and location of fault has become very much important. Two most frequently occurring faults in any power system network are line to ground (LG) and line to Line (LL) faults. A lot a research work is being carried out in the field of fault identification of power system networks. Elkalashy et al. [1] proposed a novel selectivity technique to detect the fault feeder in MV networks using the directionality of DWT detail coefficient of a residual current of each feeder. Wavelet transformation is used to analyze power system transients for identification of fault locations in double circuit transmission lines by Andanapalli et al. [2]. Dubeya et al. [3] proposed DWT and Independent component analysis (ICA) for detection of faulty negative sequence current in series compensated transmission line using Matlab or Simulink. Xie et al. [4] proposed a Wavelet transform based methods of measuring time and frequency information of high frequency transients produced by the faults on transmission lines for the purpose of locating the fault point. A relaying principle using Wavelet based artificial neural networks capable of classifying transients-including faults occurring on a protected line has been shown by Abdullah [5]. Devi et al. [6] has proposed a method of analysis of faults with different load conditions for localization, detection and classification of faults in transmission lines. Patel et al. proposed a novel technique or fault detection in high voltage transmission line using the wavelet transform during power swing condition [7, 8]. A method for identification of Line to Ground Fault in a standalone Wind Energy Conversion System using multi-resolution based DWT analysis has been proposed by Ray et al. [9]. Mishra et al. [10] proposed an improved method of transmission line fault classification using Wavelet Transform as well as impedance measurement and travelling wave theory. Chattopadhayay et al. [11] detected crawling of an induction motor by performing Wavelet decomposition of the stator current in Clarke Plane. Power Quality related different parameters have been assessed in Parke Plane by Chattopadhayay et al. [12]. Current Park Vector pattern approach is used for detection of electrical faults in an induction motor by S. Chattopadhyay et al. [13-15].

2. IEEE STANDARD 9 BUS SYSTEM

Figure 1. IEEE standard 9 Bus system

Single line diagram of IEEE standard 9 bus system is shown below in Figure 1. The power system network consists of three generators, generator 1, 2 and 3 connected to bus 1, 2 and 3 respectively. It also has three load buses–Bus 5, 6 and 8.

Voltage and current rating of generator 1, 2 and 3 are 247.5

MW and 16.5 kV; 192 MVA and 18 kV; 126 MVA and 13.8 kV respectively. The rating of the load connected to bus 5, 6 and 7 are 125 MW and 50 MVAR; 90 MW and 30 MVAR; 100 MW and 35 MVAR respectively. Work presented here, attempts to identify type of fault as well as location of LG and LL fault DWT based statistical parameter analysis of the waveforms of outgoing currents from different generator buses in faulty conditions. The faults are made to occur at the load buses. However, the work may be extended to other type of faults taking place at other locations of the network also.

3. FAULT SIMULATION

DWT based statistical parameter analysis of the outgoing currents from the generator buses in healthy as well as faulty conditions have been performed to detect type of the fault and its location. LG and LL faults are made to occur in the load buses. Switching time of faults is set to 0.3-0.5 sec. The sampling frequency is taken to be 1000 Hz and total time of simulation is 0.8 sec. Very small total simulation time has been chosen to minimize the data size generated by the simulation software and computation time of the analysis process.

4. RESULTS AND OBSERVATION

DWT based decomposition of the generator bus outgoing currents are performed and approximate and detail coefficients and the process is carried out for both healthy and faulty conditions. Nine levels of decomposition of the current waveforms have been performed. After obtaining approximate and details coefficients in each level RMS, skewness and kurtosis values are computed. Hence, total six parameters are taken into account-skewness of approximate coefficient (Sa), skewness of detail coefficient (Sd), kurtosis of approximate coefficient (Ka), kurtosis of detail coefficient (Kd), RMS of approximate coefficient (RMSa) and RMS of detail coefficient (RMSd). In the entire DWT analysis, Daubechies4 (DB4) wavelet is considered as the mother wavelet. Each generator bus outgoing current is analyzed separately. Percentage deviation of all the above mentioned parameters are calculated from their corresponding healthy condition values are calculated using equation 1 shown below. So, in a healthy case the percentage deviations of the above mentioned parameters will be zero.

% Deviation =
$$\frac{|(\text{Healthy value}) - (\text{Faulty value})|}{|\text{Healthy value}|}$$
(1)
× 100

Results and the corresponding observations are presented below for all three generator buses one by one.

4.1 Observation from generator Bus 1

Percentage deviations of Sa, Sd, Ka, Kd, RMSa and RMSd are calculated and shown in Table A.1–A.6 (Appendix). Data given in the earlier mentioned tables have been presented in the form of graphs in Figures 2-4.

From Figure 2(a) it has been noticed that when LG fault occurs at Bus 5, percentage deviation of Sa at 6^{th} level of decomposition is the greatest amongst all the parameters in all the levels. Figure 2(b) shows that for LL fault at Bus 5, greatest

amount of percentage deviation occurs in RMSd at level 3.

Figure 3. Percentage Deviation of different parameters of GEN Bus 1 for (a) LG fault at Bus 6 and (b) LL fault at Bus 6

From Figure 3(a) shows that percentage deviation of RMSd at level 6 is the greatest when LG fault takes place at Bus 6. Figure 3(b) shows that for LL fault at Bus 6, percentage deviation of Sd at 7^{th} level of decompositions becomes the greatest amongst all the parameters in all the levels.

Figure 4. Percentage deviation of different parameters of GEN Bus 1 for (a) LG fault at Bus 8 and (b) LL fault at Bus 8

From Figure 4 (a) shows that when LG fault occurs at Bus 8, percentage deviation of Kd at level 5 is the greatest amongst all the parameters. Figure 4(b) suggests that for LL fault at Bus 8, greatest amount of percentage deviation occurs in Sd at level 5.

4.2 Observation from generator Bus 2

Percentage deviations of RMS, skewness and kurtosis of approximate and detail coefficients are calculated and shown in Table A.7–A.12 (Appendix). Data given in these tables have been presented in the form of graphs in Figures 5-7.

From Figure 5(a) it has been seen that greatest amount of percentage deviation takes place in Sd at level 6 when LG fault occurs at Bus 5. Whereas, Figure 5(b) shows that RMSd has the greatest amount of percentage deviation at level 3 when LL fault takes place at Bus 5.

Figure 5. Percentage deviation of different parameters of GEN Bus 2 for (a) LG fault at Bus 5 and (b) LL fault at Bus 5

Figure 6. Percentage deviation of different parameters of GEN Bus 2 for (a) LG fault at Bus 6 and (b) LL fault at Bus 6

Figure 6(a) suggests that when LG fault takes place at bus 6, parameter Kd has the greatest amount of percentage deviation at level 5. Whereas, it has been observed from Figure 6(b) that for occurrence of LL fault at Bus 6, RMSd has the greatest amount of deviation at level 6.

Same procedure has been followed in case of LG and LL fault in Bus 8. In case of LG fault at Bus 8; Figure 7(a) given below, shows that the greatest amount of deviation is present in Kd at level 4. Figure 7(b) shown below suggests that for LL fault at Bus 8, Sa has the greatest amount of deviation is present in level 7.

Figure 7. Percentage deviation of different parameters of GEN Bus 2 for (a) LG fault at Bus 8 and (b) LL fault at Bus 8

4.3 Observation from generator Bus 3

Percentage deviations of RMS, skewness and kurtosis of approximate and detail coefficients are calculated and shown in Table A.13–A.18 (Appendix). Data given in these tables have been presented in the form of graphs in Figures 8-10.

From 8(a), it can be observed that greatest amount of deviation is present in parameter Sd at level 6, when LG fault occurs at Bus 5. Whereas, Figure 8(b) shows that for LL fault at Bus 8, the amount of percentage deviation is greatest in RMSd at level 3.

Same procedure is followed for LG and LL fault at bus 6 and the graphs are shown in Figure 9(a) and 9(b), which are

presented below. From Figure 9(a) it has been seen that for occurrence of LG fault at Bus 6 greatest amount of percentage deviation is present in Kd at level 5. Whereas, Figure 9(b) shows that for LL fault at Bus 6, Sd has the greatest amount of deviation at level 5.

Figure 8. Percentage Deviation of different parameters of GEN Bus 3 for (a) LG fault at Bus 5 and (b) LL fault at Bus 5

Figure 9.

Graphical representations of the results for LG and LL faults at Bus 8 have been presented below in Figure 10(a) and 10(b).

Figure 10. Percentage deviation of different parameters of GEN Bus 3 for (a) LG fault at Bus 8 and (b) LL fault at Bus 8

From Figure 10(a) it has been observed that when LG fault occurs at Bus 8, percentage deviation of Kd at level 4 is the greatest. Whereas, the percentage deviation of Sa at level 6 is the greatest when LL fault takes place at Bus 8.

From the above discussion it can be observed that for a particular generator bus outgoing current, with the variation of type of fault and location of occurrence, parameter having the greatest amount of percentage deviation and the level at which it takes place changes. For a particular fault type and location one specific parameter possesses the greatest amount of deviation at a specific level of decomposition. Hence, by identifying the parameter and the level at which it has the greatest amount of deviation, location as well as the type of fault can be found out. It can also be seen that out of six parameters, four parameters are Sa, Sd, Kd, RMSd. Moreover, values of these parameters at five different levels–3, 4, 5, 6, 7 are used.

5. RULE SET

Based upon the observations made in the previous section a simple rule set has been prepared which can be used for

discriminating the fault type and identifying the fault location by monitoring the outgoing current of any generator bus. It is presented in the Table 1 shown below.

		Generator Bus used for observation						
Emilt	Fault	GEN Bu	is 1	GEN Bu	is 2	GEN Bu	GEN Bus 3	
Tuno	Fault	Parameter with	Level	Parameter with	Level	Parameter with	Level	
Type	Location	greatest	of	greatest	of	greatest	of	
		% deviation	occurrence	% deviation	occurrence	% deviation	occurrence	
	Bus 5	Sa	6	Sd	6	Sd	6	
LG	Bus 6	RMSd	6	Kd	5	Kd	5	
	Bus 8	Kd	5	Kd	4	Kd	4	
	Bus 5	RMSd	3	RMSd	3	RMSd	3	
LL	Bus 6	Sd	7	RMSd	6	Sd	5	
	Bus 8	Sd	5	Sa	7	Sa	6	

Table 1. Rule set

6. CASE STUDIES AND VALIDATION

As real verification is practically impossible, the rule set presented in the previous section has been validated by simulating faults in IEEE standard 9 bus system. Three unknown cases are considered where the total time of simulation, fault duration time as well as the prefault condition of the loads have been varied. Results of the case studies have been given below in Table 2.

From Table 2 it has been observed that results in every case are very much optimistic.

Table	2.	Details	of the	e case	studies
Table	2.	Details	of the	e case	studies

C 1	K	nown Facts	Observation from	Parameter with	Level	
SI. No.	Simulation Details	Pre-fault Condition	Bus	greatest % deviation	of occurrence	Inference
	Total simulation time 1		GEN Bus 1	Kd	5	
	sec		GEN Bus 2	Kd	4	I C at Pus
1	and fault duration 0.3–0.5 sec	Full load at Bus 5, 6 & 8	GEN Bus 3	Kd	4	8
	Total simulation time		GEN Bus 1	Sd	7	
•	1.2 sec	Full load at Bus 5, 6 & No load	GEN Bus 2	RMSd	6	LL at Bus
2	and fault duration 0.4–0.7 sec	at Bus 8	GEN Bus 3	Sd	5	6
	Total simulation time		GEN Bus 1	RMSd	3	
	1.5 sec	Full load at Bus 5, 8 & Half	GEN Bus 2	RMSd	3	LL at Bus
3	and fault duration 0.6–0.9 sec	load at Bus 6	GEN Bus 3	RMSd	3	5

7. SPECIFIC OUTCOME

The work presented here, shows a method of finding out fault type and location based upon a DWT based statistical parameter analysis of outgoing currents from the generator buses. Six different parameters are obtained for each generator bus outgoing currents in different conditions. Observation of the parameter having the greatest amount of percentage deviation from its corresponding healthy condition values and the level of occurrence reveals the type of fault and the location at which it takes place. A rule set has been prepared depending upon the observations and it has also been validated using three unknown cases where different simulation time, fault duration and load condition are used than that used for the analysis and preparation of the rule set. Results of the case studies have been found out to be very much satisfactory.

8. CONCLUSION

In the above work, LG and LL faults have been dealt with using DWT based statistical analysis of the outgoing currents from the generator buses and faults are considered at the load buses. Total six parameters are considered-skewness of approximate coefficient, skewness of detail coefficient, kurtosis of approximate coefficient, kurtosis of detail coefficient, RMS of approximate coefficient and RMS of detail coefficient. IEEE standard 9 bus system has been utilized for this purpose. Using the method proposed here, type and location of a fault can be found out by monitoring the outgoing currents from the generator buses. Present work only considers two types of faults and fault locations to be the load buses. However, this work can be extended for other type of faults occurring at locations other than load buses.

REFERENCES

- Elkalashy, N.I., Lehtonen, M., Darwish, H.A., Taalab, A.I., Izzularab, M.A. (2008). Operation evaluation of DWT-based earth fault detection in unearthed MV networks. In 2008 12th International Middle-East Power System Conference, pp. 208-212. https://doi.org/10.1109/MEPCON.2008.4562385
- [2] Andanapalli, K.R., Nazeer, S.K., Jagadeesh, P., Etukuri, S. (2017). DWT based symmetrical fault detection method during power swing. In 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1-6. https://doi.org/10.1109/ICCPCT.2017.8074350
- [3] Dubeya, H.C., Mohanty, S.R., Kishor, N., Ray, P.K. (2011). Fault detection in a series compensated transmission line using discrete wavelet transform and independent component analysis: A comparative study. In 2011 5th International Power Engineering and Optimization Conference, pp. 22-26. https://doi.org/10.1109/PEOCO.2011.5970418
- [4] Xie, F., Haddad, A., Griffiths, H. (2013). Single-ended fault location method based on wavelet theory: Application to a double-circuit transmission line. In 2013 48th International Universities' Power Engineering Conference (UPEC), pp. 1-6. https://doi.org/10.1109/UPEC.2013.6714862
- [5] Abdullah, A. (2017). Ultrafast transmission line fault detection using a DWT-based ANN. IEEE Transactions on Industry Applications, 54(2): 1182-1193. https://doi.org/10.1109/TIA.2017.2774202
- [6] Devi, S., Swarnkar, N.K., Ola, S.R., Mahela, O.P. (2016). Detection of transmission line faults using discrete wavelet transform. In 2016 Conference on Advances in Signal Processing (CASP), pp. 133-138.

https://doi.org/10.1109/CASP.2016.7746152

- [7] Patel, T.K., Panda, P.C., Swain, S.C., Mohanty, S.K. (2017). A fault detection technique in transmission line by using discrete wavelet transform. In 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1-6. https://doi.org/10.1109/ICECCT.2017.8118052
- [8] Singh, M., Panigrahi, B.K., Maheshwari, R.P. (2011). Transmission line fault detection and classification. In 2011 International Conference on Emerging Trends in Electrical and Computer Technology, pp. 15-22. https://doi.org/10.1109/ICETECT.2011.5760084
- [9] Ray, D.K., Chattopadhyay, S., Sengupta, S. (2017). Multi-resolution analysis based line to ground fault discrimination in standalone wind energy conversion system in harmonic environment.
- [10] Mishra, R.C., Deoghare, P.M., Bhale, C., Lanjewar, S. (2014). Wavelet based transmission line fault classification and location. In 2014 International Conference on Smart Electric Grid (ISEG), pp. 1-5. https://doi.org/10.1109/ISEG.2014.7005616
- [11] Chattopadhyay, S., Mitra, M., Sengupta, S. (2006). Power quality analysis in park plane. Best of Book Volume on Modeling and Simulation, 8-16.
- [12] Chattopadhyay, S., Mitra, M., Sengupta, S. (2004). Intelligent power quality monitoring in an electric power system. Best of, 146-156.
- [13] Chattopadhayay, S., Mitra, M., Sengupta, S. (2010). Electric Power Quality. Springer.
- [14] Chattopadhyay, S., Mitra, M., Sengupta, S. (2007). Harmonic analysis in a three-phase system using park transformation technique. Model. Meas. Control A, 80(3): 42-57.
- [15] Das, N.G. (2008). Statistical Methods. McGraw Hill Education, 1st Edition.

APPENDIX

Table A.1 Percentage deviation of different parameters of GEN Bus 1 outgoing currents for LG fault at Bus 5

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	99.999	15.211	13.993	19.774	5.2	15.726
2	133.999	66.766	13.993	76.494	5.2	109.051
3	589.999	92.979	13.993	81.534	5.2	2323.788
4	655.999	119.936	13.993	379.765	5.2	1021.738
5	999.815	2429.487	13.993	933.977	5.2	115.739
6	2999.999	2640.625	13.866	170.576	5.198	9.653
7	1820	828.333	14.241	32.614	5.24	4.663
8	379.262	346.666	23.907	12.247	6.733	5.04
9	32.409	55.335	37.6197	20.721	14.078	5.945

Table A.2 Percentage deviation of different parameters of GEN Bus 1 outgoing currents for LL fault at Bus 5

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	100	15.211	13.993	19.774	5.2	15.726
2	100	66.766	13.993	76.494	5.2	109.051
3	100	92.979	13.993	81.534	5.2	2323.788
4	100	119.936	13.993	379.765	5.2	1021.738
5	100	2429.487	13.993	933.977	5.2	115.739
6	100	2640.625	13.866	170.576	5.198	9.653
7	970	828.333	14.241	32.614	5.24	4.663
8	1035.023	346.666	23.907	12.247	6.733	5.04
9	32.124	55.335	37.619	20.721	14.078	5.945

Table A.3 Percentage deviation of different parameters of GEN Bus 1 outgoing currents for LG fault at Bus 6

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	99.999	6.485	6.1	8.5	5.2	15.726
2	99.999	46.783	6.1	56.007	5.2	109.051
3	99.999	98.876	6.1	69.347	5.2	323.788
4	99.999	96.056	6.1	655.622	5.209	1021.738
5	99.999	155.128	6.093	1822.703	5.2	1115.739
6	99.999	946.875	5.990	137.063	5.198	2323.788
7	1023.333	670	6.277	21.134	5.24	499.663
8	159.447	333.333	13.9	5.392	6.733	56.04
9	22.005	41.006	25.187	11.78	14.07	5.945

Table A.4 Percentage deviation of different parameters of GEN Bus 1 outgoing currents for LL fault at Bus 6

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	126.422	6.616	2.693	8.592	3.239	74.211
2	126.434	47.653	2.693	56.963	3.239	381.496
3	126.295	100.057	2.693	73.117	3.239	1408.286
4	126.116	582.984	2.693	788.769	3.240	2191.527
5	122.777	1029.487	2.693	956.976	3.241	539.941
6	33.676	2657.812	2.598	157.387	3.243	322.737
7	656.666	3427.5	1.988	1.738	3.125	5.418
8	696.774	1230.476	17.667	0.546	8.089	4.581
9	35.707	93.048	52.672	5.445	130.512	6.911

Table A.5 Percentage deviation of different parameters of GEN Bus 1 outgoing currents for LG fault at Bus 8

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	100	73.891	28.326	82.418	0.834	8.696
2	100	97.458	28.326	96.078	0.834	72.833
3	100	97.45	28.326	82.215	0.834	1849.149
4	100	2.02	28.32	666.465	0.834	1258.423
5	100	1211.538	28.32	4183.274	0.834	55.165
6	100	3746.875	28.153	279.911	0.835	0.265
7	1653.333	426.666	27.557	30.129	0.815	1.211
8	897.695	397.142	47.998	23.852	0.497	0.851
9	70.233	141.92	59.5433	46.231	3.758	0.789

Table A.6 Percentage deviation of different parameters of GEN Bus 1 outgoing currents for LL fault at Bus 8

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	100.001	63.067	15.64	72.928	6.908	70.302
2	100.001	96.476	15.64	96.027	6.908	368.089
3	100.001	97.781	15.64	81.741	6.908	6007.505
4	100.001	36.246	15.633	362.521	6.909	4125.426
5	100.001	6867.094	15.626	3910.138	6.909	123.891
6	100.001	3581.25	15.5194	229.469	6.91	6.233
7	3373.333	459.166	12.548	2.144	6.873	7.818
8	2081.566	190.476	52.742	0.078	3.065	7.331
9	49.998	23.475	76.8148	3.3026	63.272	9.51

Table A.7 Percentage deviation of different parameters of GEN Bus 2 outgoing currents for LG fault at Bus 5

	~	~ 1			53.69	
DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	100	15.693	7.92	20.23	0.834	8.696
2	99.999	72.465	7.92	80.349	0.834	72.833
3	99.999	99.852	7.92	71.922	0.834	1849.149
4	99.999	343.809	7.92	880.028	0.834	1258.423
5	99.999	327.444	7.92	2787.337	0.834	55.165
6	99.999	6348.437	7.756	293.552	0.835	0.265
7	1012.903	764.406	8.118	26.072	0.815	1.211
8	255.825	333.018	16.302	6.932	0.497	0.851
9	24.009	46.165	28.486	14.008	3.758	0.789

Table A.8 Percentage deviation of different parameters of GEN Bus 2 outgoing currents for LL fault at Bus 5

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	176.14	16.054	3.646	20.501	6.908	70.301
2	23.843	73.674	3.646	81.75	6.908	368.089
3	24.191	99.969	3.646	79.684	6.908	6247.505
4	23.548	469.85	3.646	838.199	6.909	4125.426
5	17.236	3584.858	3.646	3973.585	6.909	123.891
6	99.999	4396.875	3.511	277.772	6.91	6.233
7	570.967	433.898	2.098	1.541	6.873	7.818
8	810.194	229.245	23.07	0.346	3.065	7.331
9	41.975	4.294	56.409	5.066	63.272	9.51

Table A.9 Percentage deviation of different parameters of GEN Bus 2 outgoing currents for LG fault at Bus 6

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	100	13.691	16.14	17.893	5.2	15.726
2	99.998	62.987	16.14	73.073	5.2	109.051
3	99.999	100.156	16.14	75.927	5.2	2323.788
4	99.999	297.571	16.14	789.527	5.2	1021.738
5	99.999	3963.722	16.133	4319.746	5.2	115.739
6	99.999	2007.812	14.833	177.63	5.198	9.653
7	1158.064	851.694	15.156	34.101	5.24	4.663
8	343.689	356.603	25.814	13.13	6.733	5.04
9	34.934	57.3619	38.959	22.188	14.07	5.945

Table A.10 Percentage deviation of different parameters of GEN Bus 2 outgoing currents for LL fault at Bus 6

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	99.997	13.71	3.886	17.945	3.239	74.211
2	100	63.02	3.886	72.967	3.239	381.496
3	100	100.252	3.886	82.423	3.239	640.286
4	100	347.534	3.886	618.437	3.24	3191.527
5	100	4356.782	3.886	3879.476	3.241	4191.527
6	100	3170.312	3.778	179.494	3.243	5608.286
7	970.967	454.237	2.748	1.162	3.125	1595.418
8	1038.834	223.584	27.812	0.53	8.089	4.5817
9	28.497	9.815	53.081	4.055	130.512	96.911

Table A.11 Percentage deviation of different parameters of GEN Bus 2 outgoing currents for LG fault at Bus 8

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	99.999	40.078	24.780	49.328	5.2	15.726
2	100	89.154	24.78	92.201	5.2	109.051
3	100	98.293	24.78	71.016	5.2	2323.788
4	100	124.488	24.78	4514.134	5.2	1021.738
5	100	3890.536	24.746	3989.139	5.2	115.739
6	100	4165.625	24.601	288.689	5.1981	9.653
7	100	422.033	24.059	26.505	5.24	4.663
8	924.757	388.679	44.081	20.735	6.733	5.04
9	68.129	134.049	58.732	42.242	14.07	5.945

Table A.12 Percentage deviation of different parameters of GEN Bus 2 outgoing currents for LL fault at Bus 8

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	99.999	35.081	14.6	43.699	3.239	74.211
2	100	87.018	14.6	90.932	3.239	381.496
3	100	100.185	14.6	71.781	3.239	3408.286
4	100	253.926	14.6	1335.055	3.24	1391.527
5	100	4980.126	14.586	4084.586	3.241	939.941
6	1980.001	3089.0625	14.479	252.857	3.243	0.737
7	6583.87	457.627	11.621	1.749	3.125	5.418
8	2050.485	195.283	50	0.357	8.089	4.581
9	50.942	18.404	77.441	3.0815	130.512	6.911

Table A.13 Percentage deviation of different parameters of GEN Bus 3 outgoing currents for LG fault at Bus 5

DUTI	9	<u> </u>	17	77.1	D 1/G	D1 (0.1
DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	100	15.693	23.04	20.2305	5.2	15.726
2	100	72.464	23.04	80.349	5.2	109.051
3	100	99.852	23.04	71.922	5.2	2323.788
4	100	343.809	23.04	880.028	5.2	1021.738
5	100	327.444	23.04	2787.337	5.2	115.739
6	100	3548.437	22.975	293.552	5.198	9.653
7	1558.62	764.406	23.346	26.072	5.24	4.663
8	657.758	333.018	33.932	6.932	6.733	5.04
9	47.09	46.165	54.88	14.008	14.07	5.945

Table A.14 Percentage deviation of different parameters of GEN Bus 3 outgoing currents for LL fault at Bus 5

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	100	16.054	12.053	20.501	3.239	74.211
2	100	73.6748	12.053	81.75	3.239	381.496
3	100	99.969	12.053	79.684	3.239	6408.286
4	100	469.85	12.053	838.199	3.24	4191.527
5	100	3584.858	12.046	3973.585	3.241	139.941
6	100	4396.875	11.941	277.772	3.243	0.737
7	2396.551	433.898	9.418	1.541	3.125	5.418
8	1694.827	229.245	49.472	0.346	8.089	4.581
9	45.573	4.294	72.48	5.066	130.512	6.911

Table A.15 Percentage deviation of different parameters of GEN Bus 3 outgoing currents for LG fault at Bus 6

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	99.999	13.691	19.173	17.893	0.834	8.696
2	99.999	62.987	19.173	73.073	0.834	72.833
3	99.999	100.156	19.173	75.927	0.834	1849.149
4	99.999	297.571	19.173	789.527	0.834	1258.423
5	99.999	3963.722	19.180	4319.746	0.834	55.165
6	99.999	2007.812	29.772	177.63	0.835	0.265
7	1217.241	851.694	9.651	34.101	0.815	1.211
8	412.5	356.603	29.803	13.13	0.497	0.851
9	42	57.361	46.982	22.332	3.758	0.789

Table A.16 Percentage deviation of different parameters of GEN Bus 3 outgoing currents for LL fault at Bus 6

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	100	13.710	7.2	17.945	6.908	70.301
2	100	63.020	7.2	72.967	6.908	368.089
3	100	100.252	7.2	82.423	6.908	6247.505
4	100	347.534	7.2	618.437	6.909	4125.426
5	100	7356.782	7.193	3879.476	6.909	123.891
6	100	1170.312	7.11	179.494	6.9103	6.233
7	1755.172	454.237	5.313	1.162	6.873	7.818
8	1338.793	223.584	40.259	0.53	3.065	7.331
9	34.241	9.815	60.588	4.055	63.272	9.51

Table A.17 Percentage deviation of different parameters of GEN Bus 3 outgoing currents for LG fault at Bus 8

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	99.999	40.0781	6.18	49.328	5.2	15.726
2	99.9999	89.154	6.18	92.201	5.2	109.051
3	99.999	98.293	6.18	71.016	5.2	2323.788
4	99.999	307.103	6.18	4342.718	5.2	1021.738
5	99.999	1890.536	6.18	3989.139	5.2	115.739
6	99.999	3165.625	6.037	288.689	5.198	9.653
7	958.62	422.033	5.73	26.505	5.24	4.663
8	209.051	388.679	17.883	20.735	6.733	5.04
9	99.018	134.049	41.227	42.242	14.07	5.945

Table A.18 Percentage deviation of different parameters of GEN Bus 3 outgoing currents for LL fault at Bus 8

DWT level	Sa	Sd	Ka	Kd	RMSa	RMSd
1	99.999	35.081	3.126	43.699	3.239	74.211
2	99.999	87.018	3.126	90.932	3.239	381.496
3	811.416	100.185	3.126	71.787	3.239	2408.286
4	1549.476	253.926	3.126	1335.055	3.240	2191.527
5	3155.999	3980.126	3.126	2984.586	3.241	139.941
6	3199.999	3089.062	3.058	252.8574	3.243	0.737
7	4568.965	457.627	1.822	1.749	3.125	5.418
8	633.189	195.283	19.281	0.357	8.089	4.581
9	46.31	18.404	56.94	3.081	130.512	6.911
						-