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 The steady boundary layer viscous incompressible fluid flow on a permeable flat plate 

embedded in a porous medium has been considered in the present study. The 

momentum transport phenomena are subjected to external magnetic field, 

permeability of the porous medium and cross flow due to presence of suction and 

injection. Moreover, the heat transfer phenomena consider the loss of thermal energy 

due to radiation and mass transfer phenomena accounts for the generative/destructive 

chemical reaction of the reactive species as well. Most importantly, the temperature 

dependent viscosity and thermal conductivity of the fluid makes the present study 

more realistic. The numerical solution presented through graphs brings out the 

interesting outcomes: The higher rate of suction enhances the fluid temperature. This 

observation is akin to the fact that the higher suction brings the molecules closure 

hence the heat transfer increases. The porous medium, embedding the plate, acts as a 

coolant by reducing the fluid temperature. 
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1. INTRODUCTION 

 

The analytical results of Magneto-hydro dynamics (MHD) 

flow parallel to a flat plate are used to determine the losses at 

the flat surface such as thin airfoils and side walls of large 

volume generators and accelerators. Due to number of 

applications in industrial manufacturing process, the problem 

of boundary layer flow past a flat plate has attracted the 

attention of many researchers since a few decades. The flow 

past a flat plate embedded in a porous medium has drawn the 

attention of many researchers as the porous material serves as 

the best coolant and regulates heat transfer. Swain et al. [1] 

have studied the effects of variable viscosity as well as 

variable thermal conductivity on stretching sheet embedded in 

a porous medium. Moalem [2] has studied the steady state heat 

transfer within porous medium with temperature dependent 

heat generation. Swain et al. [3] examined the impact of non-

uniform heat source/sink on MHD heat and mass transfer on 

stretching sheet embedded in a porous medium. 

The radiative flow of an electrically conducting fluid arises 

in many real world applications such as in electrical power 

generation, solar power technology and nuclear reactors. 

Moreover, radiative heat and mass transfer occur in geo-

physical and engineering applications, such as migration of 

moisture through air contained in fibrous insulations, 

dispersion and chemical pollutants through water-saturated 

soil [4, 5]. Radiation effects on boundary layer flow with and 

without magnetic field have been investigated by Mahmoud 

[6], Cortell [7], and Bataller [8]. Jat and Chaudhary [9] have 

presented similarity representation of MHD flow with heat 

transfer considering variable viscosity and thermal 

conductivity. Recently, thermal convective surface conditions 

are prescribed by several authors such as Swain et al. [10], 

Aziz [11] and Makinde [12] to solve different types of 

boundary value problems. Hamad et al. [13] considered the 

radiation effects on heat and mass transfer in MHD stagnation-

point flow over a permeable flat plate with thermal convective 

surface boundary condition, temperature dependent viscosity 

and thermal conductivity over a permeable porous plate using 

group transformation and studied the effects of pertinent 

parameters on flow characteristics. Barik et al. [14] analyzed 

the effect of chemical reaction and heat source on MHD flow 

of visco-elastic fluid past an exponentially accelerated vertical 

plate embedded in a porous medium. Recently, Swain et al. 

[15] have studied the MHD flow of viscoelastic nanofluid over 

a stretching sheet. Nayak et al. [16] examined the flow and 

mass transfer analysis of a micropolar fluid in a vertical 

channel with heat source and chemical reaction. 

To the best of our knowledge not much work has been 

reported on MHD flow over a permeable flat plate with 

convective surface boundary conditions as well as variable 

fluid properties (i) flow through porous medium with uniform 

porosity (ii) presence of volumetric heat source (iii) reacting 

species with chemical reaction of first order. In addition to 

above criteria, the study brings to its fold the works of Alam 

et al. [17], Bhattacharya [18], and Hamad et al. [13] as 

particular cases. The results of implicit finite difference 

method reported in the paper [13] are in good agreement with 

Runge-Kutta method of solution of the present problem. 

 
 

2. MATHEMATICAL FORMULATION 

 

Consider the steady two-dimensional flow of conducting 
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fluid on a surface y=0, the flow being confined to domain y>0. 

A uniform transverse magnetic field of strength B0 is applied 

perpendicular to the plate embedded in a fully saturated porous 

medium. The bottom surface of the permeable plate is heated 

by a convection current from a hot fluid of temperature Tf. The 

heat flux applied at the bounding surface gives rise to thermal 

boundary layer. The fluid properties are supposed to be 

constant except the dynamic viscosity and thermal 

conductivity. The flow is also affected by the cross flow i.e. 

suction/injection at the plate. The ambient state (free stream) 

velocity, temperature and concentration are denoted as 

( ) , and .u x T C    Figure 1 shows the flow geometry. 

 

 
 

Figure 1. Flow geometry 

 

The flow model assumes that no particle coagulation occurs 

and the magnetic Reynolds number as well as the electric field 

owing to polarization of charges is negligible. The governing 

equations following Kays et al. [19] and Hamad et al. [13] are 

given by: 
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where, subscripts ,w   denote wall conditions and free 

stream conditions respectively. 

The pressure distribution in the boundary layer is a function 

of x only, i.e. for a given x, P is constant throughout the 

boundary layer and can be evaluated using Euler equation of 

potential flow (just outside the boundary layer) by Yuan [20].  

In the free stream ( )u u x= and hence Eq. (2) reduces to: 
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Eliminating the pressure gradient term ( / )p x   between 

Eqns. (2) and (6), we get: 
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The temperature dependent viscosity and thermal 

conductivity vary linearly (Seddeek and Salem [21]) as: 
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where, ,k 
 are the constant undisturbed viscosity and 

undisturbed thermal conductivity, a0, b0 are a constant with 

b0>0, c is a constant which depends on the fluid. For our 

calculation the choice of a0=1. 

The radiative heat flux rq  along y  direction is described 

by the Rosseland approximation as
4

4 3 41

1

4
, 4 3

3
r

T
q T TT T

k y


 


=−  −


 we get: 

 
3 2

1

2

1

16

3

rq T T

y k y

  
= −

 
 (9) 

 

where, σ1 is the Stefan-Boltzman constant and k1 is the mean 

absorption coefficient. 

Using (8) and (9), the Eq. (3) becomes, 
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The quantity ( )fK c T T= −  is termed as thermal conductivity 

parameter. 

Introducing the following dimensionless variables and 

parameters.  
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Introducing the stream function ψ, defined by: 
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We get the following transformed momentum, energy, and 

concentration equations, 
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The corresponding boundary conditions (5) are given by: 
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Using the similarity transformation η=xf(y) in Eqns. (11)-

(14), we get: 
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The expressions for skin friction, rate of heat transfer and 

rate of mass transfer at the surface 0y =  are given by: 
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And their corresponding non-dimensional forms are: 
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3. NUMERICAL SOLUTION 
 

Numerical integration by Runge-Kutta method for solving 

Eqns. (15)-(17), exactly we shall adopt a step-by-step 

integration method along with shooting technique, by 

converting the two-point boundary value problem (BVP) into 

an initial value problem (IVP). In this method, the equations 

are reduced to a set of first order differential equations:  
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with the initial conditions: 
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To start the integration it is necessary to know all the 

required values at η=0 from which we start our forward 

integration. In the present problem q(0), r(0) and s(0) are not 

known. So, we are to provide the guess values to the unknowns 

along with known values to start the integration. There is an 

inbuilt self-corrective procedure in the MATLAB coding to 

correct the unknown guess values. Ones the corrected values 

are attended then the step-by-step integration by Runge-Kutta 

method is performed and the solution is obtained within the 

prescribed error limit by Howard [22].  

 

 

4. RESULTS AND DISCUSSION 

 

The system of Eqns. (15)-(17) with boundary conditions Eq. 

(18) are solved numerically by Runge-Kutta method with 

shooting technique. Figures 2 and 3 show that the results are 

in good agreement with the earlier work [13]. In the 

computation, we have restricted to low value of Sc which is 

consistent for air medium. The diffusing species are common 

gasses such as hydrogen (Sc=0.22), ammonia (Sc=0.78), 

Sc=0.1 (arbitrary). Further, we have restricted our discussion 

to a constant convective parameter b= 0.1. 

Figure 2 has been carefully designed to display momentum, 

thermal and solutal transport phenomena in the form of 

velocity, temperature, and concentration profiles. This 

validates our observation in the absence of additional 

parameters appeared in the governing equations. The effect of 

suction parameter fw is to increase the velocity irrespective of 

the presence or absence of porous medium but the reverse 

effect is observed in case of temperature and concentration 
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distribution. The same observation was reported by Hamad et 

al. [13] as outlined below. It can be observed that the velocity 

f   rises whilst temperature and concentration fall with rising 

fw. Also, we have noticed that the thickness of momentum, 

thermal and concentration boundary layers reduce with rising 

fw. Due to higher suction the fluid particles are brought closure. 

Hence, the thickness of the boundary layer decreases. Thus, 

vorticity diffusion is prevented. The physical interpretation of 

the figure also remains same but the numerical values of 

velocity, temperature and concentration at a fixed point say at 

η=0.2 appears slightly higher in our case which can be 

attributed to the presence of porous medium kp=0.5. Another 

interesting conclusion we derive in case of thinning of three 

boundary layers with an increasing suction which agrees well 

with the earlier work reported in literature. 

Figure 3 exhibits the effect of suction on temperature 

distribution. The curve I for kp=0, S=0 and kc=0 represents the 

work [13]. It is observed that temperature increases with 

higher value of heat source parameter. This is obvious due to 

increase in heat source parameter leads to higher diffusion of 

heat energy, so that temperature rises. Further, it is seen that 

presence of porous matrix reduces the temperature and acts as 

a coolant where as suction increases the temperature. 

 

 
 

Figure 2. Effect of fw on velocity, temperature and 

concentration distributions for S=0, Pr=0.7, M=0.1, R=1, 

Sc=0.1, A=0.1, K=0.5, a=1 and b=0.1 

 

 
 

Figure 3. Effect of fw, S and kp on temperature distribution for 

Pr=0.7, M=0.1, R=1, Sc=0.1, A=0.1, K=0.5, a=1 and b=0.1 

Figure 4 exhibits the concentration variation in response to 

rate of chemical reaction parameter kc. It is observed that an 

increase in kc from 0.0 to 4.0, leads to decrease the level of 

concentration because the increasing rate of destructive 

reaction (kc>0) the level of concentration is depleted. 

Figure 5 shows the effect of radiation on velocity and 

temperature. It is observed that increase in radiation contribute 

to enhance the velocity as well as temperature distribution in 

the entire flow domain because the radiative heat energy 

increases the momentum transport as well as thermal diffusion. 

The same observation was also made by Hamad et al. [13].  

 

 
 

Figure 4. Effect of fw, kc and kp on concentration distribution 

for Pr=0.7, M=0.1, R=1, Sc=0.1, A=0.1, K=0.5, a=1 and 

b=0.1 

 

 
 

Figure 5. Effect of R, kp and S on velocity and temperature 

distributions for Pr=0.7, M=0.1, R=1, Sc=0.1, A=0.1, K=0.5, 

a=1 and b=0.1 

 

Figure 6 displays the effects of Pr on velocity and 

temperature distribution. Prandtl number signifies the ratio of 

momentum diffusivity to thermal diffusivity. Fluid with lower 

Pr will possess higher conductivity. The role of Prandtl 

number is quite important in predicting the flow characteristics 

because this represents the ratio of kinematic viscosity and 

thermal diffusivity. Therefore, it is a measure of relative 

importance of viscosity and thermal diffusivity. Profiles for 

Pr=0.7 and 7 are relates to air and water respectively. It is clear 

from Figure 6 that an increase in S and kp, enhances both 
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velocity and temperature whereas opposite effect is observed 

in case of Pr. 

Figure 7 shows the effects of Schmidt number (Sc) and 

chemical reaction parameter (kc) on concentration profile. The 

Sc measures the molecular diffusivity of the chemical species. 

The values of Sc correspond to diffusing species of common 

interest in air medium. Sc=0.24, 0.30, 0.78 and 1.02 

correspond to He, H2, NH3 and CO2. The higher the Sc, heavier 

the species and lower the diffusivity property. It is observed 

that heavier species decrease the concentration. A higher value 

of Sc implies lower diffusion which causes fall of 

concentration. Similarly, the case of higher rate of chemical 

reaction explained earlier. 

 

 
 

Figure 6. Effect of Pr, kp and S on velocity and temperature 

distributions for M=0.1, R=1, Sc=0.1, A=0.1, K=0.5, a=1 and 

b=0.1 

 

 
 

Figure 7. Effect of Sc, kp and kc on concentration distribution 

for Pr=0.7, M=0.1, R=1, A=0.1, K=0.5, a=1 and b=0.1 

 

 

5. CONCLUSION 

 

From the present study the following conclusions are drawn: 

1. Higher values of volumetric heat source and suction 

enhance the temperature distribution since the higher suction 

brings the molecules closure, hence heat transfer increases but 

the presence of porous matrix reduces it. Therefore, 

embedding the plate in a porous medium acts as an insulation 

not allowing heat to pass from the plate to the fluid. 

2. Higher rate of destructive chemical reaction causes a 

fall in concentration. The above discussion is restricted to a 

constant value of convective parameter b, which appears in the 

boundary condition 1 (0)
(0)

1 (0)

b

Kb






+
=

−
. This condition 

pertaining to a surface temperature is responsible for 

convective heat. If b=0, implies θ(0)=1, a case of constant 

temperature at the plate. We have assigned b=0.1, K=0.5 in our 

study so that the result relates to constant thermal convection 

and conduction. For constant heat conduction, for fixed K, 

higher rate of convection leads to rise in plate temperature, so 

that temperature of the fluid falls which leads to decrease in 

momentum transport, resulting decrease in velocity (reported 

by Hamad et al. [13]).  
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NOMENCLATURE 

,u v velocity components along x and y axis

T, C fluid temperature, species concentration 

Tw, Cw wall temperature, wall species 

concentration 

T∞, C∞ temperature and concentration in the free 

stream 

vw mass transfer velocity 

ν=μ/ρ kinematic coefficient of viscosity 

μ, ρ coefficient of viscosity, density of the fluid 

σ, k electric conductivity, thermal conductivity 

α, cp thermal diffusivity, specific heat at constant 

pressure 

Dm = k/ρcp mass diffusivity of species in fluid 

hf, B0 heat transfer coefficient, magnetic field 

strength 

qr, σ1, k1 radiative heat flux, Stefan-Boltzman 

constant, mean absorption coefficient 

S, M heat source/sink parameter, magnetic 

parameter 

A, R viscosity parameter, radiation parameter 

b, fw convective heat transfer parameter, 

suction/injection parameter 

kp, kc porosity parameter, chemical reaction 

parameter 
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