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ABSTRACT. The objective of the present work is to develop a valid model to study heat and mass 

transfer of MHD free convection around a semi-infinite horizontal or inclined plate associated 

by chemical reaction, radiation heat flux and internal heat generation or absorption using non 

local similarity transformations. The credibility of this study impose to consider no-uniform 

conditions at the wall temperature and concentration (Tw(x) =T∞+axn, Cw(x) =C∞+bxm). 

Some plain and relatively simplified differential equations have been gotten, in view of a 

suitable numerical resolution. The expressions of the local Nusselt number, the skin-friction 

coefficient, and the local Sherwood number are obtained. The effects of different parameters 

such as Buoyancy ratio-indicating the relative importance of species and thermal diffusion N, 

Prandtl, Eckert and Schmidt numbers on velocity, temperature and concentration are carried 

out in this paper. These results can be useful in the complex design of flat plate solar captor 

used in renewable energy. 
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transfer of MHD free convection around a semi-infinite horizontal or inclined plate associated 

by chemical reaction, radiation heat flux and internal heat generation or absorption using non 

local similarity transformations. The credibility of this study impose to consider no-uniform 

conditions at the wall temperature and concentration (Tw(x) =T∞+axn, Cw(x) =C∞+bxm). 

Some plain and relatively simplified differential equations have been gotten, in view of a 

suitable numerical resolution. The expressions of the local Nusselt number, the skin-friction 

coefficient, and the local Sherwood number are obtained. The effects of different parameters 

such as Buoyancy ratio-indicating the relative importance of species and thermal diffusion N, 

Prandtl, Eckert and Schmidt numbers on velocity, temperature and concentration are carried 

out in this paper. These results can be useful in the complex design of flat plate solar captor 

used in renewable energy. 
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1. Introduction 

The free heat and mass transfer intervenes in many natural phenomena and 

industrial processes. The importance of the study of the heat and mass transfer by free 

convection on the infinite plates, no uniform conditions on the wall, and inclined is of 

recognized interest. For example, in renewable energy, some devices are used, like 

inclined flat plate solar captor, and necessitate an accurate design especially in the 

complex environment. For this, complex fluids can used to transfer the heat and some 

phenomenon should be taken into account, as the incident radiative heat flux, the 

presence of an external magnetic field or a mass transfer with chemical reaction 

between species.  

Classically, several analytical solutions and experimental measurements are 

advanced for the heat and mass transfer of the vertical plates in the case of the natural 

convection, few for horizontal or inclined pates.  

Gebhart and Pera (1971), Chen et al. (1980) were the first of study of heat and 

mass’ transfer along a vertical and inclined plate with uniform wall conditions. 

Hossain et al. (1996) studied the free convection flow from an isothermal plate 

inclined at a small angle to the horizontal. Anghel et al. (2001) presented a numerical 

solution of free convection flow past an inclined surface. 

The effect of electrically conducting fluid was studied in many publications such 

as Michiyoshi et al. (1976) and Gray (1979). Chemical reaction impact of laminar 

heat and mass transfer over a semi-infinite horizontal plate has been discussed by 

Anjalidevi and Kandasamy (1999). 

Chamka and Khaled (2001) has considered linear variation with space of the 

temperature and concentration at the wall of the study of MHD heat and mass transfer 

by free convection around an inclined plate. Singh et al. (2007) have presented the 

technique to obtain similarity solutions in a hydro magnetic flow of the free 

convection and mass transfer equations past an infinite vertical porous plate. Chen 

(2004) presented an analysis of the unsteady free heat and mass transfer over a 

permeable inclined surface with variable wall temperature and concentration. Effect 

of chemical reaction on magnetic free heat and mass transfer of a viscous, 

incompressible and electrically conducting fluid around a stretching sheet was done 

by Afify (2004). Alam et al. (2006) published their study concerning the Hall effects 

on the steady MHD free-convective flow and mass transfer over an inclined stretching 

sheet in the presence of a uniform magnetic field. The study of heat generation or 

absorption on the MHD free convection and mass transfer flow past an inclined semi-

infinite plat with uniform boundary conditions of temperature and concentration has 

been developed by Ali et al. (2013). In the presence of a magnetic field, thermal 

radiation and Joule effect heating are investigated for non-Newtonian fluids by 

Mabood et al. (2017) and by Kumar et al. (2017). In addition, Srinivasacharya and 
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Shafeeurrahman (2017) have considered via the concept of entropy generation, the 

chemical reacting effect for a nanofluid. 

The present investigation deals with the study of flow of a fluid on the coupled 

MHD free heat and mass transfer along a semi-infinite horizontal or inclined plate in 

the presence of several parameters such chemical reaction, heat flux radiation, and 

internal heat generation or absorption. The temperature and concentration in the wall 

are considered a linear or nonlinear variation with space. In the next section, 

mathematical model is established with the appropriate constitutive equations and 

more realistic boundaries conditions. In the same section, non-local similarity method 

is applied to above system and the three level techniques are implemented to obtain a 

new system easily solved by the classical routines. This section is ended by the report 

of quantities of interest. In the third section, results obtained by variation of some 

important dominant numbers are discussed. Some determinants values of the 

quantities of interest are dressed. 

2. Mathematical analysis 

The unsteady flow of a viscous incompressible and electrically conducting fluid 

past an infinite inclined plate from the horizontal with an acute angle γ, in the presence 

of heat generation/absorption, chemical reaction, and radiative heat flux has been 

considered. The temperature Tw and the concentration Cw on the wall vary linearly 

with the distance. Radiative heat flux value following x direction is very small with 

that in the y direction what explains the negligence of this value, A uniform magnetic 

field of strength B0 is imposed along the y axis, Boussinesq approximation is retained. 

Under these conditions, the flow can be shown to be governed by the following system 

of coupled linear partial differential equations along with boundary and initial 

conditions: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                             (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑔𝛽 cos 𝛾

𝜕

𝜕𝑥
∫ (𝑇 − 𝑇∞)𝑑𝑦

∞

𝑦
+ 𝜈

𝜕2𝑢

𝜕𝑦2 +  

𝑔𝛽(𝑇 − 𝑇∞) sin 𝛾 −
𝜎𝐵0

2

𝜌
𝑢 + 𝑔𝛽∗(𝐶 − 𝐶∞) sin 𝛾                           (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=∝

𝜕2𝑇

𝜕𝑦2 +
𝜎𝐵0

2

𝜌𝑐𝑝
𝑢2 +

𝜈

𝐶𝑃
(

𝜕𝑢

𝜕𝑦
)2 +

𝑄0

𝜌𝐶𝑃
(𝑇 − 𝑇∞) −

1

𝜌𝐶𝑃
(

𝜕𝑞𝑟

𝜕𝑦
)          (3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2 − 𝐾𝑟(𝐶 − 𝐶∞))                                        (4)  

The boundary conditions are defined as follow: 

𝐴𝑡 𝑦 = 0: 𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑎𝑥𝑛 , 𝑎𝑛𝑑𝐶 = 𝐶𝑤 = 𝐶∞ + 𝑏𝑥𝑚       (5) 
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𝐹𝑜𝑟 𝑦 → ∞: 𝑇 → 𝑇∞ 𝑎𝑛𝑑 𝐶 → 𝐶∞  

Where a and b are constants, n and m are exponents. u, v, T and C are velocity 

component in x direction, velocity component in y direction, temperature and 

concentration respectively. g is the acceleration due to gravity, Tw and Cw are the wall 

temperature and concentration respectively, T∞ and C∞ are the temperature and 

concentration of the uniform flow respectively, α is thermal conductivity, ν is the 

kinematic viscosity, Cp is the specific heat at constant pressure, k is the thermal 

conductivity of the fluid, ρ is density of the ambient fluid, σ is the electrical 

conductivity, P is the static pressure difference induced by the buoyancy force, β is 

the Volumetric coefficient of thermal expansion, β* is the Volumetric coefficient of 

thermal expansion with concentration, B0 is the externally imposed magnetic field in 

the y direction, Q0 is heat generation or absorption constant, qr is the component of 

radiative heat flux, D is the molecular diffusivity, Kris chemical reaction parameter. 

However, the problem can be simplified by using the Rosseland approximation 

which simplifies the radiative heat flux as: 

𝑞𝑟 = −
4𝜎∗

3𝐾∗

𝜕𝑇4

𝜕𝑦
                                                               (6)  

Where σ* and K* are the Stefan-Boltzman constant and the Roseland mean 

absorption coefficient respectively. To get T4 we apply Taylor series without taking 

into consideration upper order terms: 

𝑇4 ≈ 4𝑇∞𝑇 − 3𝑇∞
4                                                          (7)  

Using the above approximations (6) and (7), the energy equation (3) becomes: 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=∝

𝜕2𝑇

𝜕𝑦2 +
𝜎𝐵0

2

𝜌𝑐𝑝
𝑢2 +

𝜈

𝐶𝑃
(

𝜕𝑢

𝜕𝑦
)2 +  

𝑄0

𝜌𝐶𝑃
(𝑇 − 𝑇∞) +

1

𝜌𝐶𝑃
(

16𝑇∞𝜎∗

3𝐾∗

𝜕2𝑇

𝜕𝑦2)                                          (8)  

In order to obtain a similarity solution of the problem we introduce the following 

non-dimensional variables used by Chen et al. (1986) for 0°≤γ <90°: 

𝜉 = 𝜉(𝑥), 𝜂 =
𝑦

𝜉(𝑥)
=

𝑦

𝑥
(

𝐺𝑟𝑥 cos 𝛾

5
)1 5⁄                                      (9)  

The horizontal velocity components are u = ∂ψ/∂y and v = -∂ψ/∂x. It can be easily 

verified that the continuity equation (1) is identically satisfied and introduce the non-

dimensional form of velocity, temperature and the concentration as: 

𝑓(𝜉, 𝜂) =
𝜓(𝑥,𝑦)

5𝜈(𝐺𝑟𝑥 cos 𝛾/5)1/5  

𝜃(𝜉, 𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
                                                     (10)  
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Φ(𝜉, 𝜂) =
𝐶−𝐶∞

𝐶𝑤−𝐶∞
  

Grx is the local Grash of number. 

𝑓′′′′ + (3 + 𝑛)𝑓𝑓′′′ − (3𝑛 − 1)𝑓′𝑓′′ + [
(2−𝑛)

5
𝜂 + 𝜉] 𝜃′ −  

𝑛𝜃 −
(𝑛+3)

5
𝜉

𝜕𝜃

𝜕𝜉
− 𝑀𝑓′′𝜉

4−2𝑛

3+𝑛 + 𝜉𝑁Φ′ − (𝑛 + 3)𝜉 [𝑓′ 𝜕2𝑓′

𝜕𝜂𝜕𝜉
− 𝑓′′′ 𝜕𝑓

𝜕𝜉
] = 0     (11)  

1

𝑃𝑟
(1 + 𝑅)𝜃′′ + (𝑛 + 3)𝑓𝜃′ − 5𝑛𝑓′𝜃 − (𝑛 + 3)𝜉 (𝑓′

𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
) +  

𝑀𝐸𝑐𝑓′2
𝜉(4−2𝑛)/(3+𝑛) + 𝐸𝑐𝑓′′2

+ 𝑆𝜃𝜉(4−2𝑛)/(3+𝑛) = 0                     (12)  

1

𝑆𝐶
Φ′′ + (3 + 𝑛)𝑓Φ′ − 5𝑚𝑓′Φ + (𝑛 + 3)𝜉 (Φ′

𝜕𝑓

𝜕𝜉
− 𝑓′

𝜕Φ

𝜕𝜉
) − 𝐽Φ = 0       (13)  

Introduce new variables𝐹;  Θ and ℂ such as: 

𝐹 =
𝜕𝑓

𝜕𝜉
; Θ =

𝜕𝜃

𝜕𝜉
; ℂ =

𝜕Φ

𝜕𝜉
 . The equations (11), (12), and (13) become: 

𝑓′′′′ + (3 + 𝑛)𝑓𝑓′′′ − (3𝑛 − 1)𝑓′𝑓′′ + [
(2−𝑛)

5
𝜂 + 𝜉] 𝜃′ −  

𝑛𝜃 −
(𝑛+3)

5
𝜉Θ − 𝑀𝑓′′𝜉

4−2𝑛
3+𝑛 + 𝜉𝑁Φ′ − (𝑛 + 3)𝜉[𝑓′𝐹′′ −  𝑓′′′𝐹] = 0         (14) 

1

𝑃𝑟
(1 + 𝑅)𝜃′′ + (𝑛 + 3)𝑓𝜃′ − 5𝑛𝑓′𝜃 − 

(𝑛 + 3)𝜉(𝑓′Θ − 𝜃′𝐹) + 𝑀𝐸𝑐𝑓′2
𝜉(4−2𝑛)/(3+𝑛) + 𝐸𝑐𝑓′′2

+ 𝑆𝜃𝜉(4−2𝑛)/(3+𝑛) = 0   (15)  

1

𝑆𝐶
Φ′′ + (3 + 𝑛)𝑓Φ′ − 5𝑚𝑓′Φ + (𝑛 + 3)𝜉(Φ′𝐹 − 𝑓′ℂ) − 𝐽Φ = 0           (16) 

In the second step, we derivate the equations (14), (15), and (16) / ξ with neglecting 

the derivatives terms related to ξ of the new variables 𝐹;  Θ and ℂ which are minute, 

additional equations are then derived and we get: 

𝐹′′′′ + (3 + 𝑛)(𝐹𝑓′′′ + 𝑓𝐹′′′) + 𝜃′ − (3𝑛 − 1)(𝐹′𝑓′′ + 𝑓′𝐹′′) −
(6𝑛+3)

5
Θ +

[
(2−𝑛)

5
𝜂 + 𝜉] Θ′ + 𝑁(𝜉ℂ′ + Φ′) − (𝑛 + 3)[(𝑓′𝐹′′ − 𝑓′′′𝐹) + 𝜉(𝐹′𝐹′′ − 𝐹′′′𝐹)] −  

𝑀𝐹′′𝜉
(4−2𝑛)

3+𝑛 − 𝑀𝑓′′
(4−2𝑛)

(3+𝑛)
𝜉

1−3𝑛

3+𝑛 = 0                                      (17) 

1

𝑃𝑟
(1 + 𝑅)Θ′′ + (𝑛 + 3)(𝐹𝜃′ + 𝑓Θ′) − 5𝑛(𝐹′𝜃 + 𝑓′Θ) − (𝑛 + 3)𝜉(𝑓′Θ −

𝜃′𝐹) − (𝑛 + 3)𝜉(𝐹′Θ − Θ′𝐹) + 2𝐸𝑐𝐹′′𝑓′′ + 𝑀𝐸𝑐𝑓′2 (4−2𝑛)

(3+𝑛)
𝜉

1−3𝑛

3+𝑛 +  
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2𝑀𝐸𝑐𝑓′𝐹′𝜉
4−2𝑛
3+𝑛 + 𝑆Θ𝜉

4−2𝑛

3+𝑛 + 𝑆𝜃
(4−2𝑛)

(3+𝑛)
𝜉

1−3𝑛

3+𝑛 = 0                           (18)  

1

𝑆𝐶
ℂ′′ + (3 + 𝑛)(𝐹Φ′ + 𝑓ℂ′) − 5𝑚(𝐹′Φ + 𝑓′ℂ) −  

𝐽ℂ + (3 + 𝑛)[(Φ′𝐹 − 𝑓′ℂ) + 𝜉(ℂ′𝐹 − 𝐹′ℂ)] = 0                        (19)  

Where 

𝑀 = 𝜎𝐵0
2(tan 𝛾)2 /𝜇𝛼1

10/(3+𝑛)
: Magnetic parameter with 𝛼1 = [

𝑎𝑔𝛽

𝜈2
(cos 𝛾/

5)]
1/5

tan 𝛾. 

𝐸𝑐 = [
5𝜈

𝑥
(Grxcos 𝛾/5)2/5]

2

/Cp(𝑇𝑤 − 𝑇∞): Eckert number 

𝑆𝑐 =
𝜈

𝐷
: Schmidt number; 𝑆 = 𝑄0(tan 𝛾)2 /𝜇𝐶𝑝𝛼1

10/(3+𝑛)
: Heat generation or 

absorption parameter,  

𝑅 = 16𝜎∗𝑇∞/3𝐾∗𝑘: Thermal radiation parameter,  

𝐽 = 𝐾𝑟𝜌(tan 𝛾)2 /𝜇𝛼1
10/(3+𝑛)

: Chemical reaction parameter, 

𝑁 = 𝛽∗(𝐶𝑤 − 𝐶∞)/𝛽(𝑇𝑤 − 𝑇∞) : Buoyancy ratio-indicating the relative 

importance of species and thermal diffusion, 

𝑃𝑟 =
𝜇𝐶𝑝

𝑘
: Prandtl number,  

( )’ prime indicates differentiation with respect to η.  

Boundary layers become: 

𝑓(𝜉, 0) = 𝑓′(𝜉, 0) = 𝑓′(𝜉, ∞) = 0 

𝐹(𝜉, 0) = 𝐹′(𝜉, 0) = 𝐹′(𝜉, ∞) = 0 

𝜃(𝜉, 0) = 1, 𝜃(𝜉, ∞) = 0                                              (20) 

Θ(𝜉, 0) = Θ(𝜉, ∞) = 0 

Φ(𝜉, 0) = 1, Φ(𝜉, ∞) = 0 

ℂ(𝜉, 0) = ℂ(𝜉, ∞) = 0 

The local Nusselt number, the skin-friction coefficient, and the local Sherwood 

number are important physical parameters. These can be defined and derived as: 

 

𝑁𝑢𝑥 =
ℎ𝑥

𝑘
= −(𝐺𝑟𝑥 cos 𝛾/5)

1

5 𝜃′(𝜉, 0)                               (21) 

𝜏𝑤 = 𝜇(𝜕𝑢 𝜕𝑦)⁄
𝑦=0

=
5𝜈𝜇

𝑥2 (𝐺𝑟𝑥 cos 𝛾/5)3/5 𝑓′′(𝜉, 0)                   (22) 
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𝑆ℎ𝑥 =
𝑚𝑤

(𝐶𝑤−𝐶∞)
(

𝑥

𝐷
) = −(𝐺𝑟𝑥 cos 𝛾/5)1/5 Φ′(𝜉, 0)                     (23) 

With 𝑚𝑤 = −𝐷(𝜕𝐶 𝜕𝑦)⁄
𝑦=0

: is the mass flux 

3. Results and discussion  

The set of coupled ordinary differential Equations (14)-(19), subject to the 

boundary conditions (20) was solved numerically using finite difference method via 

Lobatto III approach. The impact of Buoyancy ratio-indicating N, Prandtl number Pr, 

Eckert number, and Schmidt number are examined and discussed in detail. 

The effect of Buoyancy ratio-indicating N on the velocity, temperature, and 

concentration is shown on the Figure 1. The reduction of both the temperature and 

concentration appears whenever N moves up. At the proximity of the wall, the velocity 

and N are proportional, but inversely proportional far away from the wall. The effect 

of mass buoyancy on the velocity is clear when N=10. Differences between the 

velocities are noted near the wall. The temperature and concentration of species 

profiles are not affected by the variation of N, result expected because the buoyancy 

is strictly a flow parameter. 

 

Figure 1. Velocity a), temperature b), and concentration c) profiles for various 

values of N with n=1; Pr=0.72; ξ =5; M=1; Ec=1; S=0.2; R=1; m=2; Sc=0.5; J=2 
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Figure 2. Velocity a), temperature b), and concentration c) profiles for various 

values of Pr with n=1; ξ =5; M=1; Ec=1; S=0.2; R=1; m=2; Sc=0.5; J=2, N=1 

The velocity, temperature and concentration are affected by Prandtl number Pr, 

that’s what Figure 2 clarifies. When the Prandtl number increases, the velocity and 

temperature of the fluid go down considerably. As the fluid becomes more viscous or 

less conductive, the velocity and the temperatures profiles are reduced in the 

respective boundary layers. This is not the case for the concentration profile which is 

not affected by the Prandtl number.  

The influence of Schmidt number Sc on velocity, temperature and concentration 

of the fluid boundary layer is shown on Figure 3. A slight rise of the thermal boundary 

layer is observed when Schmidt number Sc increases, but the velocity and 

concentration decrease, caused by a relatively more viscous fluid than mass diffusive. 

The thickness of the concentration boundary layer is reduced, because a big diffusivity 

is imposed by the specific fluid. Sc does not act on the temperature profile. 

Figure 4 presents typical profiles for the velocity, temperature and concentration 

for various values of Eckert number Ec. As shown, the velocity and the temperature 

are increasing with increasing Ec, the natural convection is dominant over the thermal 

capacity of the fluid. The concentration of species profile decreases slightly as Ec 

increase. 
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Figure 3. Velocity a), temperature b), and concentration c) profile for various 

values of Sc with n=1; Pr=0.72; ξ =5; M=1; Ec=1; S=0.2; R=1; m=2; J=2; N=1 
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Figure 4. Velocity a), temperature b), and concentration c) profile for various 

values of Ec with n=1; Pr=0.72; ξ=5; Ec=1; S= - 0.5; R=1; Sc=0.5; m=2; J=2; 

N=1 

Table 1. The effect of parameters Ec, Sc, N, and Pr on 

− 𝜃′(𝜉, 0), 𝑓′′(𝜉,0), 𝑎𝑛𝑑 – 𝛷′(𝜉, 0) 𝑤𝑖𝑡ℎ 𝑛 = 1;  𝜉 = 5;  𝑆 =  0.2;  𝑅 = 1;  𝑚 =
2;  𝐽 = 2;  𝑀 = 1 

Ec Sc N Pr −𝜃′(𝜉, 0) 𝑓′′(𝜉, 0) – Φ′(𝜉, 0) 

0.5 0.5 1 0.72 0.7206 3.0824 1.8049 

1    0.4712 3.1498 1.8206 

1.5    0.1969 3.2220 1.8371 

Slp    -0.5486 0.1444 0.033 

1 0.5 1 0.72 0.4712 3.1498 1.8206 

1 0.4910 3.0164 2.4259 

5 0.5290 2.7252 4.6601 
 

Slp   0.01156 -0.086 0.6032 

1 0.5 0.5 0.72 0.5235 2.6531 1.7543 

1 0.4712 3.1498 1.8206 

3 0.1570 4.9834 2.0295 
 

 Slp  -0.1496 0.9277 0.1084 

1 0.5 1 0.1 0.2827 3.8344 1.9741 

0.72 0.4712 3.1498 1.8206 

3 0.5746 2.6477 1.6663 

   Slp 0.0856 -0.3580 -0.0957 
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Table 1 represents values of the local Nusselt number, the skin-friction coefficient, 

and the local Sherwood number. According to more demonstration, it is useful to use 

the slope of the linear regression through the data points method to show the influence 

of one parameter on the quantities of interest. As we can see in this table, Strong 

influence of the buoyancy parameter and the Prandtl number are observed on the 

friction coefficient, while the Schmidt number have no effect on the Nusselt number 

and the friction coefficient. In the same way, the Eckert number does not affected the 

Sherwood number. Finally, it is clear that in others cases, the quantities of interest are 

moderately influenced by the parameters. 

4. Conclusion 

In this paper, a numerical analysis is presented to investigate the influence of 

Eckert, Schmidt, Prandt numbers, and Buoyancy ratio-indicating N on the MHD free 

heat and mass transfer around horizontal or inclined plate in the presence of chemical 

reaction, radiation heat flux and internal heat generation or absorption.  

The outcomes of this present analysis are listed below: 

The flow conducted with a strong buoyancy parameter and with a fluid that has a 

great Prandtl number can lead to an undesirable friction coefficient. 

The variation of the Eckert and Prandtl numbers, the buoyancy parameter affects 

moderately the Nusselt number.  

These preliminary results can help the designer to adjust the parameters and 

numbers in order to produce more efficiency of the flat plate solar captor.  
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