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ABSTRACT 

  This paper focuses in finding a suitable, effective, and easy to use method, to avoid the frequent mistakes that are presented by the poor 

flow of water inside the fuel cell during its operation. Towards this aim, the artificial intelligence technology is proposed. More specifically, 

a neural network model is used to enable monitoring the influence of the humidity content of the fuel cell membrane, through employing 

electrochemical impedance spectroscopy method (EIS analysis). This technique allows analyzing and diagnosing PEM fuel cell failure 

modes (flooding & drying). The benefit of this work is summed up in the demonstration of the existence in a simple way that helps to define 

the state of health of the PEMFC. 
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1. INTRODUCTION  

   

  No alternative fuel today meets public acceptance for 

competing with traditional fossil fuels, which have benefited 

from nearly a century of continuous improvement by the oil 

industry. Currently, the energy crisis and the increase in the 

level of pollution are major problems worldwide. New 

renewable and clean energy sources must, therefore, be 

considered and this will be one of the eminent challenges in 

these years, both economically and environmentally [1-2]. 

Soon, fuel cell technology will be considered as a 

renewable primary energy source. The fuel cell will generate 

electrical energy from hydrogen; this is why it has become 

one of the key energy converters for the future, whether for 

stationary and on-board applications (laptops, cars, buses, 

planes, scooters, boats, and submarines) [3]. 

There are various types of fuel cells which are classified 

based on the nature of the electrolyte and/or the operating 

temperature. Among these categories of the fuel cell, we find 

PEM (Polymer Exchange Membrane) fuel cell. The 

electrolyte (i.e. polymer membrane) allows the transport of 

protons to the cathode side from the anode side. The electrons, 

meanwhile, move inside external load, thereby producing 

useful electrical power. The overall electrochemical reaction 

occurring throughout the PEMFC is defined as follows:  

 

O2 + 2H2→ 2H2O  + Electrical energy + Heat                   (1) 

 

The enthalpy energy of the reaction can be calculated using 

Hess's law Eq. (2). Under standard conditions of pressure 

and temperature (1Bar and 298K or 25 ° C): 

 

Δ𝑟𝐻 = Σ𝜈𝑖𝛥𝐻𝑖                                                                    (2) 

 

Currently, many researchers revolve around augmenting 

the service life and understanding the aging mechanisms in a 

fuel cell system, e.g. modifying air flow rate, humidifying 

gases, etc. to confirm the proper functioning of the PEMFC. 

Therefore, the diagnosis of PEMFC (i.e. the technique of 

detection and identification of faults) are treated essentially 

in the literature, for instance, the works in [4-8].  

The fuel cell must operate under conditions where the speed 

of evaporation and evacuation of water is slower than its 

production’s speed to keep the membrane hydrated. Some 

operating conditions applied to the fuel cell may lead to 

produce two types of antagonistic faults (drowning and 

drying) as displayed in Figure 1. Generally, the detected 

faults are linked to the management of water in the membrane 

[10-13]. Among the most used methods for characterization 

is electrochemical impedance spectroscopy (EIS). This 

method is employed to measure the value of the electrical 

resistance or for monitoring degradation [14–18]. During 

each degradation phase, EIS can be carried out to 

characterize the impedance and describe its evolution of the 

parameters in order to allow differencing between drying and 

flooding.  

There are a significant amount of methodological 

approaches to identify and diagnose a fuel cell system, which 

can be classified into five families, i.e. semi-empirical 

models, knowledge models, black-box models, empirical 

approaches, and finally information processing techniques. 

These methodologies can be normally divided into two 

groups: so-called static methods or so-called dynamic 

methods. The static approach is particularly interesting to 

make a technological choice concerning like the catalyst or 

to size components of the cell). While, dynamic methods are 

preferable when one wishes to analyze transient phenomena 

such as a sudden change of a set point or a parameter. 
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Figure 1.Diagram of the PEMFC components in operation, received from the visualization of XCT.[9] 

 

 

  Many researchers have proposed the use of neural network 

method to diagnosis the PEM fuel cells [10, 19-22]. For 

example, the authors in [22] studied the methodology of a 

dynamic neural network to control the process of a system 

(PEMFC). The objective of their work is to follow the 

variations imposed on the system, starting with the 

introduction of a delay line at the input of the (NNT) to obtain 

a dynamic (NNT) control model. Steiner et al. [10] proposed 

a model using (NNT) and they demonstrated the difference 

between the normal functioning deliberate by a neural 

network and the real functioning, in order to classify the 

health states (SOH) of the fuel cells (flood, normal 

functioning, and drying out). Jonghoon et al. [21] explored 

diagnostic approach employing pattern recognition model 

identification (FCOV) based on Hamming NNT application. 

to select the value of (ΔRd) of the cell, and then use it to 

diagnose the state of a cell. While, Cadet et al. [20] have 

proposed indicators allowing evaluating the diagnostic 

performances, from giving specific equations to assess the 

degree of cell's humidity. In order to model power supply 

purpose for an embedded system of (PEMFC), Jeme et al. [19] 

have designed a neural network model that it will be possible 

to carry out developments to control the transfer of energy in 

a fuel cell vehicle Meng Shao et al. [23] have designed the 

PEMFC dynamic model, which is built and simulated using 

MATLAB. In this work, the ANN ensemble for the fault 

diagnosis (i.e., Fault in the stack cooling system; Increasing 

of fuel crossover; Fault in air delivery system; Fault in 

hydrogen delivery diagnosis) is built to improve the stability 

and reliability of the PEMFC systems.  The authors in [27] 

studied the technique to predict water activity in (PEMFC) 

from the (EIS) and adapted a neuro-fuzzy inference system 

(ANFIS) as an estimator. Slimane Laribia et al. [30] have 

defined and implemented a method employing an artificial 

neural network to create an optimal impedance model of the 

(PEMFC), which respects the mass transfer theory, across the 

physical parameters of the (EIS) model. Based on their ANN 

model, the authors have diagnosed PEM fuel cell failure 

modes (flooding & drying). For other works on diagnostic of 

PEMFC using EIS method, the reader is encouraged to refer 

to [17,34-36 ]. 

 

 Since the development of control systems in industrial 

applications must minimize the number of instruments for 

simple methodological diagnosis, in this study, we use a 

black box model based on neural network, because it is easy 

and quick to implement. More specifically, this work aims to 

determine the state of the electrochemical response during 

the use of the fuel cell through designing a neural network-

based strategy for the diagnostic of PEM fuel cell to fulfill 

the efficiency needs. 

The contributions of our work can be summarized as 

follows 

- A fast neural network-based model to diagnosis of PEM 

fuel cell.  

- The proposed model could be useful for industrial 

applications. 

The rest of this paper is organized as follows. Section 2 

discusses the principle features of fuel cell. Section 3 presents 

the proposed controller model using neural network for 

diagnostic of PEMFC. Section 4 provides the obtained 

results. Finally, the paper is concluded in section 5. 

 

2. RINCIPLE FEATURES OF FUEL CELL 

2.1 Structure of the PEMFC system 
 

Figure 2 shows the operation of a fuel cell core, which 

requires a large number of auxiliaries essential for a proper 

functioning. The overall system is called the fuel cell system, 

that comprises the cell core and the auxiliaries (i.e. the 

hydrogen system which supplies the anode with hydrogen 

gas, the air system provides the cathode with oxygen, The 

key role of the valve is to regulate the pressure in the two 

systems (i.e., Air compressor and Hydrogen source) through 

the pressure sensor. Whilst, the humidifier and the cooling 

system maintain the humidity level and the temperature of 

the fuel cell, respectively) [19]. The behavior of the stack is 

strongly influenced by that of the auxiliaries, for instance, the 

humidification subsystem (drying or over-humidification of 

the membrane) reduces the production of electrical energy 

and limits the life of the PEMFC. 
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Figure 2.Structure of a PEM fuel cell system. [23] 

 

2.2 Model of PEM fuel cell 

 

The model of the assembly selected is that presented by JC 

Amphlett et al [add reference], this electrochemical model 

can be used to describe the dynamic behavior of an assembly 

of the PEMFC; it makes it possible to take into account the 

different parameters that are essential for a good result. 

At the level of an elementary cell, the quasi-static model is 

used to predict the voltage response of the cell as a function 

of current, temperature, partial pressures of the reactive gases, 

and the hydration of the membrane. The real potential of a 

PEMFC is decreased in comparison with the Nernst potential 

due to the polarizations such as activation, ohmic, and 

concentration. This express is given as   [23- 25]: 

 

Vcell = ENerst− Vact− Vohm − Vcon                     (3) 

 

The thermodynamic potential is defined by a Nernst 

equation in developed form as [12], [14], [23]: 

 

 𝐸𝑛𝑒𝑟𝑠𝑡 = 1,229 − 0,85. 10−3(𝑇 − 298,15)                              

+ 4,31. 10−5. 𝑇. [𝐿𝑛(𝑃𝐻2)

+
1

2
𝐿𝑛(𝑃𝑂2)]                                             (4) 

 

Where T denotes the cell temperature [K]. PH2 and PO2 are 

partial hydrogen and oxygen pressures [atm]. 

Note that the activation polarization at the anode increases 

with the current density, its expression can be written in the 

form [12], [23], [31], [33]: 

 

𝑉𝑎𝑐𝑡 = 𝜉1 + 𝜉2. 𝑇 + 𝜉3. 𝑇.𝑙𝑛 𝑙𝑛 (𝐶𝑂2)  + 𝜉4 𝑙𝑛 𝑙𝑛 (𝐼𝑠𝑡𝑎𝑐𝑘)  (5) 

 

Where: I stack are the operating current of the fuel cell (A), 

and ξ1; ξ 2; ξ 3; ξ 4 are the parametric coefficients appropriate 

to each fuel cell model, Table 1 identifies the exact 

parametric coefficients used in our model, T are the 

temperature of fuel cell. CO2 is the concentration of oxygen 

in the catalytic interface. It is expressed by Henry's law as 

follows:   

 

𝐶𝑂2 =
𝑃𝑂2

5,08.106.𝑒
(
−498

𝑇)

                                                        (6) 

The losses of the concentration polarization are given by 

the following relation: 

 

𝑉𝑐𝑜𝑛 = −𝐵. 𝑙𝑛 (1 −
𝐽

𝐽𝑚𝑎𝑥
)                                               (7) 

 

Where B is an empirical constant that depends on the type 

of FC and its operating state [15], [26]. J is the current density 

of the permanent operation; Jmax is the maximum current 

density. 

 

The electrolyte and the electrodes obey Ohm's law. We can 

express the ohmic losses by the following equation: 

 

𝑉𝑜ℎ𝑚𝑖𝑐 = 𝐼𝑠𝑡𝑎𝑐𝑘(
𝑡𝑚

𝜎𝑚
+ 𝑅𝐶)                                                  (8) 

 

Steam diffusion coefficient of water vapor in the membrane 

is calculated by[12], [27]: 

 

 𝜎𝑚 = (0,00519𝜆 − 0,00324) 𝑒𝑥𝑝 

                                        𝑒𝑥𝑝 (1268 (
1

303
−

1

𝑇𝑓𝑐(𝐾)
))                 (9) 

 

The water content of the membrane is presented as: 

 

  𝜆 = {0,043 + 17,81𝜙 − 39,85𝜙2 + 36𝜙3, 0 ≤ 𝜙 ≤
1 14 + 1,4(𝜙 − 1) , 1 ≤ 𝜙 ≤ 3                                      (10) 

 

The problem of water management is to maintain a constant 

coefficient of hydration of the membrane. The latter is 

sensitive to drying and flooding [28]; these two constraints 

slow the speed of gas passage and degrade the membrane. 

Therefore, it is very important to follow the state of relative 

humidity to keep the membrane properly hydrated and given 

as [27], [32], [33]. 

 

𝜑 =
𝑃𝑤𝑜𝑢𝑡

𝑃𝑠𝑎𝑡
                                                                          (11) 

 

The water vapour partial pressure Pwout is related to the 

absolute pressure at the output of the stack Pexit (atm), as 

represented by the following equation: 

 

𝑃𝑤𝑜𝑢𝑡 =
(0,42+𝜆𝜓)𝑃𝑒𝑥𝑖𝑡

𝜆(1+𝜓)+0,21
                                                       (12) 
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The saturated vapour pressure Psat(atm) depends on the 

temperature, which is given by the following relation. 

 

𝑃𝑠𝑎𝑡 = 105 𝑒𝑥𝑝 𝑒𝑥𝑝 (13,7 − (
5120

𝑇𝑎𝑖𝑟+273,15
) )                  (13) 

 

ψ is calculated by: 

 

𝜓 = (
𝑞𝑤𝑖𝑛

𝑞𝑂2𝑖𝑛+𝑞𝑟𝑒𝑠𝑡
)                                                             (14)  

 

{𝑞𝑂2𝑖𝑛 =
𝜆.𝐼𝑠𝑡𝑎𝑐𝑘

4.𝐹
 𝑞𝑟𝑒𝑠𝑡 = 3,76

𝜆.𝐼𝑠𝑡𝑎𝑐𝑘

4.𝐹
                               (15) 

     

qwin: molar flow air in the inlet. 

qO2in: the molar oxygen flow rate at the inlet. 

qrest: the molar flow rate of non-oxygen (N2) in the air. 

 The humidity of the membrane is affected in several 

parameters like humid airflow qwin. 

 
 

Figure 3.Relative humidity (%) curve as a function of the 

water flow rate input in PEMFC. 

 

Figure 3 shows the change of humidity when changing qwin 

and its relationship to the state of PEMFC when the 

temperature is constant. During the change of the value of 

qwin, we can notice that there are three divided regions 

according to the percentage of relative humidity: 

- qwin < 0.4*10-5 : too dry.  

- qwin > 1.5*10-5: too wet. 

  To make fuel cell operates in normal conditions, the humid 

air flow must be between these two mentioned values. 

 

 
Figure 4. Simplified dynamic model 

 

Figure 4 presents PEMFC in the form of an electrical circuit 

in a simple structure i.e. a voltage source corresponding to 

the Nernst potential in series with some resistances 

representing the voltage drops. Also, the fluid dynamics have 

been taken into account through using equations (16-19), 

involving the partial pressure of hydrogen (respective oxygen) 

and the flow of hydrogen entering the cell (respective 

oxygen).  

 

The global dynamic models help to make it possible to 

predict the electrical response (voltage or current) of the stack 

[26]. 

 

𝑃𝐻2 =

1

𝐾𝐻2

1+𝜏𝐻2.𝑆
(𝑞𝐻2 − 2𝐾𝑟𝐼𝑠𝑡𝑎𝑐𝑘)                                     (16) 

 

𝜏𝐻2 =
𝑉𝑎𝑛

𝑅.𝑇.𝐾𝐻2
                                                                    (17) 

 

𝑃𝑂2 =

1

𝐾𝑂2

1+𝜏𝑂2.𝑆
(𝑞𝑂2𝑖𝑛 − 2𝐾𝑟𝐼𝑠𝑡𝑎𝑐𝑘)                                   (18) 

 

𝜏𝑂2 =
𝑉𝑎𝑛

𝑅.𝑇.𝐾𝑂2
                                                                     (19) 

 

KH2: gain of the hydrogen flow. 

KO2: gain of the oxygen flow. 

τH2: time constant of the hydrogen flow. 

τO2: time constant of the oxygen flow. 

 

2.3 Modeling of the PEMFC impedance model 

 

 Electrochemical Impedance Spectroscopy is a widely used 

method for fundamental analysis of existing phenomena in 

electrochemical devices. In a PEMFC, the equivalent 

impedances are used to determine the electrochemical 

parameters (double layer capacity, resistances of the 

membrane and connections, charge transfer resistance, etc.) 

or to analyze the internal behavior of the PEMFC (influence 

of the humidification and drying of the membranes [10], 

monitoring of the lifetime of the PEMFC [29]. The most 

commonly used equivalent circuit in measurement models is 

the Randles circuit [15]. Figure 5 shows an equivalent Stack 

of PEMFC model, the fuel cell impedance is expressed as: 

 

𝑍𝑐𝑒𝑙𝑙(𝑗𝑤) = 𝑅𝑚 +
1

𝑍𝐶𝑃𝐸+(
1

(𝑅𝑃+𝑍𝑊)) 

                                    (20) 

 

The Warburg impedance is defined as follows [14], [15], [17]: 

 

𝑍𝑊(𝑗𝑤) = 𝑅𝑑
𝑡𝑎𝑛ℎ√(𝑗𝑤(𝜏𝑑))

√𝑗𝑤𝜏𝑑
                                             (21) 

 

 
 

Figure 5. Randles cell with CPE impedance. 

 

The constant (τd), (Rd) and ZCPE are given as follows: 
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{𝜏𝑑 =
𝛿2

𝐷
 𝑅𝑑 =

𝑅𝑇𝛿

𝑛2𝐹2𝑆𝐶𝐷
 𝑍𝐶𝑃𝐸(𝑗𝑤) =

1

𝑄(𝑗𝑤)𝛼                    (22) 

 

Therefore, the equivalent PEMFC impedance is calculated 

by the following equation: 

 

𝑍𝑇(𝑗𝑤) = 𝑅𝑚 +
1

𝑄(𝑗𝑤)𝛼+(
1

(𝑅𝑃+𝑍𝑊)) 

                                   (23) 

 

If α = 1, CPE is an ideal capacity.  

 

When α = 0.5, CPE is the Warburg impedance. 

 

Figure 6. illustrates spectroscopy impedance for a fuel cell 

at a different state of PEMFC, presented by (CPE) model and 

confirmed by experimental data for [15],[26]. In the normal 

state, we have a small arc in the low and high frequency, 

while in the case of drowning we notice that there is a large 

arc, unlike the drought state we observe the withdrawal of the 

arc presented in the Nyquist plot on the right side. Depending 

on these observations, we can find the state of the fuel cell by 

studying the parameters of Rm, Rp, and Rd (equation (23)). 

More details about these parameters are given subsection 3.2. 

 
 

Figure 6.The Nyquist plot of the fuel cell impedance. 

 

3.  CONTROLLER MODEL BY NNT FOR 

DIAGNOSTIC PEMFC 

 

Neural networks are experiencing a resurgence of interest 

and even a huge hype under the name of deep learning. An 

artificial neural network is a system inspired by the 

functioning of the human brain to learn. Typically, the 

artificial neural network used to receive relationships 

between inputs and outputs in a neural network model 

developed for a certain application. The weights can be 

changed by the transfer function to ensure the connection 

between the three layers of neuron network model using a 

well-defined training rule. In order to train the NNT, its 

parameters such as the architecture, the data, and activation 

function should be well defined. This phase is very important 

since it represents an iterative procedure of estimating the 

parameters of network neurons in order for the latter to fulfill 

its task. Once the training phase is completed, the trained 

network model must be able to make the right decision for 

input vectors that it has not learned. Here, the NNT training 

performance is estimated using the Mean Squared Error 

(MSE); the MSE is computed by comparing the values of the 

NNT output and the desired value that used as a tool for 

updating the weights utilizing the dynamic gradient descent 

algorithm.  

  To diagnose state of fuel cell health (PEMFC) using NNT 

model, the water flow rate input (qwin) and operating time (t) 

are fed to the NNT. Based on the outputs of NNT model, 

which are the values of the physical parameters of the EIS 

model (Rm, Rp, and Rd), one can diagnose the state of the 

fuel cell. Finally, the attained results by NNT model are 

compared with those obtained experimentally by Fouquet et 

al. [15]. 

 

3.1. PEMFC and ANN Architecture 

 

The sub-models of the fuel cell system (pressure, voltage and 

relative humidity calculator) are presented in Figure 7, whilst, 

the parameters of this model presented in Table 1. 

 

Table 1. Parameters of a normal operating condition of the 

PEMFC model. 

 
Parameters Value 

curent density : Jn 0.35 [A/cm2] 

 

Temperature: T 320 [K] 

 

Active area : S 200 [cm2] 

 

Aair stoichimetry :λa 3 

Nember of fuel cells :N0 10 

ζ1 −0.948 

ζ2 0.00286+0.0002.lnS+  

(4.3.10−5) lnCH2 

ζ3 7.6 × 10−5 

ζ4 −1.93 × 10−4 

Hydrogen valve constant : 

KH2 

4.22 × 10−5[kmol]/[s.A] 

Oxygen valve constant : 

KO2 

2.11 × 10−5[ kmol]/[s.atm] 

 

Hydrogen time constant: 

τH2 

3.37 [s] 

 

Oxygen time constant : τO2 6.74 [s] 

Hydrogen –Oxygen flow 

ratio : rH-O 

1.168 

Kr constant =N0/4F 0.996×10−6[kmol]/[s.A] 

Vn(cell) 0.72 [V] 

Water flow molare :qwin  

 

The multilayer perceptron is a network made up of successive 

layers of neurons. An input layer reads the incoming signals; 

an output layer provides the system’s response. Besides, one 

or more hidden layers participate in the transfer of 

information. In a perceptron, a neuron from a hidden layer is 

connected as an input to each of the neurons of the previous 

layer and as output to each neuron of the next layer. 
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Figure 7.PEMFC and ANN block diagram. 

 

  The transfer function used in the hidden layer is defined by 

the following equation: 

 

𝑓(𝑢) =
1

1+𝑒−(𝑑.𝑢)                                                             (24) 

 

Where u represents the input of the hidden layer and 

calculated as: 

 

𝑢 = ∑𝑛
𝑗=1 (𝑊𝑖𝑗𝑋𝑖 + 𝑏𝑖)                                                (25) 

 

For the output layer, the equation that represents the network 

model is expressed as 

 

𝑦𝐾𝑢 = ∑𝑁
𝑗=1 (𝑤𝑖𝑗

0 𝑢𝑖 + 𝑏𝑖) =

∑𝑁
𝑗=1 𝑤𝑖𝑗

0 𝑓(∑𝑁
𝑗=1 (𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑖))                            (26) 

 

Where yk indicates the output signal from kth output neuron, 

w0
ki represents the weight of ith output ui to the kth neuron in 

the output layer and ui is the activation value of the jth neuron 

in the ith layer. 

 

The following two choices (the number of hidden layers 

and the number of neurons per hidden layer) directly 

condition the number of parameters (weight W) to estimate 

the complexity of the model; they participate in the search for 

a good compromise (bias/variance), i.e. the balance between 

quality of learning and quality of forecasting. The choice 

mainly concerns the control of over-learning limits the 

number of neurons or the learning time or even increasing the 

penalization coefficient of the parameter norm. This requires 

determining a method for estimating the error, validation or 

test sample, cross-validation, or rap boots.  

 

 

3.2. Neural network-based controller model 

 

To simulate Matlab how humidity affects the state of the 

fuel cell and how to change the values of the Rm, Rp, and Rd 

when it is operating during periods, we formed a model of a 

neural network as shown in Figure 7 that is constituted  of 

two inputs qwin and t, in addition, three outputs representing 

the values of Rm, Rp, and Rd to express the state of the fuel 

cell, three hidden layers for each contain (10, 5, 5) neuron, 

respectively. Besides, we used the activation functions such 

as tansig, purelin, and purelin in each hidden layer, 

respectively. The parameters of our neural network are 

provided in Table 2. We proceeded to employ the values of 

parameters that are illustrated by Table 3. It is worth noting 

that these values were taken of the experiments of Fouquet et 

al. [15]. 

 

Table 2. NNT Parameters and training. 

 

ANN model Parameters 

Input 2 

Output 3 

Nbr of neuron 

 

Hidden layer 1 10 

Hidden layer 2 5 

Hidden layer 3 5 

 

Activation fonctions 

 

Hidden layer 1 tansig 

Hidden layer 2 purelin 

Hidden layer 3 purelin 

Output layer tansig 

Epouch 1000 

Performance 3.73×10-08 

Gradient 1.31×10-06 

Mu 1.00×10-09 
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Figure 8. Effect of membrane humidity change on parameters (Rm, Rp, Rd). 

 

Table 3. Physical parameters of FC in a different operating 

state [15]. 

 
Test Time[s] Rm[Ω] Rp[Ω] Rd[Ω] 

1(Normal 

state) 

500 0.00398 0.0080 0.0034 

2 1000 0.00406 0.00123 0.0094 

3 1600 0.00400 0.0147 0.0172 

4 3800 0.00416 0.0163 0.0312 

5 3980 0.00512 0.0099 0.0051 

6 5400 0.00685 0.0108 0.0056 

7 6700 0.00880 0.0130 0.0101 

*Temperature constant and slowly increasing current(around 0.35 [A]). 

 

 

4.  RESULTS AND DISCUSSION 

 

Through what we observed in Figure 3, we set the value of 

qwin in three stages, to study the effect of RH % on the state 

of the fuel cell. As can be seen from Figure 8, qwin is 

held constant at 2 mol/s, between the interval 0 to 500 s. In 

this case, the fuel cell is in normal operating conditions (T 

and λ remain constant in all cases). But, between the interval 

500 to 3800 s, the value of qwin is amounted to 5 mol/s. Hence, 

the fuel cell is in a flooding state. After that, the value of qwin 

drops to 0.2 mol/s, and thereby the fuel cell is in a dry state. 

By comparing the attained results using the neural network 

model during deferent operating conditions (see Figure 8), 

we notice the follwing: 

- In the normal phase [0, 500] s, the values of Rm, Rp, and Rd 

are constant, which means stability in the system. 

- Between the two moments 500 s and 3800 s, it is observed 

that the value of Rm remains constant throughout the 

experiment period; on the contrary concerning Rp and Rd, we 

notice that their values increase by a large percentage in a 

short time due to the increasing of humidity inside the fuel 

cell. 

- To find the effect of drought on the properties of the fuel 

cell, the value of qwin has been reduced to 0.2 mol/s. During 

this phase the value of Rm increases gradually; this refers to 

the drought of the fuel cell. While, the angle of inclination 

of the Rp and Rd curves in this case is smaller than the state 

of drowning, this also indicates in fuel cell drying state. 

In Figure 9, we get the values Rm, Rp, and Rd utilising the 

neural network model for both drowning and dehydration 

after 3000 s. From this figure, it is easy to see that the value 

of Rm remains constant in the normal and drowning state, 

while it increases by 20% in the state of drying. Also, it is 

found that the value of polarization resistance increases by 

25% and 40% in the case of drying and drowning, 

respectively, in comparison with to the normal state of fuel 

cell.  

The difference in the values of Rd is caused by the 

difference in the area S due to the accumulation of water 

inside PEMFC. 

 

 
 

Figure 9.Radar diagram for classification of the state of 

health in different operating conditions. 
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Figure 10 illustrates the values of Rm, Rd, and Rp in three-

dimensional space. It appears that there are three regions: 

region A (between 0 s and 500 s) represents the normal state, 

region B (between 2000 s and 3800 s) refers to the case of the 

flood, and region C (between 5800 s and 6800 s) indicates 

that state of fuel cell is drought. Depending on these 

differences, we can estimate the state of health for the fuel 

cell. 

 
 

Figure 10.  3D simulation of changing the fuel cell state 

during different time periods. 

 

 

5. CONCLUSIONS 

 

In this research, a neural network technology is used to 

determine the parameters of the electrochemical impedance, 

to estimate and diagnose the state of health of the fuel cell. 

Based on the achieved results, we found that there are three 

parameters that help to identify the state of PEMFC, which 

are Rm, Rp, and Rd (as shown in the Randles model). Also, 

this technology contributes to good diagnosis without the 

need for expensive equipment and therefore it is suitable for 

practical applications. Overall, our model can be adopted in 

the control system to better water flow rate management in 

both cases (i.e. flooding and drying) of fuel cell. 
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NOMENCLATURE 

Vcel cell voltage (V) 

Ernest thermodynamic potential (V) 

Vact activation overvoltage (V) 

Vcon concentration overvoltage (V) 

VOhmic ohmic overvoltage (V) 

T Temperature (K) 

Jn Current density 

qH2in hydrogen inlet flow rates (mol/s) 

qO2in oxygen inlet flow rates (mol/s) 

qH2r hydrogen usage flow rates (mol/s) 

qO2r oxygen usage flow rates (mol/s) 

qwr water production flow rates (mol/s) 

CO2 oxygen concentration in the cathode active layer (mol.m−3) 

D diffusion coefficient 

F Faraday constant (A s mol−1) 
N number of electrons 

R perfect gas constant (J mol−1 K−1) 

Rd electrical resistance (Ω) 

Rm membrane resistance (Ω) 

Rp polarisation resistance (Ω) 

Q parameter of the CPE 

S active area (m²) 

tm membrane thickness (m) 

Z fuel cell impedance (Ω) 

ZCPE CPE impedance 

Zw Warburg impedance (Ω) 

 

GREEK LETTERS 

λa stoichiometry of air 

α power of the CPE 

τd the time constant of diffusion (s) 

ω pulsation (rad s−1) 

δ diffusion layer width (m) 

ξi parametric coefficient 

λ water membrane content 

σm membrane conductivity (Ω /cm) 

φ relative humidity (%) 

δ diffusion layer width (m) 

 


