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ABSTRACT. The purpose of this study is to investigate homogeneous-heterogeneous reaction with 

second order resistance for Casson fluid in stagnation point flow and Falkner-Skan flow on the 

presence of induced magnetic field and non-uniform heat source. The governing partial 

differential equations are transformed into ordinary differential equations and solved 

numerically by fourth fifth order Runge-Kutta Fehlberg method (RKF45) with shooting 

technique. The effects of different physical parameters on velocity profile, induced magnetic 

profile, temperature profile and species concentration profile are presented through graphical 

and tabular form. The finding of this study may serve many areas including catalysis, 

combustion and biochemical systems. The scope of this study is to comparison two structures 

viz. Falkner-Skan Flow and Stagnation-Point flow. 

RÉSUMÉ. Le but de cette étude est d'étudier la réaction homogène-hétérogène avec une 

résistance de second ordre pour le fluide Casson dans un écoulement à point de stagnation et 

le fluide Falkner-Skan en présence d'un champ magnétique induit et d'une source de chaleur 

non uniforme. Les équations aux dérivées partielles dominantes sont transformées en équations 

différentielles ordinaires et résolues numériquement par la méthode de Runge-Kutta Fehlberg 

du quatrième et cinquième ordre (RKF45) avec la technique de tir. Les effets de différents 

paramètres physiques sur le profil de velocité, le profil magnétique induit, le profil de 

température et le profil de concentration en espèces sont présentés sous forme graphique et de 

tableau. Les résultats de cette étude peuvent servir à de nombreux domaines, notamment la 

catalyse, la combustion et les systèmes biochimiques. Le but de cette étude est de comparer 

deux structures, le fluide Falkner-Skan et le fluide à point de stagnation. 
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1. Introduction 

Researchers and scientists have been still attracted towards the investigation of 

flow behavior in the neighborhoods of stagnation point due to its wide applications in 

the engineering, industrial processes and natural phenomena. Stagnation point occurs 

in the various flow models including two-dimensional, three-dimensional, symmetric, 

asymmetric, inviscid, viscous steady, unsteady, forward, reverse, normal or oblique, 

homogeneous, immiscible fluids, etc. The flow over the rockets, tips of submarines, 

oil ships and aircrafts are the application of stagnation point flow. Several exact 

solutions of the non-linear NS equations have been found by considering different 

geometries Chiam (1994). Stagnation-point flow over a stretching plate was studied 

by Chiam (1994). Wang (2008) presented the solution of stagnation-point flow near 

the shrinking sheet. He solved the partial governing equation with the help of suitable 

transformations. Ishak et al. (2009) discussed MHD boundary layer stagnation-point 

flow past a stretching sheet and presented the results through graphs and tables. 

Chauhan et al. (2011; 2011) analyzed heat transfer effects of MHD boundary layer 

flow over a stretching sheet and plate, respectively. Recently, Bayat et al. (2017) 

studied the case of three-dimensional Navier-Stokes equations in the presence of 

stagnation point flow over the rotating vertical cylinder. 

The flow past a wedge has been broadly studied by several researchers due to its 

applications in heat exchangers, geothermal systems, aerodynamics etc. Furthermore, 

the flow over a wedge is important due to the fact that each and every value of the 

wedge angle produces a diverse pressure profile, thereby contribution insight into 

boundary layer behavior in number of situations. Many researchers explored, 

expanded features of such problems and few studied regarding boundary layer flow 

over a wedge. Falkner and Skan (1931) gave the exact solutions for the boundary layer 

flow over a wedge. After that, this type of the flow was renamed as “Falkner-Skan” 

flow in the memory of Fankner and Skan. Several authors such as Rajagopal et al. 

(1983) Lin et al. (1987), Ganapathirao et al. (2015) Kasmani et al. (2016) and Khan 

et al. (2017) were investigated the boundary layer phenomenon towards a wedge in 

the presence of pertinent parameters.  

MHD is the study of motion of electrically conducting fluid in the existence of 

magnetic field. The mathematical models having induced magnetic field have a wide 

industrial application such as in liquid-metals, fiber or granular insulation, electrolytes, 

ionized gases and geothermal systems. The influence of a magnetic field with the 

induced magnetic field in the boundary layer flow were considered by some authors 

such as Raptis and Perdikis (1984) examined the behavior of free convection in the 

existence of magnetic field with different parameter. They investigated, the study of 

motion of electrical conduction fluid with magnetic field. Ishak et al. (2009) 

investigated the effects of MHD boundary layer on a moving wedge. Ali et al. (2012) 

presented the effects of MHD over a stretching sheet in the presence of the induced 

magnetic field with radiation. They observed that the viscous dissipation may cause 

thermal reversal near the surface which is sustained by the stretching parameter of the 

sheet when higher than unity and the Prandtl number as well. Ali et al. (2011), Jafar 
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et al. (2013), Jain and Choudhary (2015), El-Dabe et al. (2015), Jain and Bohra (2016), 

Gireesha et al. (2016) and Srinivasacharya and Shafeeurrahman (2017) have been 

studied the MHD phenomenon with different geometries in the existence of various 

parameters.  

The role of Non-Newtonian fluids in boundary layer flow, such as Casson fluid is 

most useful in many areas, for example petroleum drilling, polymer processing 

industries and many more. Casson fluid is one of the supreme fluid which presents the 

yield stress effects. This fluid is considered as a shear thinning liquid which has zero 

viscosity at an infinite rate of shear (1959). In similar words, this type of fluid’s 

behavior changes with shear stress. Casson boundary layer fluid flow towards a 

stretching sheet for the unsteady case investigated by Mukhopadhyay et al. (2013). 

Heat transfer effects of Casson fluid in boundary layer flow with radiative conditions 

were analyzed by Pramanik (2014). Raju et al. (2017) scrutinized the 

magnetohydrodynamics effects for Casson fluid towards a moving geometry with heat 

source/sink. 

Many chemically reacting systems has contained homogeneous and 

heterogeneous reactions. These types of reaction have many applications including 

catalysis, combustion and biochemical systems. The interface between the 

homogeneous reactions in bulk of the fluid and heterogeneous reactions taking place 

on some catalytic surfaces is commonly very difficult, which is incorporated in the 

generation and consumption of reactant species at different rates both within the fluid 

and on the catalytic surfaces. Initially, Chaudhary and Merkin (1995) and Merkin 

(1996) gave a model for homogeneous-heterogeneous reactions in the boundary layer 

flow near the surface. In this case a simple model for homogeneous-heterogeneous 

reactions in stagnation-point boundary-layer flow is created in which the 

homogeneous (bulk) reaction is supposed to be given by isothermal cubic auto 

catalator kinetics and the heterogeneous (surface) reaction by first order kinetics. 

Abbas et al. (2015) investigated the effects of homogeneous-heterogeneous reactions 

over a shrinking/stretching sheet in the presence of MHD. Further, Animasaum et al. 

(2016) and Khan et al. (2017) also studied the homogeneous-heterogeneous reactions 

for various geometries.  

In addition, no studied have been done before for the comparative study of 

Stagnation-point flow and Falkner-Skan flow of Casson boundary layer fluid flow 

with the effects of homogeneous-heterogeneous reaction in the presence of the 

induced magnetic field, first and second order resistance due to inertia force and non-

uniform heat source. Using the applicable transformation, the boundary layer 

equations are reduced into non-linear ordinary differential equations and results are 

shown through the graphical representations and tabular form. 

2. Mathematical formulation  

We consider a steady, laminar, two-dimensional boundary layer Casson fluid flow 

and hydromagnetic coupled heat transfer through porous media, over a moving plate 

and a moving wedge in the presence of variable induced magnetic field and non-
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uniform heat source. Effect of second order resistance and homogeneous-

heterogeneous reactions has also been discussed (figure 1). We assumed that the 

velocity and free stream velocity of the moving wedge are uw(x)=Uwxm and, 𝑢𝑒(𝑥) =

𝑈∞𝑥
𝑚  respectively, where λ =

2𝑚

𝑚+1
=

Ω

𝜋
 is known as Hartree pressure gradient 

parameter, where Ω is the total angle of moving wedge and m is a constant. In this 

study, we have studied both Stagnation-Point flow and Falkner-Skan flow that means 

flow over a plat when m=1 and over a wedge when m=0.5. 

 
(a)                                                                (b) 

Figure 1. (a) Stagnation-Point flow (m=1) and (b) Falkner-Skan Flow (m=0.5) 

Rheological model that defines Casson fluid is 

2( / 2 ) ,

2( / 2 ) ,

B y ij c

i j

B y c ij c

p e

p e

   


   

 + 
= 

+                                       (1) 

where, τij is the component of the stress tensor, py is the yield stress of the fluid, π is 

the product of the component of the deformation rate with itself, πc is a critical value 

of this product established on the non-Newtonian model and µB is the plastic dynamic 

velocity of the non-Newtonian fluid.  

We have taken model for the interaction between homogenous and a 

heterogeneous reaction for both wedge and plate, including two chemical species A 

and B in a boundary layer flow [follows Chaudhary and Merkin (1995) and Merkin 

(1995) given as:  

The homogeneous reaction for cubic autocatalysis is given as: 

2 3A B B,+ →  rate = 
2

ck ab
                                     (2) 

First order isothermal reaction on the catalyst surface is given as: 
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A B,→  rate = sk a.
 

Where a and b are the concentration of the chemical species A and B, kc and ks are 

the rate constants. These equations confirm that both in the external flow as well as at 

the outer edge of the boundary layer, the reaction rate is zero.  Also, it is assumed that 

the reaction process is isothermal. Here we take the Cartesian coordinators x-axis 

along with the surface of the wedge and the plate and y-axis is normal to it, 

correspondingly. We assume that (u, v) and (H1, H2) are the velocity and magnetic 

components along (x, y) directions, respectively. 

According to above boundary layer assumptions, governing equations are [follows 

(Jain and Choudhary, 2015; Raptis and Perdikis, 1984)] given as: 

0
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x y

 
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Subject to the boundary conditions: 

1 20 0m

w w w A s B s

a b
u u (x) U x , v , H H , T T , D k a, D k a

y y

 
= = = = = = = = −
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1 0 0 0m m

e eu u (x) U x , H H (x) H x , T T , a a , b = = = = = → →
as

y .→ 
(10) 

The proposed problem shows two-different geometries based on the following 

assumptions: 

(i) m = 1 (Stagnation point flow) 

(ii) m = 0.5 (Falkner-Skan flow) 

where 𝛽 = 𝜇𝐵√2𝜋𝑐/𝜌𝑦 is the Casson fluid parameter, T is the temperature, Tw is 

the temperature at the wall, T∞ is the ambient temperature, ue(x) and He(x) are the x-

axis velocity and magnetic field at the edge of the boundary layer, correspondingly, k 

is the permeability, F is the empirical constant of the second order resistance term due 

to the inertia effect, H is the induced magnetic field vector, 𝜇0 is the magnetic 

permeability, ρ is the fluid density, 𝜇𝑒 = 1/4𝜋𝜎  is the magnetic diffusivity, α =
κ/ρ𝐶𝑝 is the thermal diffusivity, κ is the thermal conductivity, 𝐶𝑝 is the specific heat 

at constant pressure. DA and DB are respective diffusion coefficients. 

The space and temperature dependent non-uniform heat source/sink is as follows: 

* ' *e

w

k u (x)
q''' A (T T ) f ( ) B (T T )

x



 

 = − + − 
               (11) 

Where, v is the kinematic fluid viscosity, A* and B* are the space and temperature 

dependent heat source/sink parameter. 

To solve the system of equations (3)-(9), are converted into dimensionless form 

by introducing the following similarity transformation: 

1
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=

−
                          (12) 

Where 𝑓(𝜂) is the stream function, 𝑠(𝜂) is the induced magnetic field, 𝜃(𝜂) is the 

temperature and 𝑔(𝜂) ℎ(𝜂) are the concentrations. 

The equation of continuity and equation of induced magnetic field is satisfied 

automatically on introducing following functions: 

u , v
y x

  
= = −

 
 , 

1 2

.
H ,H

y x

  
= = −

 
                    (13) 

Using equations (12) - (13), equations (5)-(9) reduces in following equations: 
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Subject to the following boundary conditions  
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where 

2

1

m

m
 =

+ ,

2

2 0

24

H
M

U



 

=

,

2

1 m

x
K

k(m )U x





=
+

,

2

1
Fx

m
 =

+ ,

1

4

*


=
,

A

Sc
D


=

,

2

0

1

2

1

* c

m

k a
K

(m )U x −



=
+

, 

* B

A

D

D
 =

,

wU

U




=

,

1 2/

s e

s

A

k R
K

D

−

=

,

e

e

u (x) x
R


=

 

Hartree pressure gradient, the magnetic parameter, inertia coefficient parameter, 

permeability parameter, reciprocal of magnetic Prandtl number, Schmidt number, 

measure of the strength of the homogeneous reaction, the ratio of diffusion 

coefficients, moving wedge parameter, measure of the strength of the heterogeneous 

reaction and local Reynolds number, respectively. 

In many industrial process, It is preferred that the size of diffusion coefficients of 

chemical species A and B are comparable, in this view, assumed that the diffusion 

coefficients DA and DB are equal, Following (Raptis and Perdikis, 1984), we take   δ 

= 1, and obtain a relation given as: 

1g( ) h( ) + =
                                                   (20) 
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Using equation (20), equations (17)-(18) reduces into in single equation given as  

21
1 0*g'' fg' K ( g )

Sc
+ − − =

                                       (21) 

subject to the boundary conditions 

0 0 1sg'( ) K g( ), g( )=  →
 as 

 → 
                               (22) 

The skin friction coefficient Cfx and local Nusselt number Nux (follows (Chiam, 

1994)) given as 

2

w w
x x
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
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= =
−

                                   (23) 

Where, 𝜏𝑤 and 𝑞𝑤 are the wall skin friction, wall heat flux and wall mass flux, 

respectively, denoted by 
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1
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Using equation (12) and (24), equation (23) reduces to 

1 2 2 1
1 0

1

/
e x(R ) Cf f ''( ),

m 

 
= + 

+    

1 2 2
0

1

/
e x(R ) Nu '( ),

m
− = −

+  

where, Re is the local Reynolds number. 

Numerical Methods: 

Governing equations (14) - (16) and (21) under the corresponding boundary 

conditions Eqs. (19) and (24) are solved numerically fourth fifth Runge-Kutta 

Fehlberg method (RKF-45) with shooting technique. Using similarity transformations 

boundary value problems transformed into initial value problems, this procedure is 

used to convert higher order nonlinear differential equations into first order ordinary 

differential equations. The transformed equations are given as:  

1 2 3 3f f , f ' f , f '' f , f ''' f ',= = = =
                                (25) 

4 5 6 6s f , s' f , s'' f , s''' f ',= = = =
                                 (26) 

7 8 8f , ' f , '' f ',  = = =
                                               (27) 
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9 10 10g f , g' f , g'' f ',= = =
                                              (28) 

Using equation (25)-(28), equation (14)-(16) and (21) transformed into first order 

ordinary differential equations given as: 

( ) ( ) ( )

( ) 

2 2
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3
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Subject to the boundary conditions 

1 2 3 10 0 0 0f ( ) , f ( ) , f ( ) r ,= = =
 4 5 6 20 0 0 0 0f ( ) , f ( ) , f ( ) r ,= = =

 

7 8 3 9 10 10 40 1 0 0 0 0sf ( ) , f ( ) r , f ( ) f ( ) / K , f ( ) r ,= = = =
               (33) 

Where r1,r2,r3 and r4 are the initial guesses for 0 0 0f ''( ),s''( ), '( ) and 0g'( ) , 

respectively. These values are guessed using shooting method. The Runge-Kutta-

Fehlberg (RKF-45) method is a well-accepted method to obtain the solutions of initial 

value problems. For present computational procedure we have chosen 𝜂∞ as 𝜂8 (0 ≤
η ≤ 8 ), the step size ∆𝜂 =0.001, the technique is repeated till we obtained the 

convergence of order 10-6. 

The algorithm of RKF-45 method is written as 

1 0 2 3 4

25 1408 2197 1

216 2565 4104 5
m my y h k k k k ,+

 
= + + + − 

                            (34) 

1 0 2 3 4 5

16 6656 28561 9 2

135 12825 56430 50 25
m my y h k k k k k ,+

 
= + + + − + 

              (35) 

Equations (34) and (35) are fourth and fifth order Runge-Kutta scheme 

respectively. 
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3. Results and discussion  

We have studied the combined effects of homogeneous-heterogeneous reaction in 

the presence of the induced magnetic field and non-linear heat source for Casson fluid 

boundary layer flow over a wedge (Falkner-Skan flow) and plate (Stagnation-Point 

flow). The effects of various parameters such as Casson fluid parameter β, magnetic 

field parameter M2, reciprocal magnetic Prandtl number λ*, permeability parameter 

K, moving wedge/plate parameter γ, inertia coefficient parameter Δ, heat source 

parameter, homogeneous reaction strength parameter K*, heterogeneous reaction 

parameter Ks and Schmidt number Sc are presented through graphs and tables for 

velocity profile, induced magnetic profile, temperature profile and concentration 

profile. 

Table 1 shows the results obtained by obtained by Rajagopal et al. (1983), Ishak 

et al. (2009), K. Jafar (2013), El-Dabe et al. (2009) and in present investigation.  

Figures (2-7) show the effects of velocity profile for various parameters. The 

effects of the Casson fluid parameter on velocity profile are presented in figure 2. 

Physically, Casson fluid parameter reduces the plasticity of the fluid. It is observed 

that non-Newtonian Casson fluid parameter produce resistance in the fluid flow, 

hence, boundary layer thickness decreases as we increase the Casson fluid parameter. 

The trends of stagnation-point flow is higher than the Falkner-Skan flow due to the 

pressure gradient. 



Second order resistance with homogeneous-heterogeneous reactions     669 

 

Figure 2. Influence of casson fluid parameter on velocity profile 

 

Figure 3. Influence of magnetic field parameter on Velocity profile 

Figure 3 depicts the variation of magnetic field parameter on velocity profile. 

Lorentz force reduces fluid flow near the boundary layer, therefore velocity profile 

decreases. Similar effects have been arisen for reciprocal magnetic Prandtl number on 

velocity profile in figure 4. Falknar-Skan flow is decreasing more quickly than 
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stagnation-point flow for both parameters.  

Figure 5 describes the effects of moving wedge/plate parameter on velocity profile. 

Increasing value of moving wedge/plate parameter leads to increase the fluid velocity, 

while decreases the thickness of velocity boundary layer. When moving wedge/plate 

parameter increases, the fluid is squeezing closer and closer to the wall, in stagnation-

point flow the fluid flow is close to the wall compared to Falkner-Skan flow. 

 

Figure 4. Influence of magnetic Prandtl number on Velocity profile 

 

Figure 5. Influence of moving wedge/plate parameter on velocity profile 

0 1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



F
( 

)

 

f ' 

m = 0.5 (Falkner-Skan Flow)

m = 1 (Stagnation-Point Flow)

  =    

K = 1

K* = 0.5
K

s
 = 0.5

Pr = 0.73

A* = 0.2

B* = 0.2

Sc = 1 

M2 =0.5

 = 

 = 

 = 

0 1 2 3 4 5 6 7 8

-0.2

0

0.2

0.4

0.6

0.8

1



F
( 

)

 

f ' 

m = 0.5 (Falkner-Skan Flow)

m = 1 (Stagnation-Point Flow)

K = 1

K* = 0.5
K

s
 = 0.5

Pr = 0.73

A* = 0.2

B* = 0.2

Sc = 1 

M2 =0.5

 = 

  = 

 = 

 = − −   



Second order resistance with homogeneous-heterogeneous reactions     671 

Figures 6-7 display the effects of permeability parameter and inertia coefficient 

parameter on velocity profile. Velocity profile is the increasing function of 

permeability parameter K for both types of flows, but reduces the thickness of 

boundary layer flow, due to the drag, which is drawn back the velocity thickness.  

 

Figure 6. Influence of permeability parameter on velocity profile 

 

Figure 7. Influence of inertia coefficient parameter on velocity profile 

0 1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



F
( 

)

 

m = 0.5 (Falkner-Skan Flow)

m = 1 (Stagnation-Point Flow)

 = 

  = 

 = 

 = 

K* = 0.5
K

s
 = 0.5

Pr = 0.73

A* = 0.2

B* = 0.2

Sc = 1 

M2 =0.5

 =    

f ' 

0 1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



F
( 

)

 

m = 0.5 (Falkner-Skan Flow)

m = 1 (Stagnation-Point Flow)

f ' 
  = 

 = 

 = 

K =1

K* = 0.5
K

s
 = 0.5

Pr = 0.73

A* = 0.2

B* = 0.2

Sc = 1 

M2 =0.5

 =    



672     EJEE. Volume 20 – n° 5-6/2018 

 

From figure 7, we conclude that the inertia coefficient parameter has the same 

effects as permeability parameter on velocity profile. The velocity profile is higher 

for stagnation-point flow compare to the Falkner-Skan flow. Figures 8-13 illustrate 

the effects of induced magnetic field profile for both fluid flows. Figure 8 depicts that 

the induced magnetic profile is the increasing function of Casson fluid parameter, it 

is more for stagnation point flow than Falkner-Skan flow. Figure 9 displays that as we 

increase magnetic field parameter, induced magnetic profile reduces. This is because 

the direction of the magnetic field parameter and induced magnetic profile are same. 

 

Figure 8. Influence of casson fluid parameter on induced magnetic profile 

 

Figure 9. Influence of magnetic field parameter on induced magnetic profile 
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Figure 10. Influence of magnetic Prandtl number on induced magnetic profile 

 

Figure 11. Influence of moving wedge/plate parameter on induced magnetic profile 
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coefficient parameter. In both figures the trends of stagnation-point flow is higher than 

Falkner-Skan flow. 

 

Figure 12. Influence of permeability parameter on induced magnetic profile 

 

Figure 13. Influence of inertia coefficient parameter on induced magnetic profile 
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Figure 14. Influence of Casson fluid parameter on temperature profile 

 

Figure 15. Influence of magnetic field parameter on temperature profile 

It can be observed from figure 14 that, when the value of the Casson fluid 

parameter is large, the fluid start to behave like Newtonian fluid, due to this reason 

the temperature profile is decreasing with Casson fluid parameter. If we compare 

stagnation-point flow and Falkner-Skan flow, we observed that temperature profile is 

lower for stagnation point flow than Falkner-Skan flow. Figure 15 reveals the 

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



th
e
ta

( 
)  

m = 0.5 (Falkner-Skan Flow)

m = 1 (Stagnation-Point Flow)

 

K =1

K* = 0.5
K

s
 = 1

Pr = 0.73

A* = 0.2

B* = 0.2

Sc = 1 

M2 = 0.5

  = 

 = 

 = 

 =    

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



th
e
ta

( 
)  

K =1

K* = 0.5
K

s
 = 1

Pr = 0.73

A* = 0.2

B* = 0.2

Sc = 1 

  = 

 = 

 = 

 = 

m = 0.5 (Falkner-Skan Flow)

m = 1 (Stagnation-Point Flow)

 

 =    



676     EJEE. Volume 20 – n° 5-6/2018 

 

influence of magnetic field parameter on thermal boundary layer. This implies that 

the impact of magnetic field parameter rises the temperature of the fluid. It is due to 

the resistive force that appears in the fluid flow. It is noticed that the trends of Falkner-

Skan flow on temperature profile is higher when we compare it with stagnation-point 

flow. Figures 16-18 demonstrate the effects of moving wedge/plate parameter, 

permeability parameter and inertia coefficient parameter on thermal boundary layer. 

These parameters are working to decrease the temperature of the fluid for Falkner-

Skan flow and stagnation-point flow. 

 

Figure 16. Influence of moving wedge/plate parameter on temperature profile 

 

Figure 17. Influence of permeability parameter on temperature profile 
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Figure 18. Influence of inertia coefficient parameter on temperature profile 

It is noticed that if permeability parameter enhances, the resistance of the porous 

medium is lowered, which rises the momentum development of the flow regime and 

ultimately reduces the temperature profile. Inertia coefficient parameter has the 

similar effects alike permeability parameter on temperature profile. 

Heat source parameter is working to generate the heat in the fluid flow, hence it is 

responsible to increase the temperature profile for both cases. However, we noticed 

that stagnation-point flow shows the lower trends of temperature profile than the 

Falkner-Skan flow. These effects can be seen in figure 19. 

 

Figure 19. Influence of heat source parameter on temperature profile 
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Figure 20. Influence of Casson fluid parameter on species concentration 
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Figure 21. Influence of magnetic field parameter on species concentration 
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Figure 22. Influence of moving wedge/plate parameter on species concentration 

 

Figure 23. Influence of permeability parameter on species concentration 
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effects. Hence, concentration profile is increasing function of permeability parameter 

and inertia coefficient parameter. 

Figures 25-26 show the effects of intensity of the homogeneous reaction and 

heterogeneous reaction in concentration profile. As estimated that both parameters are 

reducing the concentration profile, that is concentration boundary layer profile 

decreases with homogeneous and heterogeneous reaction parameter. The 

concentration profile is lower for Falkner-Skan flow. Figure 27 describes the Schmidt 

number effects on species concentration profile, it reveals that Schmidt number is 

responsible for increases the species concentration profile. 

 

Figure 24. Influence of inertia coefficient parameter on species concentration 

 

Figure 25. Influence of homogeneous reaction strength on species concentration 

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



g
( 

)

g

m = 1 (Stagnation-Point Flow)

m = 0.5 (Falkner-Skan Flow)

 

K =1

K* = 0.5
K

s
 = 1

Pr = 0.73

A* = 0.2

B* = 0.2

Sc = 1 

M2 = 0.5

 = 

  = 

 = 

 =    

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



g
( 

)

g

m = 1 (Stagnation-Point Flow)

m = 0.5 (Falkner-Skan Flow)

 

 = 

  = 

 = 

 = 

K =1
K

s
 = 1

Pr = 0.73

A* = 0.2

B* = 0.2

Sc = 1 

M2 = 0.5

  =    



Second order resistance with homogeneous-heterogeneous reactions     681 

 

Figure 26. Influence of heterogeneous reaction strength on species concentration 

 

Figure 27. Influence of Schmidt number on species concentration 
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and Falkner-Skan flow for skin friction coefficient and Nusselt number. 
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Table 1. Comparison of 𝑓′′(0) between existing results and present result 

λ Rajagopal et al. 

(1983) 

Ishak et al. 

(2009) 

Jafar 

(2013) 

El-Dabe et al. 

(2009) 

Present 

study 

0.0 - 0.4696 0.4696 0.4696007 0.469600085 

0.1 0.587035 0.5870 0.5871 0.5870358 0.587035325 

0.3 0.774755 0.7748 0.7748 0.7747554 0.774754891 

0.5 0.927680 0.9277 0.9277 0.9276813 0.927679393 

1.0 1.232585 1.2326 1.2326 1.2325901 1.232586607 

Table 2. Skin friction coefficient for various parameters when Pr=0.73 

 

 

 

M2 

 

 

 

β 
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Δ 

 

 

 

λ* 

1
1 0f ''( )



 
+ 

   

Stagnation-Point Flow 

(m = 1) 

1
1 0f ''( )



 
+ 

   

Falkner-Skan Flow (m = 

0.5) 

0.5 0.5 0.2 1 0.2 1 0.216846979 0.182734153 

0.7      0.195144647 0.155805855 

0.9      0.172216398 0.127338086 

 1     0.395175351 0.333383799 

 1.5     0.517596306 0.436951324 

  -

0.2 

   0.311447254 0.270759332 

  0.3    0.189456522 0.157451669 

   10   0.507178899 0.494345054 

   100   1.545461237 1.541616465 

    0.4  0.231734653 0.200201758 

    0.6     0.245783529 0.216372194 

     1.5    0.215108456 0.181711443 

     2 0.213892326 0.180990580 
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4. Conclusions 

Table 3. Nusselt for various parameters when Pr = 0.73 

 

 

M2 

 

 

β 

 

 

γ 

 

 

K 

 

 

Δ 

 

 

λ* 

 

 

A*=B* 

0'( )−
 

Stagnation-Point 

Flow (m = 1) 

0'( )−
 

Falkner-Skan Flow 

(m = 0.5) 

0.5 0.5 0.2 1 0.2 1 0.2 0.385893105 0.380462958 

0.7       0.386158762 0.388098070 

0.9       0.386859598 0.397685690 

 1      0.386462671 0.376883541 

 1.5      0.386888817 0.375506758 

  -

0.2 

      0.376067020 0.397721569 

  0.3     0.388988339 0.377356696 

   10    0.391265785 0.361083721 

   100    0.403180770 0.354619607 

    0.4   0.386032465 0.377829572 

    0.6   0.386208647 0.375693322 

     1.5  0.386157653 0.380994161 

     2  0.386430090 0.381459589 

      0.4 0.362368213 0.398444090 

      0.6 0.379828298 0.455817741 

 

We have considered a steady, laminar, two-dimensional boundary layer Casson 

fluid flow of a hydromagnetic coupled heat transfer on a moving plate and a moving 

wedge with variable induced magnetic field porous medium, second order resistance, 

non-uniform heat source and homogeneous-heterogeneous reactions. Some essential 

results are as follows: 

(i) Velocity profile and induced magnetic profile decreases with magnetic field 

parameter and reciprocal magnetic Prandtl number, while increasing with Casson 

fluid parameter moving wedge/plate parameter, permeability parameter and inertia 

coefficient parameter. In all results, trends of stagnation-point flow is higher than 

Falkner-Skan flow. 

(ii) Temperature profile reduces for the Casson fluid parameter, moving 

wedge/plate parameter, permeability parameter and inertia coefficient parameter, 

moreover temperature profile shows enhancement for magnetic field parameter and 
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heat source parameter. It is noticed that the temperature profile is higher for 

stagnation-point flow when we compare it with Falkner-Skan flow. 

(iii) Species concentration profile shrinks with magnetic field parameter, 

homogeneous reaction strength parameter and heterogeneous reaction strength 

parameter, furthermore concentration profile is the increasing function of Casson fluid 

parameter, permeability parameter, inertia coefficient parameter and Schmidt number. 

It is observed that Falkner-Skan flow is lower than stagnation-point flow. 
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