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ABSTRACT
Land cover (LC) is a scientific landscape classification based on physical properties of earth materials. This 
information is usually retrieved through remote sensing techniques (e.g. forest cover, urban, clay content, 
among others). In contrast, Land use (LU) is defined from an anthropocentric point of view. It describes how 
a specific area is used (e.g. it is usual to indicate whether a territory supports an intensive, extensive use or it 
is unused). Both geospatial layers are essential inputs in many socio-economic and environmental studies. The 
INSPIRE directive provides technical data specifications for harmonization and sharing of voluminous LU/
LC datasets across all countries of the EU. The INSPIRE initiative proposes Object-Oriented Modelling as a 
data modelling methodology. However, the most used Geographic Information Systems (GIS) are built upon 
relational databases. This may jeopardize LU/LC data usability, since GIS practitioners will eventually face the 
object-relational impedance mismatch. In this paper, the authors introduce the SIOSE database (Spanish Land 
Cover and Land Use Information System), which was the first implementation of an object-oriented land cover 
and Land-use datamodel, in line with the recommendation of the INSPIRE Directive, separating both themes. 
SIOSE data can be downloaded as relational database files, where information describing each single LU/LC 
object is divided among several related tables, so database queries can be complex and time consuming. The 
authors show these technical complexities through a computational experience, comparing SQL and NoSQL 
databases for querying spatial data downloaded from SIOSE. Finally, the authors conclude that NoSQL geoda-
tabases deserve to be further explored because they could scale for LU/LC data, both horizontally and vertically, 
better than relational geodatabases, improving usability and making the most of the EU harmonization efforts.
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1 LAND USE AND LAND COVER DATABASES IN THE EU
Land is a limited resource and its mismanagement is one of the main drivers of global change, with 
significant effects on ecosystem functions, goods and services [1]. There are complex environmental 
problems such as the over- exploitation of natural resources, biodiversity loss or climate change that 
require a long-term management perspective of natural resources. Many studies agree that these 
problems can be aggravated by land-use changes, so it is mandatory to monitor and apply long-term 
management policies at different scales [2].

Land use (LU) and land cover (LC) information at national and regional level has been historically 
recorded in many EU Member States because of their environmental and territorial management’s 
needs and requirements. In addition to Corine Land Cover (CLC) 1990 databases, many EU coun-
tries have been producing LC databases to manage and satisfy their requirements on environmental, 
agricultural, forest and land planning issues. As a consequence, there are several regional and 
national LU/LC inventories with very different data collection methods, scales, nomenclatures, 
 Minimum Mapping Units, and different production and update intervals [2].
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The need for better harmonization between national and European data sets and the intention of 
avoiding redundant data production, has led many of these countries to use their national data to 
derive European scale data sets, such as CLC or LUCAS, following a ‘bottom-up’ approach [2]. 
Simultaneously, the information flow generated by these national developments needs to be inte-
grated with other European ‘top-down’ land monitoring activities, such as Copernicus, which is the 
European Programme for the establishment of a European capacity for Earth Observation [3].

The EAGLE group was set up by the members of the Environmental Information and Observation 
Network (EIONET) on land cover in response to the growing need to discuss technical solutions for 
a better integration and harmonization of national mapping activities with European land monitoring 
initiatives. The objective of the working group is to elaborate a conceptual solution for land monitor-
ing built on national data sources combined with pan-European information layers [3]. The EAGLE 
data model uses an Object-Oriented Data Modelling (OODM) approach, which takes into account 
existing standards or code lists, such as CLC, LUCAS, EUNIS as well as INSPIRE (2007/2/EC) data 
specifications and ISO standard 19144-2 (LCML-Land Cover Meta Language). Currently, the devel-
opment of EAGLE concept and methodology is being funded by the European Environmental 
Agency under the framework of Copernicus program.

The National Geographic Institute of Spain (IGN), a member of the EAGLE group, created the 
Land Cover and Use Information System of Spain (SIOSE) as part of the National Land Monitoring 
Plan, which aims to achieve a multidisciplinary Spatial Data Infrastructure, periodically updated, for 
the Spanish national and regional administrations. The SIOSE database conforms with the INSPIRE 
data specifications and has been designed as an OODM, similar to the one proposed by the EAGLE 
group, ensuring backward compatibility and comparability with pre-existing databases like CLC90, 
CLC00, Murbandy/Moland, UN FAO LCCS, among others. However, in practice, the OODM is 

Figure 1: LU/LC example of object-oriented classification in JSON.
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adapted and implemented into relational or object-relational database management systems with 
spatial capabilities, and database managers have to deal with incompatibilities at the conceptual 
level. This is a case of the object-relational impedance mismatch, and has been clearly identified in 
literature as a problem of data structure due to paradigm differences [4]. An example of LU/LC clas-
sification of a single parcel is shown in Fig. 1. The amount of semi-structured information to be 
stored for each LU/LC polygon adds some difficulties for managing the SIOSE LU/LC information 
through well-known GIS or relational geodatabases, so other technological alternatives might be 
explored. Nowadays, the SIOSE database is accessed via standard web mapping services, GIS file 
downloads and, in some cases, it is also distributed as serialized XML.

1.1 Research goals

The computational experience presented in this paper is considered a preliminary work. We basically 
conducted a peer-to-peer query performance test where LU/LC queries were run against the SIOSE 
relational model and compared with their translations run against a document-oriented derivative. 
Every query included a bounding box search clause and run iteratively using grids with varying cell 
size (Table 1). Both models were implemented in twin PostgreSQL/PostGIS instances. By constraining 
the experiment to a common DBMS we expected: (i) to get comparable response time and throughput 
figures; (ii) to obtain results not distorted by different implementations of spatial access methods; (iii) 
to get hints on how LU/LC hierarchy structure influences query performance; (iv) to ascertain query 
qualification categories for which the document-oriented approach should be considered.

2 EXPERIMENTAL SETUP
In order to initially answer the research question asked in the title of this paper, we chose to compare 
spatial query performance using different data type storage options for LU/LC observations within 
the same environment rather than measuring differences in performance among several database 
engines. PostgreSQL was selected to accomplish this task since it (i) provides an extensible type 

Table 1: Database tables used for benchmark.

Type Tables #Rows Total Size External Size

Relational + 
Lookup

siose_values 10,435,032 3,160 MB 1,522 MB

siose_polygons 2,477,593 6,456 MB 1,948 MB
siose_coverages 116 48 kB 40 kB
siose_attributes 26 40 kB 32 kB
TOTAL 12,912,625 9,616 MB 3,470 MB

Document store docstore_jsonb 2,477,593 8,066 MB 2,615 MB
Grids spain_grid_10k 46,088 7,568 kB 40 kB

spain_grid_25k 7,646 1,296 kB 40 kB
spain_grid_50k 2,027 376 kB 40 kB
spainvgrid_100k 568 136 kB 40 kB
spain_grid_200k 171 72 kB 40 kB
spain_grid_500k 42 48 kB 40 kB
spain_grid_1m 15 48 kB 40 kB
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system, (ii) implements the OGC’s Simple Feature for SQL specification using the PostGIS exten-
sion – providing types, functions and access methods for geographic data –, (iii) allows for a formal 
representation of SIOSE’s relational model, (iv) provides a binary JSON data type and operators to 
manage document-oriented models [5] and (v) generates query plans using a common relational 
query processor. Therefore, SQL spatial queries against relational and document-oriented models 
can be consistently compared to each other in terms of processing cost.

2.1 Data loading

As of this writing, there are two SIOSE datasets publicly available for download, corresponding to 
the compilation campaigns of 2005 and 2011. The SIOSE 2005 dataset was selected since, at the 
time of testing, it was the only one that covered the whole country. This dataset collects more than 
10.4 million soil occupation observations for roughly 2.5 million polygon geometries. SIOSE data 
were obtained from the Spanish National Center for Geographical Information download site. Data 
for a particular year is organized as a series of ZIP archives. Each archive covers an administrative 
region or subregion and contains an ESRI Shapefile with polygon geometries and a Microsoft Jet 
MDB file with LU/LC observations. As to raw data preparation, a set of bash scripts (https://github.
com/labgeo/siose2postgis) were written to automate the initial process of loading the SIOSE archives 
into a PostgreSQL/PostGIS database. This job was accomplished on a commodity computer running 
Ubuntu 14.04 and one PostgreSQL/PostGIS Docker container. The resulting database was dumped 
into a plain SQL script file using the common pg_dump utility. For the binary JSON model test, 
several scripts were prepared to transform the whole relational database into a set of JSON  documents 
(Fig. 1). These JSON documents are created as a direct translation of the XML files prepared by the 
IGN for very particular purposes.

2.2 Use case

For this computational experiment, our intent was measuring workloads across the whole SIOSE 
dataset in a similar fashion to the use case of a web map monitoring session where, in order to reload 
its data, a reactive dashboard listens to range query events on a map view. This use case is in line with 
the concept of the map browsing macro benchmark scenario within the Jackpine spatial database 
benchmark methodology [6], which consists of a series of queries fetching geometries inside bound-
ing boxes. Covering the study area in full was necessary so that the benchmark is comprehensive in 
terms of reflecting LU/LC regional variability. In order to meet this requirement, a tessellation func-
tion was written to build graticule macro scenarios overlapping Spain’s mainland and islands at seven 
different scales or levels of detail, ranging from 1:10,000 to 1:1,000,000. Finally, a set of six bounding 
box search queries were prepared with three categories of qualifiers, namely polygon selection, aggre-
gation and reclassifying conditions (Table 2). Grid cells played as arrays of predefined bounding 
boxes, each cell being visited three times per query plus one initial warming up iteration.

2.3 Test environment

The PostgreSQL query planner itself was used as the means of benchmarking. Query planners or 
optimisers have been formally defined as the component of the relational query processor which is 
in charge of mapping the set of logical operators in a DML statement syntax tree to an optimal or 
suboptimal graph of physical operators driving data flow [7, 8]. In the case of PostgreSQL, the inter-
nals of these diagrams, referred to as query plans, have been explained in great detail by source code 
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reviewers [8] and are the primary resource for query performance monitoring. To sum up, a query 
plan is generated by issuing the EXPLAIN command, typically over a SELECT statement, and 
depicted as a binary tree of access paths. Each node in the tree represents an access method for scan-
ning a relation (sequentially or by index) or an algorithm for joining a pair of relations. Nodes also 
have an associate processing cost. Queries with a low number of joins are optimised using an exhaus-
tive search strategy, so the resulting query plans shall be considered optimal provided that statistical 
information involved with processing cost estimates is regularly fed to the system catalogue using 
the VACUUM and ANALYZE maintenance commands. As to this computational experiment, the 
query plans output by the EXPLAIN ANALYZE command were recorded for each query (6), grid 
cell (56,557) and iteration (4). We ultimately focused on actual execution times in order to assess 
query performance, although there are other metrics, such as the number of nodes, the number of 
rows processed or the accumulated processing cost carried over each node, which are also relevant 
for benchmarking and may well be used to consistently compare between query plans originated 
within each data model (relational and JSONB) and whose result set is equivalent.

2.4 Server instance replication and database deployment

Each PostgreSQL server instance was executed in isolation using containers running on Docker 
Engine 1.9. As highlighted in an analysis of the ‘DevOps’ approach to computational experiments 
replication, Boettiger [9] demonstrates how Docker container technology fulfills the requirements of 
software dependency resolution, precise documentation and portability by means of simple script-
ing, composition and light-weight image binaries sharing the host machine kernel. In order to ensure 
reproducibility of the computational environment used for the tasks described in this paper, we are 
providing a Dockerfile (https://github.com/labgeo/postgresql-9.5-postgis-2.1) which allows creating 
a PostgreSQL 9.5 image, including the PostGIS 2.1 extension for geospatial data storage.

A deployment utility (https://github.com/labgeo/deploy-db) was developed to automate launching 
database instances on the server. This bash script can be executed locally to run a PostgreSQL 

Table 2: Bounding box search benchmark queries.

LU/LC Condition Query ID Description

cover equals coniferous Select polygons with coniferous cover.

cover equals AND area 
greater than

large_coniferous Select polygons with coniferous coverage greater 
than 1 Ha.

attribute equals OR
attribute equals

reforested Select polygons with forest coverage originating 
from plantation or agricultural abandonment.

cover equals AND 
parent(cover) equals

scattered_urb Select polygons with scattered urbanisation 
coverage.

IF cover equals THEN
sum(area)

area_coniferous Sum all areas of coniferous plantations.

IF cover equals THEN
reclass(area percent-
age)

reclass Reclassify all polygons into 4 density class 
 categories based on conifer percentage (0%–25%, 
25%–50%, 50%–75% and 75%–100%). Discard 
polygons with no coniferous cover.



 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016) 443

Docker container, create a PostGIS database and subsequently restore the complete SIOSE dataset 
using the above mentioned SQL script file. Two database instances were generated so that we could 
effectively rely on isolated computational environments to compare query performance between the 
relational and the document-oriented models.

2.5 Schema setup

Several set-up scripts (https://github.com/labgeo/pg_siose_bench) were developed and documented. 
The LU/LC observations table stores adjacency lists to model the coverage hierarchy of each polygon, 
but the parent fields contain the full path of ancestor identifiers as comma-separated strings instead of 
the direct ancestor’s identifier. The one to many relationship between a coverage and its attributes is 
also stored as a list of strings. During pre-processing, these lists were converted to one-dimensional 
arrays, thus rendering a 1NF compliant model whose data is accessible through Generalized Inverted 
Indexes (GIN) and array operators. Additional pre-processing scripts were used to rename identifiers, 
remove unneeded fields and build grid scenarios. As to indexing, only general indexes were built: 
BTree on scalar fields, GIN on array and binary JSON fields and Generalized Search Tree (GiST) on 
polygon geometry. No multi-column or functional indexes were created. This preserves flexibility 
since the choice of any particular index is always handed over to the PostgreSQL optimiser when 
processing WHERE clauses having multiple conditions. In summary, starting from two SIOSE raw 
geodatabase instances, the set-up process resulted in (i) a normalised geodatabase with a polygons 
table and an LU/LC observations table (relational model) and (ii) a second instance with a single 
 polygons table where LU/LC observations for each polygon are stored as binary JSON values (docu-
ment-oriented model). As part of the schema set-up, all LU/LC queries were defined as prepared 
statements and encapsulated, along with the benchmark log commands, within support functions.

3 BENCHMARK RESULTS
Firstly, the comprehensive series of scripts that were developed make themselves a first relevant 
result, since they guarantee the reproduction of the research by others in an automated fashion.

As to final test results, benchmarks were carried out on a Debian 8 server with kernel 3.16.0-4-
amd64, Intel Xeon E5-2630 v2 CPU, 512 GiB SSD and 62 GiB RAM. Given a 4 iterations per 
grid cell, a total of 226,228 iterations per bounding box search query were run on each Post-
greSQL server instance. The whole query stack took 3.58 hours to complete on the relational 
model. Completion time in the document-oriented model was 2.91 hours that is roughly a 19% 
faster. Benchmarking implied recording every single iteration query plan in a log table, which was 
in turn indexed to efficiently get measurements on response and throughput, namely averages by 
execution time and, as a byproduct, polygons per millisecond. Table 1 shows the database tables 
used in this computational experience, with their cardinality, total file size and external file size 
(kB or MB). Approximately, ‘external size’ corresponds the memory occupied by indexes, while 
‘total size’ is equal to the sum of the data size and the ‘external size’. There are three types of 
tables: (i) tables storing regular grids at 7 different scales where each record corresponds to a cell 
grid, (ii) tables containing the SIOSE relational database, optimised for PostgreSQL as explained 
in Subsection 2.5. There is one table (siose_polygons) storing the SIOSE 2005 geometries, a sec-
ond table (siose_values) storing the LU/LC values associated with those polygons and two lookup 
tables containing LU/LC descriptions for the LU/LC codes in siose_values. (iii) Finally,  docstore_
jsonb stores the complete SIOSE database in one single table, very similar to siose_polygons, 
but with an additional binary JSON column storing the LU/LC model for each polygon (see 
 Section 1). It can be seen that the relational database uses 5,2 times more rows than the document 



444 J.T. Navarro-Carrión et al., Int. J. of Design & Nature and Ecodynamics. Vol. 11, No. 3 (2016)

store for the same information. It is also noteworthy that the relational model spends more disk 
space in both, tables and indexes.

Response time charts and throughput boxplots were composed using query plan execution times 
and number of polygons processed per millisecond, respectively. Charted values refer to average per 
query and grid. Comparative line charts in Fig. 2 show that queries by cover (query identifiers 
‘ coniferous’ and ‘scattered_urb’) render better response times on the document-oriented model. In 
fact, these queries scored maximum throughput and the greatest performance gains with regard to 
their siblings in the relational model as shown in Fig. 3. The reclassification query performs better 
on the document-oriented model, particularly at the 1:100,000 scale, where it runs twice as fast. 
However, response time gains tend to shrink at lower levels of detail. Differences in response and 
throughput are less significant in the aggregation (query id ‘area_coniferous’) and LU/LC attribute 
(query id ‘reforested’) queries. On the other hand, response times of the query by cover and LU/LC 
(query id ‘large_coniferous’) increase progressively at lower levels of detail on the document-store 
model, so much that overall performance is clearly better on the relational model.

4 DISCUSSION
Considering the exploratory nature of this experiment and the observed results, the answer to the 
research question is that there are common workflows for which a document-oriented model should 
be seriously taken into consideration. Massive polygon retrievals based on land coverage presence 
or absence seems an optimal use case. Reclassification operations may also benefit from a binary 

Figure 2: Binary JSON vs relational query response times.
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JSON implementation, although real applications such as those mentioned in Section 1 should be 
thoroughly tested (e.g. derive CLC following a ‘bottom-up approach’). In contrast, inequality 
expressions on LU/LC numeric attribute values cannot make use of the GIN index on the binary 
JSON field. As seen in Section 3, this problem gets particularly exacerbated in the query by cover 
and area (query id ‘large_coniferous’), which performs progressively slower at smaller scales 
(more polygons to process per grid cell) on the binary JSON model. The throughput of this query on 
the document-oriented model is remarkably poor considering its relative simplicity. Drastically 
improving performance on inequality expression evaluation requires an alternative approach for the 
document-oriented model, which most probably involves resorting to functional BTree indexes. 
Another issue that emerged during the devise of the experiment was the somewhat convoluted syn-
tax of the JSON queries. This is a consequence of the deeply nested structure of the LU/LC JSON 
documents and the lack of native DOM operators. Different flattening strategies of the original 
JSON schema should be investigated in order to assess on tackling this issue and measure influence 
in performance. In the end, this computational experiment serves as a starting point to verify that, 
while the relational model is probably more reliable for OLTP, building LU/LC data marts upon 

Figure 3: Binary JSON vs. relational query throughput
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binary JSON may boost Big Data applications not feasible otherwise. Finally, the computational 
experiment presented in this paper opens up research in scopes such as index optimisation and effi-
cient search inside JSON documents.
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