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ABSTRACT
Nowadays, Big Data implies not only the need of processing high volume of data, but also do it in a timely 
manner. In this scope, the Complex Event Processing (CEP) paradigm has arisen as a prominent real-time 
rule-based solution. Due to its reactive nature, a CEP system might suffer from slight delays in the activation 
of its rules that could not be desirable in certain environments. As a result, the present work introduces a novel 
mechanism that intends to anticipate the activation of event-based rules and, thus, come up with even faster 
CEP systems. This is achieved by means of a probabilistic modelling of each rule’s precondition. Finally, the 
proposal includes a preliminary evaluation so as to show its suitability.
Keywords: complex event processing, event processing rules, predictive analysis. 

1  INTRODUCTION
In this day and age, the amount of data produced in our world during the last years has experienced 
exponential growth, reaching 2.5 exabytes of data per day [1]. In this frame, the term “Big Data” 
stands for the collection of solutions for managing and extracting meaningful information from this 
data. This is done by providing an alternative to traditional database management systems and data-
mining techniques. In that sense, big data have been characterized by the three V’s [2], volume, 
variety and velocity.

Concerning the velocity dimension, that is the speed at which the incoming data must be processed, 
there is an increasing necessity to do that in nearly real time. As a matter of fact, a road-traffic man-
agement system, which might receive thousands of new mobility reports every single instant, would 
be undoubtedly interested in the detection of traffic jams as soon as they occur so as to perform the 
most appropriate actions to counteract the congestions in a rapid manner.

In this scope, Complex Event Processing (CEP) is a relatively novel and promising software tech-
nology that aims to address the development of recognition systems [3]. The goal of CEP system is 
the timely detection of situations of special significance within an organization or domain given 
streams of low-level information items, so-called events, that cannot be directly handled by humans. 
To do so, a CEP system consists of a palette of asynchronously interconnected Event Processing 
Rules (EPRs). Such rules are defined by expert knowledge indicating their pre-conditions and the 
actions to be taken if they are fulfilled.

Despite its real-time processing capabilities, one of the major drawbacks of CEP is its reactive 
nature as an EPR is only activated when its conditions are fully satisfied. However, the actual value 
of an event derived by an EPR activation decreases with time. In order to cope with this limitation, 
a prominent approach has made use of predictive analysis in order to forecast the occurrence of 
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certain events in advance [4–6]. Nonetheless, this is achieved by means of external tools decoupled 
of the CEP system.

In this scope, the present work presents a novel approach to provide predictive features to the CEP 
paradigm. In particular, the introduced solution focuses on anticipating the activation of a rule and, 
thus, make up its outbound derived event in advance. To do so, for each EPR, the proposed mecha-
nism analyses its list of pre-defined requirements to fire. Then, it incrementally generates an ad-hoc 
predictive model of such requirements at the same time the system receives the incoming raw events, 
so it does not rely on a preliminary data collection step. Finally, this predictive model determines 
when the EPR can be activated in advance even though its predefined requirements have not been 
fully accomplished yet.

All in all, the mechanism that we introduce here is a completely different approach regarding 
previous solutions which focus on generating future events by means of predictive-analysis tools 
decoupled of the system’s EPRs. In other words, while previous approaches provide solutions of 
how a CEP system can deal with externally-predicted events, the present work centers on how to 
generate such events within a CEP system. Consequently, this work intends to enrich the CEP para-
digm with actual pro-active capabilities as a built-in feature by automatically transforming regular 
reactive EPRs into proactive ones.

The remainder of the paper is structured as follows: an overview of the state of the art of predictive 
analysis in the CEP domain is put forward in section 2. A detailed explanation of the proposed pre-
dictive mechanism is stated in section 3. Then, section 4 discusses the results of a preliminary 
experiment. Finally, the main conclusions and the future work are summed up in section 5.

2  BACKGROUND

2.1  Complex event processing

A CEP system endlessly reads raw events from a set of event producers [3]. Then, it performs a 
set of operations on these events so as to give insight into new knowledge in the form of new 
derived events that are delivered to the event consumers. Both raw and derived events are gener-
ally characterized by a set of inner fields that contain their main attributes. The entities in charge 
of performing such operations are the EPRs. Thus, an EPR takes as input one or more event 
streams. When its condition part is fulfilled, it asynchronously delivers new derived events to 
other rules through a push-style communication. All these connections are enabled by an inner 
CEP engine.

2.2  Predictive analysis in the CEP domain

In recent years, there are few research efforts which have explored the possibility of combining pre-
dictive analytics (PA) methods with CEP to provide proactive solutions. Initially, it was proposed in 
[5], where the authors presented a conceptual framework for combining PA with CEP to get more 
value from the data. Although the idea of combining both technologies was encouraging, they did 
not support their work with any practical application. Another example is given in [6] where the 
authors used Expectation Maximization (EM) algorithm to detect complex events but its complexity 
increases exponentially as the training dataset increases. Finally, in [7], the authors provide a basic 
framework for combining time series prediction with CEP. The authors highlighted the open issues 
related to prediction components such as model selection and model update as new data arrive but 
did not address these issues and left it for their future work.
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A common feature of all the aforementioned solutions is that they use different PA techniques to 
generate forecasted events. Next, such events feed a CEP system in charge of detecting situations of 
interest in advance. Thus, PA is not actually integrated in a CEP solution. In addition to that, the 
mentioned PA tools need, in most of the cases, a historic dataset to compose their models. In that 
sense, we should bear in mind that CEP is designed, as a real-time solution, to operate in environ-
ments where collecting reliable historical data might be a difficult task. On the contrary, the present 
work differs from previous solutions as it proposes a predictive mechanism regarding the pre-condi-
tions of the EPRs so that the PA is included within the CEP system. Moreover, the adopted solution 
allows to incrementally generate the predictive model at the same time the CEP system receives/
generates its events. Hence, a preliminary data collection step is no longer required.

3  PROACTIVE EVENT PROCESSING RULES
This section is devoted to explain in detail the proposed mechanism for proactive EPRs.

3.1  Target EPR types

Two types of EPR’s are supported by the current version of the solution, the intersection-based 
EPRs and the sequence-based EPRs.

3.1.1  Intersection-based EPRs
The first type comprises those rules whose preconditions take the form of a list of events where all 
of them should occur in any order before the rule files. The following pseudocode shows the general 
form of this rule type, 
CONDITION Event 1(cond11, cond12,..., cond1k)
		  AND Event 2(cond21, cond22,... ,cond2p)
		  ...
		  AND Event n(condn1, condn2,..., condnq)
ACTION new DerivedEvent();

As we can see, this type of rule generates a new Derived Event when a set of n events {Event _1, 
Event_2, ..., Event_n}, each one accomplishing a set of conditions condxy occur. A exam-
ple of this type of rule in a road-traffic management system monitoring potentially risky situations 
might be the following,
CONDITION CarCrashEvent as c
		  AND HighTrafficDensityEvent(road = c.road)
		  AND RainyWeatherEvent(dist(area,c.road) < d_min)
ACTION 	 new DangerousSituationEvent(c.road);

For this type of rule, the goal of the mechanism is to anticipate the generation of the Derived 
Event so that the rule does not need to wait until receive the n incoming events to fire. On the con-
trary, it will generate a probabilistic model so as to uncover the smallest subset of m incoming events 
(m < n) that allows to generate in advance the rule outcome.

3.1.2  Sequence-based EPRs
This second type of rule is similar to the previous one, but its pre-conditions defines a particular 
order among the incoming events by means of the followed by operator (→). Consequently, the 
general form of this target EPR is as follows,
CONDITION Event 1(cond11, cond12,..., cond1k) -> 
	 Event 2(cond21, cond22,... ,cond2p) -> ...->
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	 Event_n(condn1, condn2,..., condnq) 
ACTION	 new DerivedEvent();

For this type of rule, the goal of the mechanism is to generate a probabilistic model so as to 
uncover the smallest subsequence of m incoming events {Event_1 → Event_2 → ... → 
Event_m} (m < n) that allows to generate the rule outcome in advance.

3.2  Mechanism’s components

Figure 1 shows the proposed solution for proactive EPRs in a CEP system deployment. The follow-
ing sections describe its three different modules.

3.2.1  EPR syntax analyser
The EPR syntax analyser is executed just before the system is launched for execution. Its main goal 
is to collect, for each intersection-based or sequence-based rule, (1) its type, (2) the events in its 
condition part and 3) its generated. derived event. Then, these three items are sent to the predictive 
model generator.

3.2.2  Predictive model generator
�This component is the core element of the mechanism as it is in charge of compose the probabilistic 
model for each EPR. This implies two different steps.

Firstly, the module initializes a different probabilistic graph model for each EPR matched by the 
EPR syntax analyser. Depending on its type, its graph model will take two different formats as Fig. 2 
shows. In these graphs, the edges store the occurrence frequency of the events in the rule’s precondi-
tion with respect to its firing frequency. For example, Fig. 2a indicates that Event 1 has occurred 44 
times, the sub-sequence {Event_1 → Event_2 } 20 times whereas the rule has fired 13 times. 
As we will see in section 3.2.3, this information is used to infer future events.

The second step carried out by this module incrementally updates the frequency information con-
tained in the graphs at the same time the CEP system receives and delivers events. Thus, for each 
new raw or derived event enew generated/received within the system, the module executes the 
procedure depicted in Algorithm 1 to update the graphs.

Figure 1: Integration of the solution with a regular CEP system. 
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In short, this procedure first searches all the graphs that contain, in some of their parts, the new 
event enew. Then, it updates the frequency information of the edges of each selected graph (lines 1–3 
of Algorithm 1). This update is performed by the function update edges (lines 4–14). Depending on 
the part of the rule where enew is contained the function updates the edges in a different way. In case 
enew is in the action part, this means the rule has has fired. Consequently, all the edges are updated 
by increasing their firing frequency of the rule (the right number in the edges in Fig. 2) (lines 6–9). 
Provided enew is in the condition part (lines 10–16), we first append the new event to the condition 
state of the rule (line 11). This state lists the events within the rule’s condition that have already 
occurred. Once such state has been enlarged, the edge associated with the current rule’s state is 
updated (lines 12–13). Finally, the edge’s frequency solely associated with the enew is also incre-
mented (lines 14–16).

For the sake of clarity, Table 1 shows how the graph in Fig. 2b would be updated in case the 
sequence (Event_2, Event_1, Event_3, Derived_Event, Event_1) is received.

All in all, we can see that the module updates the graphs on the fly at the same time the events flow 
through the system. Consequently, it does not rely on any type of previously gathered historic data.

3.2.3  Prediction maker
This is the module in charge of actually predicting the events. To do so, it uses the frequency infor-
mation contained in the graphs and the condition state of each rule. The process is summarized in 
Algorithm 2.

First of all, this procedure extracts, for each new raw or derived event enew, the set of graphs Ge 
where the event is involved (line 1 Algorithm of 2). Then, for each graph g, the prediction mechanism 
is launched by invoking the function make prediction (lines 3–4). This function (lines 6–18) takes the 
current condition of the rule rcond

state  and uses its associated edge (E) to calculate the probability p of the 
derived event that will be generated by the rule according to its current state (lines 9–13). To do that, 
a domain-dependent parameter pmin defines the minimum probability to actually make a prediction.

Keeping on with the event sequence of Table 1 and provided that pminis set to 0.7, the mechanism 

at instant t + 1 calculates that the proba-bility p of the edge associated with rstate is 0.77 =





24

31
. 

Therefore, the system anticipates the activation of the rule and generates its derived event Derived_
Event at instant t + 1 before Event_3 is delivered at instant t + 2 which is the one that actually 
causes the reaction-based activation of the rule.

Figure 2: Examples of predictive graph models generated by the component. The nodes represent the 
events of the rule precondition and the derived one.
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Table 1: Example of how the graph in Fig. 2(b) would be updated.

Time enew rcond
state

Updated edges New Freq.

t Event 2 {Event 2} Event 2 −
Derived Event

24|34→24|35

t + 1 Event 1 {Event 2, 
Event 1}

Event 1 −
Derived Event

24|55→24|56

{Event 1, 
Event 2} −
Derived Event

24|30→24|31

t + 2 Event 3 {Event 2, 
Event 1, 
Event 3}

Event 3 −
Derived Event

24|42→ 24|43

{Event 1,
Event 2, 
Event 3} −
Derived Event

24|24→ 24|25

t + 3 Derived Event ∅ All 24|*→ 25|*

t + 4 Event 1 {Event 1} Event 1 −
Derived Event

25|56→25|57

Algorithm 1: EPR graphs update procedure.
Input: G: set of EPR graphs, enew : new event.

1 Ge ← find(G; enew)
2 foreach g ∈ Ge do
3       update_edges(g,enew, p)
4 function update_edges(g, enew)
5 eg type   ← g .type_of  (enew )
6 if eg type   == action  then
7       g.EPR.cond_state  ← 
8       foreach   ∈  g.edges  do
9               .num_rule_fires++

10 else if eg type  ==   condition  then
11       rstate     ← g .EP R.cond_state ∪ enew

12          ←  g.edge_of ( rstate  )
13         .frequency++
14          ←  g.edge_of(enew )
15            .frequency++
16        g.E P R.cond_state  ← rstate

cond

cond

cond

∈

∈
∈
∈
∈

∈
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In the end, all the predicted events are injected into the CEP engine so that they can be processed 
by all the EPRs. In that sense, how such rules must deal with the probabilistic features of the pre-
dicted events is left as future work.

4  PRELIMINARY EVALUATION

4.1  Target scenario

In order to provide a preliminary test of our proposal, we have made use of the CEP system proposed 
in [8] to discover the occupants of a vehicle by means of some of its built-in sensors. One of the 
EPRs of such system intends to perceive if there is a person in the driver seat. To do that, it is acti-
vated when detects that the driver door has been opened, then the seat belt in the driver side has been 
fasten and finally the vehicle’s engine has been turned on. The pseudocode is as follows,
CONDITION 	 OpenDriverDoorEvent -> 
		  FastenDriverSeatBeltEvent -> 
		  TurnOnVehicleEngine
ACTION		 new DriverOccupantEvent();

This sequence-based EPR was handled by our mechanism so as to anticipate the occupancy in the 
driver seat.

Algorithm 2: Event prediction procedure.
Input: G: set of EPR graphs, enew : new event, pmin : minimum probability.

Outpu: epred: set of predicted derived events.

cond

cond

1 epred ← 
2 Ge ← find (G, enew) 
3 foreach g ∈ Ge do
4 epred ← epred ∪ make_prediction (g, enew, pmin)

5 return epred 
6 function make_prediction (g, enew, pmin) 

7 eg type   ← g .type_of  (enew )

8 if eg type   == condition  then

9

10
11

rstate     ← g:EPR:cond_state ∪ enew

e ←  g.edge_of ( rstate  )
f ←  ∈ . num_rule_fires

12 nrf ←  ∈ . num_rule_fires

13 p ←

14 if p ≥ pmin then

15

16

epred ← g. EPR.derived event

epred . prob ← p
17 return epred 

18 return 

f
nrf
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4.2  Measurements

Two measurements have been used to evaluate our proposal,

precision
correct predictions

correct predictions incorr
=

+
# _

# _ # eect predictions_

recall
correct predictions

correct predictions pr
=

+
# _

# _ # missing eedictions

where #correct_ predictions is the number of correctly predicted Driver Occupant Events, 
#incorrect_predictions is the number of Driver Occupant Events predicted by our mechanism that 
actually the rule did not generate and #missing_predictions refers to the number of Driver Occupant 
Events delivered by the rule but not predicted by our solution.

In addition to that, we also evaluated the anticipation capabilities of the mechanism by measuring 
the time margin between the moment at which the solution anticipates an event and the moment at 
which the rule actually generates the real event.

4.3  Results

Table 2 depicts these three measurements for different values of pmin.
As we can see, the system achieved, in all the cases a suitable level of prediction both in terms of 

accuracy and anticipation time. More in detail, the mechanism was able to detect the presence of the 
vehicle driver (by generating a predicted Driver Occupant Event) roughly two seconds in advance. 
This anticipation of the driver detection can be quite useful in a road-traffic management scenario to 
start certain transition services even more quickly.

5  CONCLUSIONS AND FUTURE WORK
CEP is nowadays a promising paradigm within the Big Data domain in order to deal with large flows 
of information in a timely manner. In that sense, a prominent line of work within the CEP field 
intends to enrich it with proactive capabilities by using external predictive analysis tools. In this 
scope, the present work is a first step towards a more integrated predictive solution in CEP.

Future work will focus on two courses of action. To begin with, new types of EPRs will be 
included by the mechanism of prediction. This would imply to consider foremost elements of CEP 
like sliding windows. Secondly, the current value of the events’ attributes will be also considered in 
the production process so that the proposed mechanism will not only predict future events but also 
their associated details.

Table 2: Preliminary evaluation with respect the driver-detection EPR.

Parameter pmin = 0.3 pmin = 0.5 pmin = 0.8

Precision 0.74 0.82 0.93

Recall 0.77 0.75 0.71

Anticipation time 2.2s 2.1s 2.2s
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