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ABSTRACT
Social interaction increases significantly the collective action and operation of swarming systems. However, a 
growing body of empirical results reveals limitations in the number of social links in natural swarms, thereby 
suggesting possibly detrimental effects associated with excessive social activity. We study the consequences 
that such excess has on the responsiveness of a swarm facing dynamic perturbations. Using a classical model 
of collective motion, we show that the capacity of a swarm to perform actions critical to its survival peaks for 
a number of social links much smaller than the maximum possible number. This relationship between social 
activity, responsiveness and predator avoidance capacity presents a plausible picture of how natural selection 
could favor organisms that self-limit their sociality, as is common in many taxa. These results have important 
implications for the design of swarm robotics systems.
Keywords: collective behaviors, consensus dynamics, sociality, swarming systems.

1  INTRODUCTION
Animal groups provide paradigmatic examples of collective phenomena in which repeated interac-
tions among individuals produce dynamic patterns and responses on a scale larger than individuals 
themselves. Some of the examples around us include the coordinated movements of fish and birds in 
a school or a flock respectively, the chemotactic aggregation of amoebae, the formation of lanes in 
densely-packed human crowds, the generation of vortices in bacterial colonies, the synchronized 
march of wingless locusts and the synchronized flashing of fireflies. Many more examples can also 
be found inside all of us: the firing of neurons in our brains, the clustering of differentiated cells to 
construct our organs both during embryonic development and wound healing, and the targeted 
response of neutrophils as part of the initial immune response to a bacterial infection. This non-
exhaustive list of collective behaviors of unicellular and multicellular organisms is revealing of the 
pervasiveness of swarming in the natural world [1].

Swarming agents are interconnected organisms or agents. A key benefit of being connected is 
access to information. Such dynamic interconnectivity serves the purpose of channeling information 
exchanges, which are critical to the effectiveness in swarming. Indeed, it is well known that collec-
tive animal behavior is dependent on the existence of communication channels enabling information 
exchange between individuals [1, 2]. For instance, the collective surveillance against oncoming 
threats of a flock of birds provides a higher level of vigilance only if the information obtained by 
each pair of eyes is shared among the flock.

Swarm dynamics is governed by inter-agent interactions and also interactions between individual 
agents and their environment. Through all these interactions a social transmission of information 
occurs, eventually leading to a wide range of self-organizing natural behaviors. Let us come back to 
the example of the evasive maneuver performed by a flock of birds confronting a threat. The predator 
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is external to the flock and can be said to be part of the environment. The detection of its presence 
by birds at a close range amounts to an external signal or stimuli – a.k.a. sensory information. The 
detecting agents swerve to move away from this stimuli, thereby creating a signal internal to the 
flock – behavioral information. This behavioral signal contains information and propagates through 
the flock at high speed and with little distortion [3, 4]. This latter information transmission process 
can be said to be responsible for the overall effectiveness of the flock in dodging the predator’s 
attack. For instance, birds detecting an environmental threat give utmost priority to sensory informa-
tion, thereby discarding behavioral signals from neighboring conspecifics. In short, information is a 
crucial currency for animals from a behavioral standpoint. This is certainly also true for artificial 
swarms.

Tracing the flow of information and quantifying informational exchanges are keys to gaining 
insight into the functioning of swarms. It also plays a central role when designing swarming sys-
tems. From the engineering standpoint, such effective information transfers highlight the existence 
of an underlying communication channel that takes the form of the swarm signaling network (SSN) 
[5] as is schematically shown in Fig. 1. Animal collectives use this SSN to effectively respond to 
changes in the surroundings: e.g. coordinated evasive maneuvers upon detection of a predator or 
collision avoidance. The structure and dynamics of SSNs  are quite unique, being temporal and 
adaptive networks [6] with a dynamics deeply interwoven with the agents’ motion dynamics embed-
ded in the physical space. For instance, in the particular case of bird flocks governed by a topological 
interaction [7], the SSN has been found to be a small-world, homogeneous clustered network whose 
connectedness is key to yielding resilient swarming behaviors [5]. The knowledge of and access to 
the structural properties of the SSN revealed the high dynamic controllability of swarms [5, 8] – 
where few agents are capable of driving the dynamics of the swarm as a whole – as well as very 
effective consensus reaching processes [9].

Increasing the amount of social links is usually known to yield an improved collective operation. 
From a network-theoretic standpoint, this amounts to increasing the degree distribution of the sign-
aling network. However, there is a growing body of evidence showing that most collective behaviors 

Figure 1: � Schematic of a networked flock of birds with the associated information transmission 
channel in the form of the SSN. Edges represent an interaction between two agents. Nodes 
are the agents themselves, which act as routers for the behavioral information.
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naturally occurring involve a limited number of social links – i.e. the SSN has a very specific degree 
distribution. A recent landmark study from the STARFLAG group imaged and tracked wild flocks 
of starlings numbering in the thousands and revealed that the neighborhood of interaction actually 
depends on a topological distance [7, 10]. More precisely, Ballerini et al. [7] discovered that each 
bird interacts on average with a fixed number of nearest neighbors (six to eight). This apparent limi-
tation in the number of social links in flocks of starlings was further observed with swarms of midges 
[11] governed by a metric interaction distance and in which a regulation of the nearest neighbor 
distance, as a function of the size of the swarm, takes place. Similar limitations in the number of 
social links have been observed with other taxa, including insects: e.g. the ants (Lasius fuliginosus ) 
regulate their rate of social encounters [12]. The important fact here is that this limitation in the 
number of social links established appears to be a behavioral feature and not a direct result of 
physical limitations associated with their sensing and/or signaling apparatuses. These findings sug-
gest that an excess in social connectivity could have detrimental consequences for the swarm 
dynamics, when the latter is confronted with changing circumstances.

Here, we investigate the consequences of establishing an excessive amount of social links on the 
collective dynamics of a swarming system confronted with a threat. Understanding these effects has 
far-reaching consequences on the design of artificial swarms [13] and for the study of spreading of 
behaviors in online communities [14]. Previous studies of this problem [9, 15] were focused on 
system reaching consensus and have shown that, above a certain point, increasing the number of 
social links yields only marginal benefit to the collective. However, a systematic study of the respon-
siveness of swarms as a function of the number of social connections is lacking. To this aim, we use 
a canonical model of collective motion, in which agents move by adjusting their direction of travel 
to that of their neighbors in both two and three-dimensional setups. We characterize the responsive-
ness of the swarm by simulating a predator attack and measuring the survival rate of agents 
depending on their level of social activity measured by their degree distribution of their signaling 
network.

2  SELF-PROPELLED PARTICLES MODEL OF COLLECTIVE MOTION
In the past two decades, a wealth of swarming models have been developed and introduced. Most of 
them are aimed at generating consensus behaviors [1, 5, 8, 9, 16, 17], often in the form of group 
alignment or polarization. In our framework, such consensus behaviors amount to swarming that 
refers to a circumstance in which multiple adaptive agents – be them living creatures or artificial 
ones – create a certain level of spatiotemporal order characterized by one or more macro-level 
properties.

2.1  Base model

Following the work by Komareji & Bouffanais [5], we consider a collective of N identical and topo-
logically interacting agents moving at the same speed. Each individual group member, at any given 
instant t, is assumed to be fully characterized by a given state variable Ψi (t). Such a generic state 
variable may represent widely different characteristics depending on the nature of the group consid-
ered, but here it simply reduces to the direction of travel and the achievement of swarm consensus 
therefore yields an alignment of all the agents, in other words a polarized swarm. Hence, from a 
formal standpoint, by reaching a consensus, we mean asymptotically converging to a one-dimen-
sional agreement in space characterized by Ψ1 = Ψ2 = · · · =ΨN [18].

In the dynamical model considered, the adaptive and interacting swarming agents are modeled as 
self-propelled particles (SPPs) for which the biological details of the internal origin of an agent’s 
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thrust is considered to be irrelevant. Such SPP-based models are a good representation of collective 
animal behaviors [16]. Here, these SPPs are moving about a two-dimensional plane with constant 
speed v0 and subject to a topological neighborhood of interaction. As mentioned previously, each 
agent i is fully characterized by its direction of travel—in other words, here Ψi (t) = Ψi (t)—related 
to the agent’s velocity through Vi = v0 cos qi x̂  + v0 sin qi ŷ. The local synchronization protocol, 
based on relative states, is strictly equivalent to a local linear alignment rule which mathematically 
can be stated as:
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where Ni is the set of out degree neighbors in the topological neighborhood of interaction of agent 
i, with cardinal number |Ni |, and wij is the binary weight of the i − j communication link. Note that 
in some models, wij can take a more complicated form than our binary choice. Using the k-nearest 
neighbor rule to define the topological distance, we have |Ni | = k for the case k = 7) and the following 
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where qj , · · · , qj+k-1 are its k-nearest neighbors’ velocity directions.

2.2  Incorporation of noise

Noise can generally be assumed to be random fluctuations with a normal distribution [19]. In the 
sequel, the background noise is considered to have a normal distribution fully characterized by its 
noise level, h. Specifically, the presence of noise modifies the equation governing the dynamics of 
agent i which, using a discrete-time approach reads
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 where hxi (t) is a Gaussian white noise of magnitude h since xi (t) ∈ [−π, π].

2.3  Predator attack

The predator is introduced as an agent that does not participate in the collective motion governed by 
eqn (3). Instead, it is afforded predatory capabilities associated with a motion 40% faster than 
swarming agents, and systematically in the direction pointing to the closest one. When the predator 
succeeds in catching an agent, the latter is removed from the simulation. An agent can only detect 
the presence of the threat when it is located at a distance smaller than a fixed radius RD; as soon as 
the agent detects it, an evasive maneuver is initiated with the agent moving away in the direction 
opposite to the predator. We have set RD to be constant throughout the simulations and independent 
of the established number of social links. The fleeing behavior takes precedence over the collective 
motion of a particular agent for as long as the predator lies inside the ball of radius RD and is associ-
ated with
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where x→ denotes the predator’s position.
The mean avoidance time shown in the next Section is obtained by computing the swarm dynam-

ics in the presence of a single predator for 500 different runs of 5, 000 iterations each. The reason for 
computing several runs instead of running the calculation for longer times is that the results depend 
on the density of agents in the swarm, and the repeated removal of agents by the predator can cause 
significant changes in the density after long times.

3  SWARM RESPONSIVENESS – PREDATOR AVOIDANCE
In order to study the far-from-consensus dynamics of a swarm, we have simulated a predator attack 
as detailed in the previous Section, and measured the survival rate of agents with different levels of 
social interaction—corresponding to different degree distributions of the SSN, different space 
dimensions—two- and three-dimensional computational domains, and different levels of ambient 
noise h. The ubiquitous presence of noise is known to have very specific disruptive effects on the 
collective behavior. Intuitively, it is clear that noise corresponds to external perturbations hindering 
the process of self-organization.

The emergent collective avoidance maneuver is shown in Fig. 2 for two selected snapshots of a 
predator attack. A careful local analysis at different time instants reveals that agents outside the detec-
tion area (r > RD) are collectively reacting to the threat thanks to the social information transmitted 
through the swarm, subsequently leading to a global evasive maneuver [20]. The simulations show 
that the social information transfer takes place strikingly fast even though the agents themselves are 
considerably slower than the predator. These results are consistent with recent empirical observations 
of collective turns in flocks of starlings [3] and startled schools of fish [4]. Specifically, Attanasi et al. 
[3] have highlighted the spatially-localized origin of the triggering behavioral signal in collective 
turns of starlings. In addition, for a specific event involving 176 starlings, it took approximately less 
than 0.6 s for the information to flow through the whole flock, corresponding to an amazingly fast 
speed of information transfer of the order of 20–40 m s−1 (3 times faster than the flock itself ).

The social alignment consensus alone is sufficient for the vast majority of the agents to avoid the 
predator without ever detecting it. This phenomenon of augmented perceptual range in swarms due 
to social transfer of information is well known in flocks of birds [3] and schools of fish [21].

Figure 2: Snapshots of a collective evasive action induced by a predator attack at two different time 
instants. The N = 500 SPP agents are in blue while the predator appears in red.
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The characteristic avoidance time for the swarm, defined as the average time elapsed between two 
consecutive catches by the predator, is shown in Figures 3 and 4 as a function of the number k of 
social links between agents. Starting from a non-interacting collective (k = 0), the avoidance time 
grows with the amount of social interaction up to a maximum value about 40% larger than the 
non-interacting time. From that optimal point at approximately 20 neighbors, the avoidance time 
monotonously decreases with increasing sociality, all the way down back to the value obtained for a 
non-interacting collective.

While the amount of interactionquantified here as the number of neighbors or the degree distribu-
tion of the SSN – certainly has a big impact on the ability of the swarm to perform collective 
predator avoidance, the properties of the dynamic interaction network itself also play a fundamental 
role in the swarm behavior and its efficiency. One natural first step in determining how different 
topologies of interaction network will affect the swarm’s performance is to compare the predator 
avoidance using the original Vicsek model [17] when the agents are embedded in a two-dimensional 
or a three-dimensional space (see Fig. 3). In both cases, we observe a maximum in the mean avoid-
ance time for a finite amount of interaction. However, in the three-dimensional case the optimal 
number of neighbors is considerably lower than in the two-dimensional case, from k*2D = 18 to k*3D 
= 6, consistent with the experimental observations that flocking starlings typically interact with 6 to 
7 conspecifics [7]. It would be interesting to obtain similar experimental evidence for terrestrial 
swarms that essentially move in a two-dimensional space.

In order to be able to compare both sets of results between them, we have chosen: (i) to use a 
topological interaction instead of a metric one, as it reduces the number of dimensional parameters 
to consider, and (ii) to fix the density and speed of the agents such that the mean avoidance time in 
the limit for k → N is the same in both the 2D and 3D cases.

Vicsek’s model [17] includes a noise term in the equations of motion to represent the agents 
imperfect sensing and imperfect motor capabilities. While this noise adds interesting phenomenol-
ogy to the model itself (see Sec. 2.2), like a phase transition from order to disorder, it does not 
critically affect how the avoidance time depends on the amount of interaction. Higher noise will in 

Figure 3: � Efficiency in predator avoidance: Mean avoidance time for bi-dimensional and three-
dimensional swarms. Mean number of iterations between two consecutive predator kills 
(avoidance time) as a function of the number of neighbors k for two-dimensional () and 
three-dimensional () swarms. The number of neighbors that maximizes avoidance time 
in each case is shown as k* for a topological interaction.
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general lower the peak of avoidance time but does not affect much the position of the peak itself nor 
change drastically the avoidance time for low and large k. Therefore, from the results obtained, we 
conclude that in this particular case the topology of the interaction network (SSN) seems to play a 
bigger role in determining the efficiency of the swarm in avoiding a predator than the details of the 
consensus protocol the swarm is following.

4  CONCLUSION
In our analysis, the responsiveness of swarms reveals that an excess of social activity has detrimental 
effects on the collective response of swarms confronted with threats and dangers. Specifically, we 
have shown that for a system of self-propelling agents – subjected to a consensus protocol to align 
their velocities – in the presence of predator. The improvement in predator avoidance with increased 
social activity (ascending branch in Fig. 3) reflects the expected benefits of swarming in terms of 
anti-predator vigilance [2, 22]. However, the existence of a maximum in the avoidance time implies 
that an excess of social interaction has a negative effect on the capacity of the swarm to respond to a 
threat associated with a dilution of behavioral information [20].

Interestingly, the avoidance time in the limit of large sociality is approximately the same as in 
the non-interacting swarm (k = 0 in Figs 3 and 4), showing that the oversaturation in the informa-
tion each agent receives (i.e. the very high degree of each node of the SSN, see Fig. 1) effectively 
negates any benefit of social activity on the dynamical collective response. It is important noting 
that our results for dynamical responsiveness complement previous studies associated with global 
properties, such as the robustness of the interaction network [15] or the consensus speed [9]. In 
these studies, increasing the amount of interaction eventually yields diminishing returns – i.e. less 
gain per neighbor, but never an actual reduction in the property of interest. Diminishing returns can 
only justify the preference for a finite number of connections if the cost for establishing links 
between agents is significant. However, quantifying such costs is close to impossible given the 
complexity associated with sensory and neurological requirements in biological swarms [9, 15]. In 
contrast, the present study on the dynamical responsiveness of the swarm shows an absolute reduc-
tion in swarming effectiveness when the number of neighbors is increased above a certain level.

Figure 4: � Influence of the ambient noise level (h) on the effectiveness in avoiding the predator. 
Mean number of iterations between two consecutive predator kills (avoidance time) as a 
function of the number of neighbors k for two-dimensional swarms for a topological 
interaction.
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