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ABSTRACT. For accurately prediction of 3C steel corrosion rate in seawater environment, this 

paper establishes a radial basis function neural network (RBFNN) and improves it with 

accelerated particle swarm optimization (APSO). Specifically, the centers, spreads and 

connection weights of each radial basis function (RBF) were automatically tuned by the 

APSO, and the number of RBFs in the RBFNN was minimized by choosing a special fitness 

function. The APSO-optimized RBFNN was proved through a case study to have good 

prediction accuracy and self-learning ability. The research findings provide an accurate, 

adaptive and easily-to-train prediction model for 3C steel corrosion rate in the seawater 

environment. 

RÉSUMÉ. Cet article établit un réseau de neurones à fonction de base radiale (RBFNN) et 

l’améliore avec l’optimisation accélérée de l’essaim de particules (APSO). Plus précisément, 

les centres, les spreads et les poids de connexion de chaque fonction de base radiale (RBF) 

ont été automatiquement ajustés par l'APSO et le nombre de RBF dans la RBFNN a été réduit 

au minimum en choisissant une fonction de fitness spécifique. Une étude de cas a prouvé que 

la RBFNN optimisée pour APSO avait une bonne précision de prédiction et une capacité 

d’autoapprentissage. Les résultats de la recherche fournissent un modèle de prévision précis, 

adaptable et facile à entraîner pour le taux de corrosion de l'acier 3C dans l'environnement 

de l'eau de mer. 
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1. Introduction 

The 3C steel, a kind of carbon steel with excellent operational and process 

properties, has been widely adopted in such fields as offshore engineering, chemical 

processing and oil production. With the extensive application of the steel in the 

seawater environment, the corrosion prevention has become a research hotspot 

(Srisuwan et al., 2008; Caceres et al., 2007; Samide et al., 2008; Song et al., 2012; 

Paik et al., 2004; Liu et al., 2008; Hajeeh, 2003; Liu et al., 2005; Liu et al., 2008; 

Cao et al., 2012). Seawater is one of the most corrosive natural electrolytes. In the 

seawater environment, carbon steel is gradually eroded by chemicals or through 

electrochemical reactions.  

Over the years, many models have been developed to simulate the corrosion of 

carbon steel, namely, empirical formula, numerical simulation, general linear model, 

and artificial neural networks (ANNs). The ANNs stand out thanks to the 

effectiveness in the prediction of carbon steel corrosion. However, it is difficult to 

optimize the connection weights in the ANNs, not to mention their slow 

convergence and proneness to the local optimum trap. 

These defects give birth to the radial basis function neural network (RBFNN) 

(Bishop, 1995), which is a feedforward neural network with only three layers (i.e. 

the input layer, the hidden layer and the output layer). The generation of the RBFNN 

is equivalent to curve fitting in a high-dimensional space, or the interpolation of the 

training data into a multi-dimensional surface (Schwenker et al., 2001). As a 

function approximator, the RBFNN boasts a faster training speed than a multilayer 

perceptron. This network has been successfully applied in many areas, especially in 

functional approximation and nonlinear control. 

However, there are still some difficulties with the design of the RBFNN, 

including identifying the number of radial basis functions (RBFs). The current 

identification approaches are generally empirical and time-consuming, as they are 

trial-and-error in nature. Another key difficulty in RBFNN design is the selection of 

the free parameters (i.e. the centers, spreads and connection weights) for the RBFs. 

The two available selection strategies each has its shortcomings. The expert 

selection strategy is too inaccurate to handle complex and ill-defined problems, 

while the gradient-type learning strategy is inapplicable in complex, high-

dimensional problems. 

To overcome these difficulties, this paper puts forward an efficient accelerated 

particle swarm optimization (APSO) learning algorithm for RBF design. This 

algorithm helps to avoid trial-and-error and local optimum trap, and enables the self-

generation of centers, spreads and connection weights of each RBF. The resulting 

RBFNN can approach the desired system response in a robust and automatic manner. 

Then, the APSO was adopted to set up a rational RBFNN for the prediction of 3C 

steel corrosion rate in the seawater environment, and determine the proper number 

of RBFs. 

The APSO is a variant of the intelligent optimization algorithm named particle 

swarm optimization (PSO). The PSO can obtain the global optimal solution through 
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information exchange and sharing between individual particles and the swarm. The 

APSO outshines the PSO in convergence speed, because it only uses the global 

optimal solution to guide the particle update process (Kennedy and Eberhart, 1995). 

The fast convergence, strong robustness and independence of specific solving model 

have made the APSO a desirable optimization tool for model parameters. Hence, 

this paper develops a RBFNN model optimized by the APSO (hereinafter referred to 

as the APSO-RBFNN) for the prediction of 3C steel corrosion rate in seawater 

environment. The model was proved to have good accuracy and generalization 

ability in corrosion rate prediction. 

The remainder of this paper is organized as follows: Section 2 introduces the 

structure of the RBFNN; Section 3 provides the details on the APSO; Section 4 sets 

up the APSO-RBFNN and verifies its effectiveness through a case study; Section 5 

wraps up this paper with several conclusions. 

2. RBFNN structure 

As shown in Figure 1, a RBFNN generally has three layers, that is, an input layer, 

a hidden layer and an output layer. The selection of hidden layer RBFs is the key to 

the RBFNN design. The most popular RBF is the Gaussian basis function: 
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where  is the Euclidean distance between an input vector x and a center ci; 

δi is the error of the i-th RBF. The RBFNN output can be calculated by the weighted 

average method: 
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where wi is the i-th weight between the hidden and output layers; m is the number of 

hidden nodes; hi(x) is the output of the i-th hidden node. 

The above description shows that the RBFNN is determined by the contour of 

the RBF hi(x), which is in turn defined by parameters {ci1, δi1; ci2; δi2, cin; δin} and 

connection weights wi. The RBFNN performance varies with the parameter sets R = 

{ci1, ci2, …, cin;δi; wi, 1≤i≤m}. Let m be the number of RBFs to be constructed. Then, 

a total of m(n+l) parameters should be selected to design the optimal RBFNN. In 

this paper, the parameter selection is considered as a search problem, and the 

parameter set R is found in the search space by an APSO evolutional learning 

method. 



580     ACSM. Volume 42 – n° 4/2018 

 

 

Figure 1. RBFNN structure 

3. The APSO 

To obtain the optimal solution, the original PSO firstly initializes a set of random 

particles (solutions) and then looks for the optimal solution iteratively in the search 

space of moving particles. During the iteration, the speed and position of each 

particle are updated according to the best-known individual and global solutions 

until the optimal solution is discovered. The update mechanisms for particle speed 

and position can be expressed as (Yang, 2010):  
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where 1≤i≤n; 1≤j≤d; c1 and c2 are two acceleration factors; r1 and r2 are two random 

numbers in [0, 1]; w is the inertia factor. The position changes in the interval of [-

xj,max, xj,max] while the speed changes in the interval of [-vj,max, vj,max]. If either xij or 

vij exceeds the corresponding interval, the boundary value will be adopted for 

calculation. 

In the original PSO, each particle zigzags during the iteration under the 

combined impact of the best-known individual and global solutions. To solve the 

problem, Yang (Feng, 2006) modified the PSO into the APSO, which only adopts 

the global optimal solution in speed update. Hence, the speed update formula (3) can 

be simplified as:  



Corrosion rate prediction for 3C steel by improved RBFNN     581 

1 2( 1) ( ) [ ( )]ij ij gj ijv t v t c r c p x t+ = + + −
                        (5) 

where r is a random number in [0, 1]. It can be seen that the second term item on the 

left side of formula (3) was removed, while formula (4) was retained as the position 

update formula. To further improve the convergence speed, formulas (4) and (5) 

were combined as the new position update formula: 

2 2 1( 1) (1 ) ( )ij ij gjx t c x t c p c r+ = − + +
                         (6) 

To avoid the local optimum trap, the speed term was replaced with a stochastic 

term c1r. For the stability of the optimization algorithm, the value of c1 needs to 

decrease with the growing number of iterations: 

1

tc =
                                                     (7) 

where δ is a random number in (0, 1) (usually between 0.7~0.9); t∈[0,tmax], with 

tmax being the maximum number of iterations. Let Lj and Uj be the lower and upper 

limits of the number of RBFs of the j-th particle, respectively, and rj (j=1,2,..., p) be 

the number of RBFs available for selection. Then, the number of RBFs selected by 

the j-th particle must fall in [Lj, Uj].  

4. Prediction model based on APSO-RBFNN 

The APSO-based evolutional learning aims to build an appropriate RBFNN with 

the fewest number of RBFs. Let ={rj, cij1, cij2, ... , cijn, δij, wij; 1≤i≤m} be the set of 

parameters (i.e. RBFs) used to form the RBFNN. The proper number of RBFs can 

be approached with the following fitness function: 

1 2( ) ( ( )) ( ( ))j j jf R g m R g J R  = 
                               (8) 

where  is the number of RBFs corresponding to the j-th particle parameter set, 

with  being acquired by the proposed RBF selection method;  is the 

performance measure with respect to the solution of the j-th particle. In view of the 

desired objectives, the performance of each individual can be evaluated by the 

following functions: 

1( ( )) exp( ( ( ) / )j j Rg m R m R  = −
                              (9) 
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                                 (10) 

where ERROR(R *
j) is the error between the desired and actual outputs of the j-th 
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RBFNN, which is determined by the individual parameter set ( ) corresponding to 

the same input; σR is a user-defined constant. The value of σR determines the shape 

of the fitness function, forming a flexible method to realize any objective. Under the 

guidance of the proposed fitness function, the APSO can develop the optimal 

RBFNN capable of achieving high accuracy, that is, a small ERROR, with fewer 

RBFs. The APSO-based automatic generation of the optimal RBFNN is much more 

time-efficient than the traditional trial-and-error methods that determines the proper 

RBFNN parameters. With fewer RBFs, the optimal RBFNN simplifies the 

computation and reduces the memory load. 

Given the suitable fitness function f(.), the selection problem can be viewed as 

the search problem below: 

( )
j

j
R
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


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                                             (11) 

where  is the possible position of the j-th particle (RBF) in the search space (R); 

 is the fitness of the individual R. 

The corrosion rates of 3C steel (Table 1) in different seawater environments 

generated by Liu et al. [9] were adopted to verify the effectiveness of our prediction 

model. The dataset covers the corrosion data of 46 3C steel samples in different 

seawater environments, measured via electrochemical means. 

During the training of the APSO-RBFNN prediction model, five attributes (i.e. 

temperature, dissolved oxygen, salinity, pH value and oxidation–reduction potential) 

were taken as input variables while the corrosion rate was the output variable. Then, 

the APSO-RBFNN and the contrastive neural networks were learned and tested with 

the same training and test samples, which were selected randomly by Liu et al. Out 

of Liu’s samples, the samples numbered 7, 10, 14, 19 and 21 were selected as the 

test samples while the remaining 41 samples were taken as the training samples. All 

of them were normalized before use.  

Assuming that the number of available RBFs falls in the target RBFNN was 

given 20 RBFs at the start. Hence, 140 parameters {ci1, ci2, …, ci5; δi; wi, 1≤i≤20} 

should be selected efficiently from the solution space. The other parameters were 

configured as follows: the number of iterations G is 1,000, the scaling factors are 

c1=1.5 and c2=1.5, and the constant for the fitness function σR is 100. Then, the 

fitness function can be defined as: 
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where MSE is the mean square error between the actual and the desired outputs. The 

results of the APSO-RBFNN prediction model were presented in Figures 2 and 3. 

Specifically, Figure 2 shows the relationship between the MSE and the number of 
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iterations and Figure 3 displays the relationship between the RFB numbers and the 

number of iterations. 

Table 1. 3C steel corrosion rates in different seawater environments 

No. 
Temperature  

(℃) 

Dissolved  

oxygen (mg·L-1) 

Salinity  

(ppt) 

pH 

 value 

Oxidation-reduction  

potential (mV) 

Corrosion rate 

 (μA.cm-2) 

1 25.9 6.71 30.1 5.1 378 16.4 

2 29.35 6.09 29 6.3 400 16.9 

3 27.9 6.18 31.5 7 363 15.57 

4 24 7.95 30.2 8.1 324 13.65 

5 28 5.05 31.4 9.2 240 13.24 

6 27.32 3.21 29.31 8.2 281 12.91 

7 27.87 6.55 31.68 7.2 356 14.06* 

8 28.27 6.98 28.2 6.6 384 15.47 

9 30.7 7.15 31.74 6.5 401 16.28 

10 29.37 6.82 30.12 6.2 414 17.11* 

11 24.27 0.8 32.56 8.1 171 3.61 

12 27.45 2.6 35.37 7.96 287 7.94 

13 27.23 4.2 31.94 7.89 289 9.63 

14 27.48 5.9 32.39 7.83 331 10.578* 

15 28.75 6.8 32.22 8 340 11.43 

16 28.52 8.4 32.1 8.01 345 12.52 

17 28.45 9.9 31.95 7.93 309 22.64 

18 23.95 7.61 9.17 8.04 231 10.94 

19 24.73 6.06 17.33 7.88 321 11.446 

20 24.6 7.52 24.42 7.57 210 11.83 

21 24.51 7.02 32 8.16 308 12.553* 

22 23.65 6.51 41.34 7.67 245 8.402 

23 16.74 7.11 33.55 8.25 178 10.85 

24 21.11 6.03 33.44 8.03 295 11.448 

25 25.57 6.7 32.19 8.09 325 11.872 

26 31.16 4.38 33.21 7.94 242 8.924 

27 25.62 34.89 5.32 7.9 385 15.966 

28 24.95 16.29 6.8 7.82 341 12.12 

29 24.5 18.37 5.31 7.93 302 12.07 

30 25.59 21 7.04 7.95 244 11.4 

31 26.11 34.84 2.82 7.8 335.2 11.288 

32 24.96 40 6.32 8.08 254 9.3 

33 9.5 32.31 4.26 8.2 195 10.56 

34 12.05 32.04 4.95 8.17 232 11.04 

35 14.86 32.51 6.3 7.95 198 11.06 

36 28.13 34.34 5.14 7.8 362.9 13.93 

37 24.17 16.09 7.68 8.04 283.8 11.55 

38 23.54 15.04 8.27 8.06 243.8 11.72 

39 25.31 15.22 7.59 9.32 246.7 11.39 

40 12.55 37.9 6.42 7.49 235.3 10.52 

41 16.81 39.49 6.61 7.73 258.7 10.24 

42 24.09 36.72 5.59 7.83 281.8 9.93 

43 26.34 35.97 3.25 7.98 367.1 14.37 

44 25.35 16.94 4.05 8 341.2 15.07 

45 26.07 35.34 4.07 7.94 404 18.13 

46 26.52 34.48 4.94 7.9 326.1 11.828 
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Figure 2. The relationship between the MSE and the number of iterations 

 

Figure 3. The relationship between the number of RBFs and the number of iterations 

The parameter set of the optimal RBFNN is shown in Table 2. Simulation results 

indicate that 10 RBFs are sufficient for the prediction of 3C steel corrosion rate. 

Next, APSO-RBFNN was compared with the backpropagation neural network 

(BPNN) and the genetic algorithm-backpropagation neural network (GA-BPNN) in 
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terms of the prediction of 3C steel corrosion rate. The comparison results are listed 

in Table 3. 

Table 2. The structure parameters of the RBFNN 

i ci1 ci2 ci3 ci4 ci5 δi wi 

1 0.889 0.278 0.753 0.663 0.547 0.049 0.813 

2 0.846 0.358 0.875 0.300 0.705 0.205 0.599 

3 0.553 0.659 0.681 -0.059 1.336 0.793 0.548 

4 0.146 0.867 0.652 0.471 0.662 0.152 0.719 

5 0.535 0.621 0.541 0.677 0.517 0.114 0.498 

6 1.005 0.709 0.238 0.143 0.331 0.695 -0.566 

7 0.368 0.494 0.397 0.719 0.622 0.097 0.357 

8 0.836 0.281 0.561 0.801 0.305 0.232 0.884 

9 0.538 0.389 0.183 0.704 1.275 1.227 0.813 

10 0.857 -0.198 0.691 0.647 0.477 0.447 -0.541 

Table 3. Performance comparison between different prediction models 

No. 

Experimental 

rate (μA.cm-

2) 

BPNN  GA-BPNN  APSO-RBFNN 

Predicted 

rate 

(μA.cm-2) 

Relative 

error 

(%) 

Predicted 

rate 

(μA.cm-2) 

Relative 

error 

(%) 

Predicted 

rate 

(μA.cm-2) 

Relative 

error 

(%) 

7 14.06 15.081 7.26 13.981 0.56 14.23 -1.2 

10 17.11 16.533 -3.37 17.048 0.36 17.35 -1.4 

14 10.578 10.116 -4.37 10.961 0.62 11.45 -8.2 

21 12.553 12.786 1.86 12.776 1.78 12.67 -0.87 

 

From Table 3 and Figure 4, it can be seen that the APSO-RBFNN achieved a 

smaller relative error than the BPNN under the sample training and test conditions. 

Despite having a smaller relative error than our model, the GA-BPNN cannot 

determine the number of hidden layers and nodes in the BPNN without experienced 

modeler or repeated experiments, while our model can adjust the number of hidden 

layer nodes with the special fitness function and optimize the model parameters. 

That is why our model realized high accuracy with the fewest hidden layer nodes. 

The comparison proves that the proposed APSO-RBFNN is a feasible way to 

adaptively learn model parameters and determine the network structure. 
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Figure 4. Comparison between the experimental rate and the predicted rate of each 

model 

5. Conclusions 

This paper puts forward an evolutional RBFNN model based on the APSO to 

predict 3C steel corrosion rate under seawater environment. The design strategy can 

automatically adjust the number of hidden layer nodes and the related parameters 

(centers, spreads and connection weights) in the RBFNN at the same time. In this 

way, the APSO-RBFNN model eliminates the need for experienced modeler or 

repeated experiments, which are required in BPNN prediction models. In addition, 

our design strategy accelerates the speed of network construction. The comparative 

analysis of experimental data shows the APSO-RBFNN outperformed the traditional 

neural network prediction approaches in prediction accuracy and adaptive modelling 

ability. 
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