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ABSTRACT
An analogy between fi sh undulatory swimming and the buckling of columns is presented and discussed. The 
most important aspects of the undulatory swimming of a fi sh, from the mechanical point of view, are described. 
The buckling response of solid and fl uid columns and its mathematical modelling are summarized and applied 
to a swimming fi sh, as an analogue of buckling columns. The predictable Strouhal number for a buckling fi sh 
agrees well with the apparently universal experimental value observed by numerous investigators of fi sh undu-
latory swimming.
Keywords: buckling of columns, fi sh undulatory swimming, fl uid columns, hydrodynamic foils, solid columns,  
Strouhal number.

1 INTRODUCTION
Long et al. [1] quoted in the heading aphorism of their article that ‘. . . in spite of being heterogene-
ous in structure, the body of the fi sh is bending as a continuous beam’, [2]. According to the former 
authors, detailed measurements of in vivo axial strain of muscles have shown that the swimming 
body of many fi sh species bends like a homogenous, continuous beam (Fig. 1). This simple beam-
like behaviour is surprising because the underlying tendon and muscle structure and their behaviour 
are complex. Indeed, many fi sh species swim by undulating their bodies, resembling a continuously 
buckling column, and their shape very much corresponds to a solid massive tapered column (Fig. 2).

In the present investigation, a simple and direct way to predict the waveform and the wavelength 
of the undulatory swimming of a fi sh is presented. The proposal consists of a global analogue of the 
steady-state undulating swimming fi sh as if it was a solid tapered column under reverse buckling 
conditions. This reverse buckling effect essentially means that the steady-state moving column is 
deforming due to the internal action of the muscles and tendons, giving rise to a longitudinal force 
whose reaction opposes and overcomes the hydrodynamic forces and results in a net thrust. The 
analogue permits the prediction in a simple manner of the Strouhal number which is characteristic of 
the undulatory swimming and agrees well with the experimental results reported in the open literature.

The article is organized as follows. First, the basic aspects of undulatory swimming are reviewed. 
Next, the most important results of the buckling analysis of solid columns are outlined. Their impli-
cations to predict buckling Strouhal numbers of fl uid columns as an analogue to solid columns are 
briefl y revisited. Finally, the extension of this approach to a fi sh during dynamic equilibrium undula-
tory swimming as a highly fl exible tapered column is described and discussed.

2 FISH UNDULATORY SWIMMING
The archival literature related to the propulsion of aquatic animals is vast and refl ects the importance 
of this topic for Life Sciences and Applied Mechanics. The swimming of fi sh and cetacean species 
under different circumstances represents an essential element in adaptation to their environment and 
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constitutes a complex physical problem that only in the past two decades has been accomplished 
with enough detail by authoritative contributions to this topic [3–13]. Besides its obvious scientifi c 
interest, fi sh locomotion is important for the characterization of exploitable species by fi sheries, and 
has also been considered as an alternative mechanism for the conception and design of autonomous 
underwater vehicles.

Fish swimming modes have been recently reviewed and classifi ed by Sfakiotakis et al. [13], based 
in the propulsion element and in the form of movement used by a fi sh to generate thrust. A large 
portion of fi sh species and the cetacean mammals swim by means of the undulatory bending of their 
whole body, an action that propagates from head to tail, producing the necessary thrust force to 
counterbalance friction and added mass from the water (Fig. 1). These buckling travelling waves are 

Figure 1: Undulatory swimming fi sh (taken from [13]).

Figure 2: Examples of tapered columns.
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produced by the fi sh muscles, tendons and bone structure that alternatively stretch and restrain the 
axial and transverse structures of the body. According to Blight [14], the precaudal region of the 
body of a fi sh operates as a wave generator.

A fi sh is a body with a hydrodynamic shape very similar to a tapered column with large slender-
ness ratio (Fig. 2). Its locomotion is the result of the unbalanced internal and external forces on the 
body, composed mainly by the contraction and extension of muscles of the fi sh and the reaction to 
the external fl ow (drag and added mass). Many fi sh species swim by generating undulatory waves 
that propagate from head to tail, transferring momentum to the surrounding water, and producing 
thrust. By changing the shape and speed of these travelling waves, they modulate the rate of work 
production and hence control swimming speed [9].

The balance of all forces that act at any time in every element of the fi sh – internal forces from the 
apparent viscoelasticity of the tissues in the back-and-forth undulatory or stretch–restrain motion, 
and the hydrodynamic and inertial external forces – provoke the thrust necessary for the swimming 
of the fi sh, either in steady-state or in transitional motion. At any instant, the integration of these 
forces around the body gives rise to either acceleration or deceleration of the fi sh, not only in the 
forward direction but also laterally and rotationally.

As part of the fi sh and surrounding water interaction, the forces due to the fl uid pressure and the total 
drag act on the fi sh body surface. To know the distribution of these reaction forces, it is necessary to 
integrate the Navier–Stokes equations for the ambiance fl ow subject to the boundary conditions that 
impose the undulating fi sh surface and taking into account any fl ow characteristics alien to the fi sh.

The dynamical analysis of the fi sh body implies the consideration of all the forces together with 
the associated bending moments giving rise to a form of the wave equation if small oscillations are 
considered. This equation represents a complex dynamic system composed by (a) a source of energy 
and power (the fi sh metabolism) that manifests itself through the internal forces (contraction and 
extension of muscles); (b) a stiffness/damping constitution (viscoelasticity of internal tissues); (c) 
the reaction to the external fl ow (drag and added mass); and (d) the resulting fi sh rectilinear motion 
either, uniform or accelerated, depending on the force balance. It represents a formidable problem of 
mechanics since it implies a complex interaction of the living organism with the external fl ow. The 
kinematical characteristics of the fi sh body are unknown beforehand and are part of the solution. The 
problem has been only partially solved through various methods and techniques [6, 7, 15–18], but 
many aspects remain insuffi ciently known or understood.

The oscillating tail of the fi sh serves as a tuned amplifi er of the wave, generating a thrust-producing 
jet instead of a drag-producing wake behind the fi sh [7]. The counter-rotating vortices arrangement at 
the wake of the fi sh is the result of a controlled emission of these structures by the oscillatory tail of the 
specimen. The fi sh tail takes advantage of the buckling undulating motion of the body to recover as 
much energy as possible of the moving body, and to change the drag properties of a wake to a thrust 
producing jet fl ow. As a consequence of the undulating body of the fi sh during its rectilinear translation 
and the lateral motion of its tail, there is a peculiar wake behind the fi sh. The average velocity distribu-
tion in the wake behind the streamlined profi le of a fi sh has the shape of a penetrating jet fl ow. This jet 
is unstable, in such a way that being excited harmonically by the oscillating fi sh body, an array of vor-
tices is formed with reversed rotation respect to the classic von Karman street (Fig. 3). The frequency 
of formation of these vortices lies within the frequency range – relatively narrow – of maximum ampli-
fi cation of a perturbation of the jet fl ow, according to hydrodynamic stability theory [7, 20]. It is well 
known that a foil oscillating in heave and pitch can produce a mean forward thrust force, through the 
generation of a reversed vortices street. The average thrust can be estimated based on the momentum 
fl ux associated with the jet profi le [19, 21]. The effi cient development of the thrust force is associated 
with the vortices structure: the frequencies of maximum growth must correspond to the higher 
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effi ciency of the thin profi le, as these result from the most expedient formation of the vortices [7]. In 
the words of these authors, ‘the existence of preferred frequencies in the wake gives a new dominant 
parameter for the fi sh propulsion, the Strouhal number . . .’. These frequencies correspond to the Strou-
hal numbers in the range 0.25–0.35, with a most likely value of 0.3. The Strouhal number is defi ned as 
Stf = fA/V, where f is the frequency of the tail oscillations, At is the total width of the wake, taken as the 
maximum excursion of the tail (i.e. a double amplitude), and V is the mean forward velocity of the fi sh. 
These authors have recorded many data, including their own experimental results in a wide compilation 
of fi shes and cetaceans, which verify the proposed theory. In a more recent article, Taylor et al. [22] 
verifi ed and extended the above-summarized statements for many aquatic and avian species and 
confi rmed the optimal range 0.2 < Stf < 0.4 expected for an effi cient cruise propulsion.

In summary, it can be said that many fi sh species swim by passing waves of bending down their 
bodies. The dynamical analysis of this undulatory swimming has been approached from different 
standpoints, but its full account has not been accomplished. For instance, to the best knowledge of 
the authors of the present investigation, the totality of the articles published in the archival literature 

Figure 3:  Vortex wake behind a submerged body: (a) drag-inducing velocity profi le in a still 
cylindrical or hydrodynamic shape; (b) thrust-inducing velocity profi le in a fl apping fi sh 
(adapted from [13, 19]).
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dealing with the mathematical modelling of fi sh swimming invariably assume (a priori) a known 
sinusoidal shape for the undulatory motion, based on numerous experimental results that seem to 
confi rm this behaviour.

In this article, a simple and direct way to predict the waveform characteristics of the fi sh undula-
tory swimming is presented. The procedure is based on the analogy that can be discovered between 
the undulatory swimming of a fi sh and the buckling response of a solid column, when the latter is 
compression loaded at its extremes. The fi sh body nevertheless, is made out of several materials like 
in a composite structure. This means that it is not only elastic, but has also viscous and fl owing prop-
erties. The inner structure of a fi sh is a viscoelastic complex, with a variety of qualities, forms and 
functions, and therefore it is very diffi cult to model from a constitutive point of view [15, 23, 24]. 
Seen in a general perspective, the fi sh materials are somewhere between solids and fl uids, with prop-
erties that combine both kind of states. It is important then, to bring in the following sections, the 
parallel consideration of solid and fl uid buckling columns.

3 THE BUCKLING OF SOLID AND FLUID COLUMNS
3.1 Uniform cross-section solid columns

The instability process (or buckling) associated with elastic solid columns and other structural ele-
ments has been widely studied since it was fi rst considered by Euler in his pioneering investigations. 
It consists of a new equilibrium condition that a solid structure attains under compression loads, 
characterized by a permanent fl exion strain in a more stable state than the one it had before [25].

Consider the equilibrium conditions for a solid column of uniform cross section (Fig. 4). The 
column simultaneously experiences axial compression and bending moments as a result of external 
forces acting at both ends (the Euler–Bernoulli beam). Static equilibrium means that there is a bal-
ance of the axial compression forces, C. It also means that rotational equilibrium has to be preserved 
from a section where the bending moment is M0 to any section where the bending moment is M(x). 
In the most general case, the compression forces C are not collinear due to any small lateral defl ec-
tion in the column, h(x). The bending moment Ch from the eccentricity h of the compression force 
must be balanced at all times by the cross-sectional bending moment M(x), giving rise therefore, to 
the Euler buckling equation:

 0( ) ( ) 0.M x Ch x M− + + =  (1)

The analysis of a linear strain related to pure bending gives as a result, that the bending moment 
in any section of the column is proportional to the curvature of the column; so in the case of an elas-
tic column,
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where E is the elasticity modulus, I is the area moment of inertia of the cross section, and R∞ is the 
radius of curvature. Substituting eqn (2) in eqn (1), the balance equation reads as a constant coeffi -
cients linear equation of the form
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where m = (C/EI)1/2 leads to the eigenvalues of the problem in the case of a uniform cross-section 
column (Fig. 4). The eigenfunctions that form the solution – sine or cosine functions – depend on the 
boundary conditions of the problem.

3.2 Tapered solid columns

Of interest to the undulatory swimming of a fi sh, is the tapered column (Fig. 2). This non-uniform 
cross-section column corresponds to many optimal shapes found both, in nature and in engineering 
and architecture applications. Tapered structural members for instance, are widely used in structural 
frames to make the stresses more evenly distributed and to reduce at the same time the consumption of 
the material [26]. They have also been used to fi t many architectural elements in old houses and con-
temporary buildings. There are on the other hand, many examples in living organisms, both vegetal and 
animal, where beams and column elements have a tapered shape to compromise stiffness with the use 
of materials to have optimal resistance and performance for given load conditions [27, 28].

The Bernoulli–Euler equilibrium equation for small defl ections eqn (3) in the case of a tapered 
column is given by [29, 30],

 
+ + =
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where the area moment of inertia I(x) is now a function of the longitudinal coordinate x. This means 
that eqn (4) is a second-order differential equation with variable coeffi cients. Its general solution 
depends on the form of the coeffi cient of the second term in the equation and can be from simple sine 
functions obtained by direct integration, to numerical solutions full of complexities obtained through 
advanced structural analyses methods, depending on the shape of the tapered column. For plain 
forms resembling the shape of a fi sh, simple but signifi cant solutions can be obtained as presented 
later in this article.

Figure 4: Buckling of a uniform solid column showing eigenvalue modes.
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3.3 Fluid columns

Buckling phenomena have also been considered in fl uid currents under various conditions [31–35]. 
In analogy with a solid column, a segment of an unconfi ned fl uid current can be visualized, in a 
standstill image of the moving fl uid, as if instantaneously was a solid column subject to compression 
forces and bending moments at its ends, i.e. at the fl ow inlet and outlet cross sections of the volume 
control depicted in Fig. 5, giving rise to a buckled fl uid column. Examples abound from very viscous 
fl uid columns [35], to low viscosity fl ows [33] and free turbulent shear fl ows [34]. In the case of a 
solid column, the forces are given by the loads applied to the column and the bending moments 
originate from the boundary conditions at the supports. The uniform solid column can exhibit mul-
tiple deformations, corresponding to the eigenvalue modes of the elastic response to the force 
balance. In the case of the fl uid column, the axial loads correspond to the momentum fl uxes at the 
fl ow inlet and outlet, and the bending moments arise from the eccentricity of the axial loads. The 
strain in this case consists of a unique mode, and is associated with the single frequency lateral oscil-
lations that are typical in these kinds of fl ows.

The buckling fl uid column is therefore the analogue, in continuous movement, of the buckled 
solid column: the fl uid column is dynamic (fl ow, lateral oscillations), whereas the solid column is 
static (load, shear in rest). Buckling phenomena can be considered as the response of many slender 
mechanical elements, to axial longitudinal loading at its extremes. These mechanical elements are 
continuous media, and can be elastic solids or Newtonian fl uids as well as fl ows with very little 
viscosity like turbulent free shear fl ows, that exhibit their incompressibility – or impossibility of 
internal structure accommodation – by means of lateral deformations in the case of solids, or single 
frequency oscillations in the case of fl uids. The geometric or kinematic characteristics of either case 
are predictable if the amplitude is small.

C

M
x

M0

C

h

(a) (b)

(c)

Figure 5:  Buckling fl uid columns: (a) uniform cross-section and velocity profi le; (b) variable cross-
section and velocity profi le; (c) coaxial compression forces and bending moments induce 
buckling.
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As indicated in Fig. 5, Bejan [33] considered the equilibrium conditions for a segment of a fl uid 
column analogue to the solid column in Fig. 4, as
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where rV2I and rV2A now represent the bending stiffness and the compressive force on the fl uid 
column, respectively. This equation has the form given in eqn (3), but its solution is represented 
by a sine function with a single wavelength. This is due to the fact that the compressive force and 
the elasticity modulus in the case of the fl uid column – the coeffi cients of the fi rst two terms of 
eqn (5) – are proportional to each other. The obtained wavelength is
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and an order of magnitude estimate of 0.5 for the buckling Strouhal number, defi ned as
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for different fl ow confi gurations, was obtained.
Cervantes et al. [34] completed the above-mentioned analysis under the same concepts and prin-

ciples for a more general case of fl uid column as can be identifi ed in various cases of turbulent free 
fl ows. They took into account in their analysis the non-uniform velocity profi les and the varying 
cross section along the fl ow direction, as reported in the archival literature, typical of this kind of 
fl ow. Moreover, based on concepts derived from the second law of thermodynamics, these authors 
explained the marginal differences that appear for the Strouhal number in various analysed cases.

The balance equation obtained for this more general case is
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Again this equation has the same form as eqn (3), but this time the coeffi cient of the second 
term includes two integral expressions (F1 and F2) that take into account the velocity profi le, the 
cross-section area and the area moment of inertia, as functions of the longitudinal space coordi-
nate through the use of similarity variables. (See Cervantes et al. [34] for more details on this 
formulation.)

The single wavelength of the solution of eqn (8) for this general case is given by
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Table 1: Strouhal number for various fi sh, foils and columns.

  Strouhal number

Description Characteristic Buckling (predicted)  Flapping (measured)
 length StB = D/lB Stf = fA/V

 Fish and cetaceans 
 Sunfi sh 2b0 0.37 (eqn (13))
 Sunfi sh 2b0 0.3–0.6 (eqn (13))
 Various species A  0.25–0.38 [7]
 Various species A  0.2–0.4 [22]
 Dolphin A  0.3 [12]
Hydrodynamic foils 
 Wake of oscillating airfoil 2b  0.3 [21]
 Oscillating foil 2b  0.25–0.4 [19]
  (high effi ciency)
 Oscillating foil 2b 0.3 [22] 
  (optimal thrust)  (stability analysis)
Solid columns
 Circular D 0.636 (eqn (6))
 Rectangular D 0.552 (eqn (6))
 Ellipsoidal 2b0 0.318 (eqn (6))
Fluid columns  
 ‘Top hat’ plane jet  2b 0.552 (eqn (9))
 Turbulent plane jet  2b 0.575 (eqn (9)) 0.483 [36]
 Turbulent round jet D 0.588 (eqn (9))
 Turbulent plane wake 2b 0.546 (eqn (9))
 Wakes behind cylinders D  0.515 [37]

For the case where the fl uid velocity profi le is uniform and the cross section is constant along the 
fl ow (the so-called ‘top-hat’ profi le), eqn (9) simplifi es to eqn (6).

The dimensionless wavelengths of turbulent jets and wakes that have an oscillatory behaviour 
were calculated using eqn (9), with velocity profi les amply documented in the literature. Table 1 
includes a summary of these results under the subheading ‘Fluid columns’. As seen, almost the same 
value is obtained for the calculated dimensionless wavelengths for all the considered cases, despite 
that they correspond to different fl ow confi gurations. They confi rm the order of magnitude of 0.5 
estimated by using eqns (6) and (7), and agree with the experimental measurements of the natural 
frequency of turbulent jets exposed to a range of external excitation frequencies, as reported by 
Bejan [33] who considered this value as a universal constant. The slight differences among them are 
due to the different degree of spreading of the corresponding profi le, giving rise to different values 
of the integrals F1 and F2 in eqn (9), and can be explained on thermodynamic grounds [34, 38].

In summary, solid and fl uid columns buckle alike when subjected to axial loads. Uniform cross-
section solid columns respond with multiple sinusoidal modes, corresponding to the eigenfunctions 
of the solution of a small defl ections linear model. Simple tapered solid columns are characterized 
by a single wave solution whose amplitude is a function of the longitudinal coordinate, as a result of 
the axial coordinate dependence of the area moment of inertia. Fluid columns, on the other hand, 
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always buckle with a single waveform due to the proportionality of the bending moment and the 
pseudoelasticity modulus, and also due to the similarity structure of their velocity profi les, no matter 
the cross-section variation along the longitudinal coordinate.

4 SWIMMING FISH: A MOVING INVERSE BUCKLING COLUMN
The steady-state undulating swimming fi sh can be seen as if it was a tapered column undergoing a 
reverse buckling process. In a solid column, when compressive external forces and bending moments 
are applied at its ends, lateral displacements of the column may arise (buckling). In a similar but 
inverted way, the body of a fi sh undulates (bends) as a result of the complex action of its muscles, 
tendons and bones. The lateral bending wave that travels along its entire length produces the force 
that acts on the surrounding water. The corresponding reaction force consists of the net thrust that 
pushes the fi sh through the water (Fig. 6). In other words, the coaxial forces in a solid column give 
rise to the column buckling, whereas the undulatory movement of a fi sh generates the axial force 
whose reaction from the water pushes the fi sh through the water. For this reason, the whole effect 
can be properly considered as an inverse buckling.

The analysis presented in this investigation, considers the steady-state undulatory swimming fi sh 
in dynamic balance of the forces acting on it. The overall rectilinear motion at constant velocity of 
the fi sh (no acceleration) means that there is a dynamic equilibrium among internal actions (muscle 
and tendon), external hydrodynamic forces (drag and added mass) and net reaction (thrust). The 
thrust is the longitudinal reaction to all the forces acting on the fi sh, especially those generated by 
the bending waves originating from the internal muscle and tendon actions throughout the fi sh body. 
In the reverse buckling conception herein presented, this internal resultant force globally acts in ten-
sion along the fi sh, thus creating the continuously bending waves along the body. The internal 
resultant force exerts a bending moment due to its eccentricity with respect to the centre line of the 
body. This force moment must be balanced at all times by the cross-sectional bending moment in 
equilibrium conditions, giving as a result a linear ordinary second-order differential equation, if 

Figure 6:  Inverse buckling of a fi sh: internal moment and tension-like forces (T) induce reactive 
overall thrust force.
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small lateral displacements are considered. The solution of this equation consists of a waveform 
whose wavelength can be expressed through a Strouhal number based on the mechanical properties 
of the fi sh body. The predictable wavelength of the undulatory swimming, by means of the Strouhal 
number for the reverse buckling fi sh, agrees well with the apparently universal experimental value, 
observed by numerous investigators.

Consider a fi sh undergoing a steady-state undulatory swimming. A balance of the forces and 
bending moments on the fi sh, seen as a buckling tapered column, gives as a result an ordinary sec-
ond-order differential equation of the type given by eqn (4), if small lateral displacements are 
considered. The area moment of inertia depends on the cross-section shape, which in the case of a 
fi sh is diffi cult to describe as it does not correspond to a regular geometric form with a simple math-
ematical expression. Depending on the species, the cross-section shape of a fi sh has been modelled 
as circular or elliptical [15], so the area moment of inertia with respect to a central (vertical) axis is 
proportional to x4. Therefore, the coeffi cient of the second term in eqn (4) is proportional to 1/x4 and 
the general solution of this equation [39, 40] is given by sine and cosine functions of the reciprocal 
of x, multiplied by x itself, i.e.

 
1 2cos sin ,

m m
h x A A

x x
 = +    

(10)

with a waveform as in Fig. 7a. The general solution expressed through eqn (10) corresponds to the 
fourth power of x in the area moment of inertia of a circular or elliptical form in eqn (4). Any other 
cross-section shape would give a different exponent for x, but the general solution of eqn (4) can 
always be expressed as Bessel functions [29]. Note the close resemblance of the waveform in Fig. 7a 
and those expressed through Bessel functions, with the observed lateral displacements of the lengthwise 
body portions of a fi sh (Fig 7b and c) [3, 5, 42].

The solution given by eqn (10) for a homogeneous boundary condition at x = 0 and any fi nite 
lateral displacement h at a given fi sh length, is an oscillatory function characterized by a unique 
wavelength, with increasing amplitude. The wavelength of the tapered-like column of a fi sh can be 
obtained from the square root of m in eqn (10), i.e.
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This result can be expressed through a fi sh buckling Strouhal number as defi ned in eqn (6),
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where D is a characteristic transverse dimension, i.e. the width of the buckling column. In this case, 
it is 2b0, the maximum fi sh thickness. Combining eqns (11) and (12) and using D = 2b0,
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To validate the above-mentioned results in the context of fi sh swimming, appropriate experimen-
tal data is necessary. Although the archival literature extensively documents many aspects of fi sh life 
for a large variety of species, there are very few measurements on the mechanical and rheological 
properties of fi sh. Indeed, more high-quality data are urgently needed in this aspect of swimming 
fi sh, as reported by very few authors [1, 9, 43, 44]. In this sense, let us take the morphological and 
stiffness properties reported by these authors of what seems to be the only published measured val-
ues of the mechanical stiffness properties of a fi sh obtained for a living and a laboratory killed 
sunfi sh specimen (Lepomis gibbosus, Lepomis macrochirus).

With an elastic modulus E = 180 N/m2 (measured by McHenry et al. [9]), a fi sh half span b0 = 
0.0175 m (estimated by the authors this article from the morphometric data of Long et al. [1]) and a 
thrust force of C = 0.040 N (selected from the data obtained by Drucker and Lauder [44]), a buckling 
Strouhal number of StB = 0.37 is obtained. Testing other values of the above-mentioned physical 
parameters (for instance, C in the range of 0.011–0.056 N, and b0 from 0.015 to 0.018 as reported by 
the same authors above), values for the Strouhal number in the range of 0.3–0.6 can be obtained. 
Table 1 shows these numbers together with the buckling Strouhal numbers estimated for solid and 
fl uid columns, using the equations presented in this article.

These are highly signifi cant and rewarding calculation results as they correspond to the mostly 
accepted experimental value for the Strouhal number of fi sh swimming Stf = 0.3, based on the obser-
ved kinematic (oscillating) variables for many fi sh species, as reported by Triantafyllou et al. [7], 

Figure 7:  Undulatory waveforms: (a) eqn (10); (b) schematics of the extreme positions of the centre 
line of the body for eel and saithe species according to Wardle et al. [41] (adapted); (c) 
schematics of the fi sh undulatory swimming according to Videler [5] (adapted).
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Wolfgang et al. [17], and Taylor et al. [22]. They also correspond to the experimental values reported 
for fl apping foils [22, as pointed out in the next section and included in Table 1.

The results presented herein are also close to the order of magnitude value of 0.5 for fl uid columns 
estimated by Bejan [33] and calculated by Cervantes et al. [34].

5 DISCUSSION AND CONCLUDING REMARKS
A full picture of the undulatory swimming fi sh clearly emerges from the foregoing analysis. An 
incipient buckling Strouhal number, as an upstream precursor of the observed oscillating Strouhal 
number at the tail, can be predicted in a simple manner to characterize the undulating body. This is 
based on the analogy that appears between fi sh swimming and buckling columns (solid and fl uid). 
The analogy at this stage is limited as it is based on small amplitude defl ections. However, the impor-
tant issue is that the model directly predicts the wavelength of the overall swimming movement of 
the fi sh. It corresponds to what Cheng et al. [15] regarded as the ‘movement’ approach, where a 
proper prediction of the lateral undulant displacement of the fi sh would be obtained as part of the 
solution, instead of the statement of the problem to establish the ‘bending moment’, assuming the 
waveform for the lateral displacements, as most researchers in this area do.

The analogy has two closely interconnected perspectives. On the one hand, a fi sh buckles and swims 
as a result of the unbalanced internal and external forces, composed mainly by the contraction and 
extension of muscles and the reaction to the external fl ow (drag and added mass). By generating undu-
latory waves that propagate from head to tail, and transferring momentum to the surrounding water, 
this hydrodynamic body produces thrust. Changing the shape and speed of these travelling waves, the 
fi sh controls its swimming speed. The complete and detailed study of the fi sh buckling during its 
steady-state rectilinear motion (with no acceleration) can be performed through a force and balance of 
bending moments, establishing equilibrium equations with an appropriate constitutive relationship.

In the present investigation, an analogue has been proposed for the steady-state fi sh swimming to 
a solid tapered column or a fl uid column under axial compressive loading. An ordinary second-order 
differential equation is obtained whose solution consists of a single mode of oscillation: the one-
wavelength buckling response. This straightforward and simple procedure had not been proven up 
to now in fi sh locomotion analyses, as it required acknowledging this analogy as the incipient undu-
latory motion of the fi sh. If an accelerated motion could be considered as in very few investigations 
in this topic, then the dynamic balance equation takes the form of a wave equation (as mentioned at 
the beginning of this article) whose complete solution has not yet been reported in the open litera-
ture. It must be stressed at this point that the sinusoidal waveform for the fi sh undulation is invariably 
assumed, not predicted, in the published analyses.

On the other hand, as a result of the undulating swimming body, the travelling waves that emerge 
behind the rostral portion of the fi sh and grow in a controlled way along the entire body end as tail 
oscillations. This lateral motion has an important effect: the change in the rotation sense of the vor-
tices system therein formed, transforms the dragging wake behind the fi sh into a thrusting penetrating 
jet, thus adding to the total impulsive force of the specimen. The experiments by Koochesfahani [21] 
for a fl apping foil show that when a reverse Karman vortex street forms behind the foil, the vortex 
pattern is stable and the velocity profi le has the form of a simple jet. This result has also been 
observed and considered by several authors in the fi sh swimming literature [17, 45, 46].

This effect corresponds well to the stability analysis predictions [7], where the optimal propulsion 
of an oscillating profi le is obtained for the frequencies of maximum amplifi cation of the average 
wake behind the profi le, giving values of the oscillating Strouhal number in the range 0.25–0.35 
(Table 1).
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Although the body buckling wavelength and the frequency of oscillations in the tail correspond to 
each other, there is a quantitative difference between the lateral displacement considered in the buck-
ling response of the fi sh body and the amplitude of the oscillations at the tail that needs further 
clarifi cation. That is, in the post-rostral region, where the incipient undulatory motion can be detected 
and modelled through the buckling theory, the transversal length scale that is employed in the buck-
ling Strouhal number, is the fi sh body width, 2b0, predicting Strouhal numbers in the range of 
0.3–0.6, (eqn (10), Table 1). These values slightly increase along the fi sh body as the transverse 
displacement increases downstream, in less than 10% according to most of the reported experimen-
tal studies. In other words, the travelling wave continuously increases its amplitude in the downstream 
direction up to the tail where lateral fl apping is observed. However, at the same time the wavelength 
increases in the same direction, perhaps in the same proportion, maintaining the Strouhal number 
within the same range of values. It is hard to identify the changes in the wavelength along the fi sh 
body, as most data in this respect in the published literature, is generally referred to the body length 
with a large variability among fi sh species and samples.

The process is much more complex than what has been described. It entails many aspects like the 
dynamic interactions between vortices, jets, and so on, as recently reviewed by Triantafyllou et al. 
[47]. But still the buckling description has three outstanding features: simplicity, predictability and 
physically grounded. The analogue points towards a more clear understanding of fi sh swimming and 
deserves to be considered and deepened.
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