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ABSTRACT
The destructive impact tornadoes have on communities has sparked interest in predicting the risk of 
impacts on seasonal time scales. Here, the authors demonstrate how to build statistical models for 
 predicting tornado rates. They test the models with tornado counts accumulated over a 45-year period 
aggregated to counties in the State of Oklahoma and to cells in a latitude/longitude grid across a large 
portion of south central United States. The spatial model provides a fit to the counts, which includes 
terms for the spatial correlation and the population effect. A space-time model not only provides 
a  similar fit to annual counts but also includes a term for a time-varying climate factor. This work 
 contributes to methods for forecasting severe convective storms on the seasonal time scale.
Keywords: climate, risk prediction, space-time model, statistical model, tornadoes.

1 INTRODUCTION
Seasonal climate forecasts are now a matter of routine. Predictions of how much rain and heat 
can be expected during the summer are issued during spring by weather agencies across the 
globe, by region and by country. Even single seasonal predictions of, say how many  hurricanes 
can be expected along a coastline are available and accurate enough to warrant attention by 
the property insurance industry. However, what is missing from the suite of seasonal 
 forecasting products are long-range forecasts of severe convective storm activity. Potentially 
useful skills (accuracy above random guess) at predicting tornado activity prior to the start of 
the season has been noted recently [1,2]. However, given the large gaps in our knowledge of 
how climate influences severe weather and the dearth of methods to forecast it on the sea-
sonal scale, basic and applied research is needed, which focuses on statistical modeling, 
diagnostic understanding, and methods to predict. A major impediment to issuing seasonal 
convective storm forecasts is that the events of interest are too small (e.g. tornado) to be 
resolved within the current dynamical forecast models. Long-lead predictions of severe 
weather environments can be made with dynamical models but the necessary conditions do 
not sufficiently distinguish between days with and without tornadoes.

An alternative approach is to fit a statistical model to a historical tornado database. Climate 
patterns related to active and inactive seasons provide the essential information to make 
 predictions. However, population growth and changes to procedures for rating tornadoes 
result in a heterogeneous database. Various methods for dealing with data artifacts have been 
proposed [3–5] with most assuming a uniform region of activity and estimating occurrence 
rates within a subset of the region likely to be most accurate. For example, tornado reports are 
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often aggregated using kernel smoothing [6–8]. Spatial density maps that show regions of 
higher and lower tornado frequency are useful for exploratory analysis and hypothesis gener-
ation. However, correctly interpreting the patterns is a problem since there is no way to 
control for environmental factors. Another drawback is the implicit assumption that torna-
does occur randomly. This is not the case in general as a single thunderstorm can spawn a 
cluster of tornadoes over a compact area [9]. In addition, tornado reports tend to be more 
numerous near cities as compared to rural areas but this spatial variation is decreasing with 
time [10]. Improvements in observing practices over time tend to result in more tornado 
reports, especially reports of weak tornadoes [11,12].

The purpose of this paper is to show how to build statistical models to forecast the rate of 
tornadoes (see also [13]). The models can be used to establish benchmarks against which 
future statistical and eventually dynamical models can be judged. The models are written 
with the open-source R language using freely-available government data including tornadoes 
from the U.S. Storm Prediction Center (SPC) in Oklahoma, population and administrative 
boundaries from the U.S. Census Bureau. The paper begins by considering the long-term risk 
of tornadoes. This is done at the county level of an individual state to establish a baseline 
level (climatology) of forecast skill and to illustrate how to utilize the uneven and incomplete 
tornado database. Then it considers how long-term risk gets modulated by climate factors. 
This is done with a space-time model applied to the data aggregated in cells of a regular grid. 
An example is presented that quantifies the influence of El Niño on tornado activity across 
the central United States.

2 LONG-TERM RATES
The long-term risk of tornado presence at the county level is examined using data from the 
State of Oklahoma. Oklahoma, with an area of about 180,000 km2, is located in the south 
central region of the United States where tornadoes are common occurrence. County admin-
istrative boundaries are downloaded and read into R as vector polygons at a resolution of 1:5 
million and subset by the area of interest using the Federal Information Processing Standard 
(FIPS) code (40 for Oklahoma). The 2012 population estimate is added to each of the 77 
counties as part of the attribute table. Osage County in Oklahoma is the largest with an area 
of 5,912 km2 and Washington County is the smallest with an area of 1,089 km2 .

The SPC maintains the most comprehensive and up-to-date tornado database in the world. 
Records extend back to 1950 and include information on time of occurrence, location, 
 magnitude, track length and width, fatalities, injuries, and property loss for tornadoes in the 
United States. The version of the SPC database used in this study generates “shapefiles,” with 
each tornado represented as a straight-line track in a Lambert conformal conic (LCC) 
 projection centered on 96° W longitude and parallels at 33° and 45° N latitudes.

In this paper, we consider tornadoes from the database over the period 1970–2014, inclu-
sive (45 years). The start year coincides with a period of reliable records in the database for 
even the weakest and least damaging tornadoes. We buffer each track using the track-width 
 dimension to create a polygon that approximates the tornado path. The width of the actual 
damage path varies along the track. Prior to 1994 the track-width dimension was estimated as 
the average damage path width along the track. Since then it is estimated as the maximum 
damage path width along the track. On an average, paths are wider for tornadoes with a 
higher damage rating [14]. Reports having coincident time, location, length, and width rep-
resent 1.8% of all tornado reports and are removed from further analysis.

There are 2,421 tornadoes in the database whose paths intersected at least part of the state. 
The statewide average number of tornadoes in the counties is 36 with a standard deviation 
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of 14. Osage County in the northeast has been hit most frequently with 78 tornadoes over the 
period of record (Fig. 1). Choctaw County in the southeast has been hit least frequently with 
only 14 tornadoes. The correlation between the number of tornadoes and the size of the 
county is +0.44 [(+0.27, +0.58) 90% confidence interval (CI)]. The correlation between the 
number of tornadoes and the number of people is slightly higher at +0.45 [(+0.28, +0.59) 
90% CI]. Larger counties tend to be somewhat less populated with a correlation between area 
and population at −0.13.

Raw counts are not directly useful for assessing tornado rate because the counties vary in size 
and population. To address this we employ a spatial statistical model. The model includes 
population density as a fixed effect.

In addition, to account for improvements in the procedures to rank tornadoes by the amount 
of damage, the calendar year and an interaction term of year with population are included. 
Finally, to account year-to-year changes, a random effect term is added. Mathematically, the 
number of tornadoes in each county s (Ts ) is assumed to be described by a negative binomial 
distribution with parameters probability p and size r [1]. If X is a random sample from this 

distribution, then the probability that X = k is P (k|r, p) =
k r
k

+ −





1
(1 − p)r pk, for k ∈ 0, …, 

∞, p ∈ (0, 1) and r > 0. This relates the probability of observing k successes before the r 
failure of a series of independent events with the probability of success equal to p. The distri-
bution is generalized by allowing r to be any positive real number and it arises from a Poisson 
distribution whose rate parameter has a gamma distribution [13].

The distribution is re-formulated using the mean m =
−

r p
p1

 and the size r. This allows a 

separation of the mean effect from the dispersion parameter. The mean of the  negative 
 binomial distribution, µs is linked to a linear combination of the predictors and  random 
effects, ns through the exponential function and the area of the cell, As (exposure). The 

Figure 1: Number of tornadoes over the period 1970–2014.



4 James B. Elsner, et al., Int. J. of Safety and Security Eng., Vol. 6, No. 1 (2016) 

 dispersion is modeled with a scaled size parameter n where n = rs /As giving a dispersion of 
1/ps = 1 + µs /n = 1 + exp(ns )/n that depends only on the tornado rate and n. More concisely, 
the model is:

 T µ r µ rs s s s s| , ( , )∼ NegBin  (1)

 µ As s s= exp( )n  (2)

 ns s s s tt t t t u v= + + − + − + +b b b b0 0 01 2 3lpd lpd( ) ( )  (3)

 r A ns s=  (4)

where NegBin(µs, rs) indicates that the conditional tornado counts (Ts |µs, rs) are described 
by a negative binomial distribution with mean µs and size rs, lpds represents the base two 
logarithm of the population density during 2012 for each county, and t0 is the base year set to 
1991 (middle year of the record). The spatially correlated random effects us follows an intrin-
sic Besag formulation with a sum-to-zero constraint [15].

 
u u N
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

∑t t∼
∼

1 1  (5)

where N is the normal distribution with mean 1/m ui ji j
⋅∑ ∼

 and variance 1/mi·1/t where 

mi is the number of neighbors of cell i and t is the precision; i ∼ j indicates that cells i and j 
are neighbors. Neighboring cells are determined by contiguity (queen’s rule). The annual 
uncorrelated random effect, vt, is modeled as a sequence of normally distributed random 
variables, with mean zero and variance 1/t'. The prior on the vector of spatial random effects 
is statistically independent from the vector of annual random effects. Gaussian priors with 
low precision are assigned to the b ’s. To complete the model specification, the scaled size (n) 
is assigned a log-gamma prior and the precision parameters (t and t') are assigned a 
log-Gaussian prior [13]. Bayes rule results in posterior distributions for the model parameters 
using the method of integrated nested Laplace approximation (INLA) [16,17].

The random-effects term is the spatially correlated set of county-level residuals, which 
quantifies tornado occurrence statewide accounting for population, exposure, and trends. Val-
ues of this term indicate where tornadoes are more likely, relative to the state average. 
Multiplying these county-level values by the statewide rate for 2014 gives the expected annual 
tornado rate per county (Fig. 2). Values range from a minimum rate of 0.72 per year in 
McCurtain County in the southeast corner of the state to a maximum rate of 1.19 per year in 
Grant County in the north central part of the State. Although the differences between the 
lowest and highest rates are less than a factor of two, the map features an axis of the highest rates 
from southwest to northeast through the Oklahoma City area. The rates are for the county as 
a whole and assume uniform risk within. They are normalized for exposure, and therefore, inte-
grating the rate over the area and over the period of record yields an estimate of the total 
count. Uncertainty on the magnitude of these values is measured by the posterior standard 
deviation and range from  .08 to .18 per year. Standard deviations are lower (precision higher) 
in counties with more neighbors (away from the state borders). A combination of high rate 
(1.11 per year) and low standard deviation makes Kiowa County in the southwest arguably the 
most vulnerable county in the state.
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3 CONDITIONAL RATES
The county-level model is an example of how to create a baseline climatology of tornado risk 
using the available database. The model allows the insurance industry to set realistic rates of 
losses and emergency managers to effectively allocate state resources. However, depending 
on the climate pattern during the tornado season each year is often quite different in terms of 
the tornado risk. In particular, variations in sea-surface temperature and atmospheric 
 convection in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) 
modulate global weather and climate patterns including the risk of tornadoes [2, 18–21]. 
During the La Niña phase, a strengthened Inter-American Seas (IAS) low-level jet enhances 
the spread of moisture across the southeast during spring. Greater instability associated with 
the extra moisture is coupled with increased shear from a strengthened upper-level jet, setting 
the stage for severe convective storms.

Next, we demonstrate a space-time model fit to data aggregated in cells on a regular grid that 
quantifies how much the long-term rates should be adjusted based on a climate factor. Tornado 
counts are accumulated in each two-degree grid cell using all tornado paths that intersect the 
cell during each year (Fig. 3). The result is a space-time data set with constant-time attributes 
that include grid area, elevation, and variable-time attributes that include the annual number 
of tornadoes and population density. The spatial framework is raster [22] with a domain that 
extends from eastern Colorado to western Virginia and from the Mexican Gulf coast to south-
ern Minnesota. The period of record runs from 1954 to 2014 for a total of 38,690 tornadoes 
representing 67% of all U.S. tornadoes and 87.5% of all high-energy tornadoes (EF4+).

The space-time model extends the spatial model above. Subscripts on parameters and 
 variables now indicate a time component. Specifically, the tornado count in grid cell s for 
year t is given as:

T r rs t s t s t s t s t, , , , ,| , ,m m∼ NegBin ( )

Figure 2: Annual rate of tornadoes accounting for exposure and population.
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m ns t s s tA, ,exp( )=

n b b b bs t s st t, ,( )= + + − + +0 1 2 0 3rd ENSO +t s tu v

r A ns t s, =

where the conditional tornado count in each cell is described by a negative binomial 
 distribution with mean µs,t and size rs,t. At this scale, road density (rd) replaces population 
density to account for the observation bias. The effect of ENSO varies spatially through the 
spatial-effects term (b3,s ), which has an intrinsic Besag formulation (see Eqn. (5)). The 
 variable ENSOt is the bi-variate ENSO time series averaged from March through May. The 
monthly series combines a standardized Southern Oscillation Index with a standardized 
Niño 3.4 sea-surface temperature series obtained from the Earth System Research  Laboratory, 

Figure 3: Annual tornado counts over the period 1999–2014 in two-degree grid cells.
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Physical Science Division. The cellarea times the number of years indicates the square- 
meter-years exposed to tornadoes. The exposure is normalized to have a mean of one. Again, 
INLA is used to obtain posterior distributions for the model parameters.

The posterior mean of the spatial-effects term (Fig. 4) answers the question: what is the 
geographic pattern of the ENSO effect on tornadoes controlling for data biases? The ENSO 
effect is most pronounced over the southeast with a reduction in the annual tornado rate 
exceeding 15% over a large part of Tennessee. The effect over this region exceeds two and 
three standard deviations (right panel). The reduction in tornado activity extends westward to 
northeastern Texas and southeastern Kansas and northward into eastern Wisconsin and 
 Michigan. An enhancement in tornado activity occurs over the western High Plains from 
western Texas northward to western South Dakota. A physical explanation behind this 
 relationship is tied to a reduction of the moist low-level jet from the Caribbean and Gulf of 
Mexico (the Intra-Americas Sea) [20] during the El Niño [23]. A prediction calling for an El 
Niño  during spring would, according to this model, indicate a reduced risk of tornadoes 
across the mid south and an enhanced risk of tornadoes across the High Plains.

4 SUMMARY
This paper describes a method to produce a baseline climatology that accurately reflects 
where tornadoes are more and less likely to occur independent of the observation biases in 
the  database. Further, it describes a space-time model to forecast tornado frequency from 
time-varying climate factors (e.g. El Niño). The research advances practices in tornado 
 climatology through application of spatial statistical models. The available storm reports and 
covariate information can be classified into subsets by area of interest and aggregated by areal 

Figure 4:  ENSO effect on tornadoes. (Left) Magnitude of the effect in units of percentage 
change in tornado rate per standard deviation (s.d.) increase in the springtime 
(Mar–May) value of the bi-variate ENSO index. (Right) Significance of the 
effect as computed by the ratio of the s.d. to the mean from the posterior 
distribution.
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units (regular grids or irregular polygons – e.g. state counties). Aggregation accommodates 
additional human and environmental data (population, terrain, percent agriculture, etc.).

The models are fit using the method of INLA to solve the Bayesian integrals. This setup 
facilitates non-normally distributed counts and correlated residuals. The random-effects term 
quantifies where tornado activity is high (and by how much) relative to the regional average. 
The models make it simple to test hypotheses about the relationship between tornadoes and 
climate. The spatial-effects term quantifies where the climate factor has the greatest influence 
on tornado activity.

The models are practical and portable. Climatological rate estimates at the county level can 
be used by the property insurance industry to set homeowner insurance policy rates. They can 
be used by emergency managers to allocate resources weighted by areas of the state more 
prone to tornadoes. The conditional rate model can be used for planning for the next year 
given the predicted states of the climate factors. Models can also be fit to data separated by 
seasons. The computer code to estimate the long-term and conditional rates is freely available 
on github and can be modified with little effort to other tornado-prone states and regions.
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