
Ingénierie des systèmes d’information – n° 6/2018, 189-200 

A deep neural network-based algorithm for 

safe release of big data under random noise 

disturbance 

Jian Yu1, Hui Wang2,* 

1. Liuzhou Vocational and Technical College,  

School of Electronic Information Engineering, Liuzhou 545005, China 

2. Liuzhou Vocational and Technical College, School of Art,  

Liuzhou 545005, China 

Huiwang.liuzhou@gmail.com 

ABSTRACT. Despite its huge benefits, the release of big data is faced with the severe risk of 

privacy leakage. To solve the problem, this paper proposes a deep neural network (DNN)-based 

algorithm for safe release of big data under random noise disturbance. Specifically, a random 

noise of a certain probability distribution was added into the release of the big data, such that 

the public output will not change significantly whether an individual data record is in the 

dataset and that that the published data will be basically the same to the original dataset. The 

algorithm was then optimized in light of the attributes of the correlated datasets in big data. 

Finally, the proposed algorithm was proved better than the traditional algorithm in large-scale 

searches of correlated datasets, and capable of ensuring privacy at a lower privacy budget. 

RÉSUMÉ. Malgré ses énormes avantages, la libération de Big Data est confrontée à un risque 

élevé de la divulgation de confidentialité. Pour résoudre ce problème, cet article propose un 

algorithme basé sur un réseau neuronal profond (DNN) pour la diffusion sécurisée de Big Data 

en cas de perturbation du bruit aléatoire. Plus précisément, un bruit aléatoire d’une certaine 

distribution de probabilité a été ajouté à la diffusion des données massives, de sorte que la 

sortie publique ne change pas de manière significative avec la présence d’un enregistrement 

de données individuel dans le jeu de données et que les données publiées seront 

fondamentalement identiques à l'ensemble de données d’origine. L'algorithme a ensuite été 

optimisé à la lumière des attributs des ensembles de données corrélés dans le Big Data. Enfin, 

l'algorithme proposé s'est avéré meilleur que l'algorithme traditionnel dans les recherches à 

grande échelle des ensembles de données corrélés, et il est capable de garantir la 

confidentialité avec un budget de confidentialité inférieur. 
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1. Introduction 

The number of Internet users in China has reached 751 million, about 54.3% of 

the total population 1. Similar trends are observed across the globe. The popularity of 

the Internet has made it easy to acquire and share data, heralding the dawn of the big 

data era. In May, 2009, Data.gov was launched by the US government to improve 

public access to improve public access to high value, machine-readable datasets 

generated by the Executive Branch of the Federal Government. Nearly 40 countries 

and regions quickly followed suit by setting up their own open data portals 2. The 

information made public on these websites often involves private data of government 

departments, enterprises and individual users. Against this backdrop, it is of great 

importance to hide individual data and private data in the release of big data (Fung et 

al., 2010; Wong et al., 2011). Otherwise, neither the traditional encryption strategies 

nor the access control of some fields could withstand the increasingly diverse hacker 

attacks (Kifer and Machanavajjhala, 2011; Kifer et al., 2012; Noman et al., 2011; 

Xiao et al., 2014). 

In light of the above, this paper designs a transparency algorithm to preserving the 

sensitive information of individual records in big data, which adds a random noise of 

a certain probability distribution into the release of the big data, prevents the public 

output from changing significantly whether an individual data record is in the dataset, 

and ensures that the published data are similar to the original data within a certain 

threshold range. The transparency algorithm was then optimized in light of the 

attributes of the correlated datasets in big data. Finally, the proposed algorithm was 

proved effective through experiments. 

2. Definition of privacy in the release of big data 

For a dataset 𝒟, its two sub-datasets 𝒟1 and 𝒟2 differ by one record at the most. 

Let ℳ be a set of random noises. Then, any output 𝑂 ⊆ 𝑅𝑎𝑛𝑔𝑒(ℳ) satisfies: 

Pr⁡[ℳ(𝒟1) ∈ 𝑂] ≤ exp⁡(ϵ) × Pr⁡[ℳ(𝒟2) ∈ 𝑂]                        (1) 

where ℳ obeys a certain random probability distribution; ϵ is a real number falling 

in [0, 1] indicating the strength of privacy preserving; Pr⁡[⁡] is the privacy risk, i.e., the 

probability that the privacy is leaked. If dataset 𝒟1  is released to select counting 

statistics, then an aggregate search, Count(n) in the first n rows can be shown in Table 

1 below. 

Even if dataset 𝒟1  rejects direct access and only offers the Count(n) search 

interface, a hacker (Attacker A) with certain background knowledge, e.g. the sorting 

position m of the user “Zhao” (the website data are usually ranked in such orders as 

                         
1. China Internet Network The 23 times Information Center. statistical report on Internet 

development in China. http://www.cac.gov.cn/2018-01/31/c_1122347026.htm 

2. China's State Council. Action Plan on Promoting Big Data Development. 

http://www.gov.cn/zhengce/content/2015-09/05/content_10137.htm 
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the alphabetical order of user surnames), can acquire the private information of Zhao 

(whether the search result is satisfied) by the attack method Count(m)- Count(m-1). 

Table 1. Data publishing 

Users Aggregation query 

Lee False 

Mike True 

Green True 

Brown True 

… … 

According to equation (1), the dataset without the data record on Zhao can be 

considered as 𝒟2. The probability of Attacker A to acquire the Count() value from 

dataset 𝒟1 obeys a similar distribution as that of he/she to acquire the Count() value 

from dataset 𝒟2. Assuming that the probability of Count(m) is almost equal to that of 

Count(m-1), then the private information of Zhao in dataset 𝒟1 is protected. 

As mentioned above, 𝜖 is the real number privacy preserving budget, that is, the 

strength of the differential privacy preserving. The value of 𝜖 is negatively correlated 

with the preserving strength. Hence, the value of privacy budget ε controls the 

similarity of the probability distribution. The smaller the 𝜖, the closer the ℯ𝜖 is to one. 

In other words, the privacy preserving model satisfies the differential privacy (Dwork, 

2011a, 2011b; Dwork and Roth, 2014; Hall et al., 2013). 

3. Random noise addition mechanism in the release of big data 

In the previous case, it is assumed that, if (𝓃) ensures the privacy of Count(𝓃), 

then (𝓃)= Count(𝓃)+ Noise, with Noise being a noise obeying certain random 

distribution. 

If X = Noise, then we have: 

∀𝑜,
Pr[ℳ(𝒟1)=𝑜]

Pr[ℳ(𝒟2)=𝑜]
=

Pr[Count(𝒟1)+X1=𝑜]

Pr[Count(𝒟2)+X2=𝑜]
≤ ℯℰ                              (2) 

Let 𝑑 = Count (𝒟1) - Count (𝒟2). Then, we have:  

∀𝑥,
Pr[X1=𝑥]

Pr[X2=𝑥+𝑑]
                                               (3) 

If 𝒟1  and 𝒟2 differ by one record at the most, Δ can be defined as the global 

sensitivity of any search  on dataset 𝒟. Then, we have: 

Δ = max
𝒟1,𝒟2

|Count⁡(𝒟1) ⁡− ⁡Count⁡(𝒟2)|                            (4) 

Here, 𝒹 must be equal to or smaller than Δ to make equation (3) permanently 

established. 
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The Laplace mechanism and the exponential mechanism are two existing methods 

to obtain 𝜖- differential privacy (Li et al., 2018). In the Laplace mechanism, the 

original function output is added with a noise Lap(
Δ

𝜖
) , indicating that any search  

on dataset 𝒟 satisfies 𝜖- differential privacy under: 

ℳ(𝒟) = 𝐶𝑜𝑢𝑛𝑡(𝒟) + Lap(
Δ

𝜖
)                                   (5) 

The exponential mechanism depends on the function 𝑄(𝒟,𝜓) , where 𝜓  is the 

candidate item. The function outputs the number of 𝜓  items in 𝒟 . Thus, the 

probability of ℳ(𝒟) output 𝜓 ∈ 𝒟 is proportional to 𝜖
𝜖𝑄(𝒟,𝜓)

2∆𝑞 , indicating that ℳ(𝒟) 
satisfies the exponential mechanism of 𝜖-differential privacy. 

In the context of big data, user privacy information is distributed under multiple 

datasets. The possibility of privacy exposure will grow with the fusion of multi-source 

data. A preserving mechanism satisfies ϵ-differential privacy on a single dataset might 

not provide the same privacy guarantee on multiple datasets (Beimel et al., 2014). If 

multiple datasets, which are entirely different, have the same record on a user, then 

the direct correlation can satisfy ϵ-differential privacy. However, it is possible that 

different records between a user and those between the user’s correlated users are also 

correlated, such as GPS records, sales records, or customer relationship network 

information. The correlated records of correlated datasets in big data provide 

additional, unpredictable information to the attacker. In fact, a key defect in traditional 

differential privacy lies in neglecting the correlation between records (Koufogiannis 

et al., 201; Parra-Arnau et al., 2013). If this problem is solved simply by adding the 

number of correlated records and enhancing the corresponding sensitivity, the search 

results will contain a huge amount of redundant noises, hurting the validity of the 

dataset (Wang et al., 2016). The previous research has proved that the correlation 

between individual records will reduce the individual privacy (Kifer and 

Machanavajjhala, 2014). Therefore, it is imperative to protect the privacy of 

correlated datasets. 

4. Privacy analysis of correlated datasets 

This section defines the concepts and terms before handling the differential 

privacy of correlated datasets. 

Definition 1: Correlated degree (CD) 

If a record ℛ𝑖 ∈ 𝒟 is correlated to 𝑘 − 1 records (𝑘 ≤ |𝒟|), then the record can be 

expressed as: 

Ri = {ℛ𝑖 , ℛ𝑗 ∈ 𝒟|All⁡ℛ𝑗 ⁡are⁡correlated⁡with⁡ℛ𝑖}                      (6) 

When 𝑘 = 1, the correlated dataset 𝒟 is independent identically distributed (IID). 

In big data scenarios, most records are partially correlated, and the deletion of a 

record may have varied degrees of impacts to the other records. Here, these impacts 
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are defined as the degree of correlation. For two correlated records ℛ𝑖 and ℛ𝑗, the 

degree of correlation 𝜗𝑖𝑗 ∈ [−1, 1] and 𝜗𝑖𝑗 ≤ 𝜗0, with 𝜗0 being the threshold of the 

degree of correlation. If 𝜗𝑖𝑗 < 0, then ℛ𝑖 is negatively correlated with ℛ𝑗; if 𝜗𝑖𝑗 > 0, 

then ℛ𝑖 is positively correlated with ℛ𝑗; if 𝜗0 = 0, then ℛ𝑖 is not correlated with ℛ𝑗; 

if 𝜗0 = 1 , then ℛ𝑖  is completely correlated with ℛ𝑗 . The degree of correlation 

describes the degree of impacts of a record on other records. The greater the 𝜗𝑖𝑗, the 

weaker the correlation, i.e. ℛ𝑗 is not severely affected by the deletion of ℛ𝑖; otherwise, 

if the value of 𝜗𝑖𝑗 approximates 1 or -1, the correlation between the record and the 

other record is strong, i.e. ℛ𝑗  is severely affected by the deletion of ℛ𝑖 . Thus, the 

degree of correlation matrix ∆ (ϑ ∈ ∆) of dataset 𝒟 can be obtained as: 

∆= (
𝜗11 ⋯ 𝜗1𝑛
⋮ ⋱ ⋮
𝜗𝑛1 ⋯ 𝜗𝑛𝑛

)                                                (7) 

where 𝜗𝑖𝑗 and 𝜗𝑗𝑖 are symmetrical with each other. Their correlation is independent 

of the order of records, and the diagonal elements are all equal to 1. The degree of 

correlation can be filtered by adjusting the threshold ϑ: if 𝜗𝑖𝑗 < 𝜗0 in ∆, then 𝜗𝑖𝑗 is set 

to zero. In reality, it is very difficult for the attacker to obtain the entire ∆. To achieve 

the highest level of privacy guarantee, this paper assumes that the privacy mechanism 

can protect the privacy of individuals even if the attacker can obtain the entire ∆. 

Definition 2: Correlated Sensitivity (CS) 

The correlated sensitivity of record ℛ𝑖 to the search 𝒮 offered by the correlation 

degree matrix ∆ of dataset 𝒟 can be expressed as: 

𝐶𝑆𝑖 = ∑ |𝜗𝑖𝑗|(‖𝒮(𝒟𝑗) − 𝒮(𝒟−𝑗)‖1)
𝑛
𝑗=0                      (8) 

If 𝒟  is IID, then the global sensitivity of 𝒮  is equivalent to ⁡𝐶𝑆𝑖 . Thus, the 

correlated sensitivity of 𝒮  can be defined as the maximum value 𝐶𝑆𝑖 , i.e. 𝐶𝑆𝑑𝑠 =

max
𝑖∈𝑑𝑠

(𝐶𝑆𝑖). Let 𝑋𝑠 be the results set of 𝒮. When a search only covers independent or 

weak correlated sensitivity, the correlated sensitivity will not introduce additional 

noise. 

The correlated sensitivity 𝐶𝑆 applies to various data distribution mechanisms. If 

the records in dataset 𝒟 are independent, the correlated sensitivity 𝐶𝑆 will be equal to 

the global sensitivity Δ; for correlated dataset, the correlated sensitivity 𝐶𝑆 will be 

smaller than the global sensitivity Δ. 

Definition 3: Semantics of correlated privacy features 

First, the following parameters should be defined: 

(1) 𝒢 = (𝒱, ∑, 𝒮, ℛ), with 𝒮 ∈ 𝒱 be the start symbol; 
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(2) 𝒱 =

{
 
 
 

 
 
 
𝒮; ⁡𝐿, 𝐷, 𝑆;⁡
𝑁1, … , 𝑁𝑛;⁡
𝐵1 , … , 𝐵𝑛;⁡
𝐴1, … , 𝐴𝑛;⁡
𝐸1, … , 𝐸𝑛;⁡
𝑃1, … , 𝑃𝑛;⁡
𝐼1, … , 𝐼𝑛;⁡

… }
 
 
 

 
 
 

 is a set of fields in the privacy feature, with N being the 

name, 𝑁1, … , 𝑁𝑛 being the various descriptions methods of the name (e.g. 𝑁1 is the 

full name or acronym), B being birthday, A being address, E being email, P being 

phone number, I being ID card number. The tag type in 𝒱 can be added or removed 

as needed, and each type of tags can adapt to the increase or decrease of n; 

(3) ∑ = {𝐴𝑆𝐶𝐼𝐼⁡characters, 𝑁𝑈𝐿𝐿} refers to all the characters that do not include 

𝒱 but 𝒢;  

(4) The finite set of ℛ:⁡𝒜 → α,𝒜 ∈ 𝒱, α ∈ 𝒱 ∪ Σ. 

Then, the recognition of ℛ in 𝒢 can be expressed as 𝒜 → α(𝒜 ∈ 𝒱, α ∈ 𝒱 ∪ Σ). 
This paper designs a suitable training algorithm for correlation recognition, which 

improves the accuracy of semantic recognition based on the deep neural network 

(DNN) (Deng and Yu, 2014). 

Algorithm 1: Correlation relationship recognition algorithm 

(1) Let 𝒱 = {𝒱𝑘|𝑘 = 1, 2, … ,𝒦}  be the given fields, 𝜗 =｛𝜗𝑘ϵ𝑇𝑎𝑔
𝐷|𝑘 =

1, 2, … ,𝒩｝be the correlation degree features of the classifier sample set and 𝑇𝑎𝑔 =
｛𝑡𝑎𝑔𝑘|𝑘 = 1, 2, … ,𝒩｝be the classification tags; 

(2) Set up a DNN of layer+1 layers, with 𝓃𝑙𝑎𝑦𝑒𝑟  neurons in the layer hidden 

layers, and adopt ReLU as the activation function of neurons. Then, the 𝒿-th neuron 

in the ℓ-th hidden layer (ℓ ∈ (1, 𝑙𝑎𝑦𝑒𝑟) can be expressed as: 

ℋ𝒾
(ℓ,𝒿)

= max⁡(0, 𝒵(ℓ,𝒿))                                            (9) 

(3) Let 𝒵ℓ be the output vector of the ℓ-th layer. To prevent local optimum trap or 

excessive gradient, the output vector should be adjusted as: 

𝒵ℓ = 𝒲ℓ𝓏(ℓ−1) + 𝑏(ℓ), ℓ = 1, 2, 3, … , ℒ                            (10) 

Since each layer receives the inputs from 𝒦 function, the weight can be expressed 

as: 

𝒲𝑘 = ∏ �̂�𝑘
ℓℒ

ℓ=1                                                (11) 

The weight should be corrected as: 

𝑏𝑘 = ∑ (∏ �̂�𝑘
𝓃ℒ

𝓃=ℓ+1 )ℒ−1
ℓ=1 �̂�𝑘

ℓ + 𝑏ℒ                                  (12) 
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(4) The probability that the sample vector  𝒵  belongs to the ℓ-th class can be 

expressed as: 

σ(𝒱|𝒵𝑘
ℒ) =

𝑒𝑥𝑝(𝒵𝑘
ℒ)

∑ 𝑒𝑥𝑝(𝒵𝑘
(ℒ,𝑘)

)𝐾
𝑘=1

                                       (13) 

(5) Exclude the neurons whose hidden layer output is 0 and the parameters 

connected to them and adjust the threshold or parameters. Then, the correlation 

probability of sample 𝒱𝑘 can be judged as: 

ξ(𝒱𝑘) = 𝑇𝑎𝑔𝑘 ⁡iff⁡𝑘 = arg ReLU𝒵𝑘
(ℒ,𝑗)

, 1 ≤ 𝑗 ≤ 𝐾                  (14) 

5. Noise addition mechanism of correlated datasets 

Definition 4: Correlated ϵ- differential privacy  

Let 𝒟 = {𝐷1, 𝐷2, … , 𝐷𝑛}  be a dataset and ℳ  be a mechanism satisfying the 

differential privacy. Then, any pair of datasets 𝐷𝑖
1 and 𝐷𝑖

2 ∈ 𝐷𝑖(1 ≤ 𝑖 ≤ 𝑛) differ by 

one record at the most. Assuming that any output 𝑂 ⊆ 𝑅𝑎𝑛𝑔𝑒(ℳ) in the domain of 

definition 𝒟, then the correlated ϵ- differential privacy can be expressed as: 

ℳ(𝒟) ∶= Sup
𝑖,𝒟−𝑖,𝐷𝑖

1,𝐷𝑖
2,𝑂

log
Pr⁡(ℳ(𝐷𝑖

1)∈𝑂|𝐷𝑖
1,𝒟−𝑖)

Pr⁡(ℳ(𝐷𝑖
2)∈𝑂|𝐷𝑖

2,𝒟−𝑖)
⁡                         (15) 

Let 𝒮⁡be the search provided by 𝒟 and 𝑋𝑠 be the results set of 𝒮. If and only if 

ℳ(𝒟) ≤ ϵ,ℳ(𝒟) provides the ϵ- differential privacy of the correlated datasets. From 

the above section, we have: 

ℳ(𝒟) = 𝒮(𝒟) + Lap(
𝐶𝑆𝑋𝑠

𝜖
)                                  (16) 

The correlated sensitivity is lower than the global sensitivity. However, the 

privacy budget must be divided into several small parts when multiple 

searches are performed in the big data environment, making it necessary to 

minimize the impact of the noises in the search results. When the records are 

closely correlated with the other data, the resulting noises will be obviously 

higher than those of independent datasets. Here, the noises in the search results 

are limited by the iterative mechanism. 

Algorithm 2: Correlated data noise addition algorithm 

Let 𝑡,⁡𝒬, 𝒬𝑡, 𝐴𝑡 and �̂� be the round of iterations, the search set, the search of the 

t-th round, the actual search result, and the noise disturbed result, respectively. The 

data set in the process can be expressed as a histogram 𝓍 = {𝓍0, 𝓍1, … , 𝓍𝑡} with the 

length of N: 

𝐴𝑡 = 𝒬𝑡(𝑥𝑡)                                                (17) 
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                                      (18) 

Let 𝑑�̂�  be the difference between the actual search result ⁡𝑋𝑠,𝑡−1  and the noise 

disturbed result 𝑋𝑠,𝑡 . This difference can be adopted to control the update in each 

iteration, such that the 𝓍0, 𝓍1, … , 𝓍𝑡 in each round approximates the original dataset 

𝓍:  

𝑑�̂� = 𝒬𝑡(𝑥𝑡−1) − 𝐴�̂�                                             (19) 

First, the privacy budget can be divided into several parts. Assuming that 𝜖0 =
𝜖𝜇𝜗0

log𝑁
, the histogram should be initialized as a uniform distribution 𝓍0. In each iteration, 

𝒬𝑡(𝒬𝑡 ∈ 𝒬) is executed in 𝑥𝑡, yielding the result 𝐴𝑡 = 𝒬𝑡(𝑥𝑡). Then, the 𝐴𝑡 can be 

disturbed as 𝐴�̂�. After that, the 𝒬𝑡(𝑥𝑡−1) and the distance 𝑑�̂� of 𝐴�̂� can be calculated 

for the previous round. If 𝑑�̂� < 𝑇 (T is the given threshold), then 𝑥𝑡−1 is very similar 

to 𝓍 during the search 𝒬𝑡. In this case, 𝒬𝑡(𝑥𝑡−1) and 𝑥𝑡−1 should be released directly 

and the next round of iteration should begin; otherwise, if 𝑑�̂� > 𝑇, then the 𝑥𝑡−1 must 

be corrected. 

Let 𝕢𝑡 = {𝑏0, 𝑏1, … }  be a superset of all the results on 𝑥𝑡−1  and its 

correlated records. Then, the superset should be corrected by: 

𝑥𝑡 = 𝐹(𝑥𝑡−1)                                                   (20) 

𝐹(𝑥𝑡−1) = 𝑥𝑡(𝑏𝑖)                                               (21) 

𝐹(𝑥𝑡−1) = 𝑥𝑡−1(𝑏𝑖)exp⁡(−μ𝜃𝒬𝑡γ(𝑥𝑡−1))                       (22) 

If 𝑑�̂� > 0 , then γ(𝑥𝑡−1) = 𝒬𝑡(𝑥𝑡−1) ; otherwise, γ(𝑥𝑡−1) = 1 −
𝒬𝑡(𝑥𝑡−1)μ, with⁡⁡𝜇 being the adjustment parameter.  

As above, a search result on the noise perturbation can be generated in each 

iteration by accessing the histogram 𝓍 = {𝓍0, 𝓍1, … , 𝓍𝑡}. The result only verifies if 

the current histogram is the correct result of the current round of search. In most cases, 

no corrected distributed result is released, leaving the privacy budget untouched. The 

correction and release of distributed result only occur when the current histogram is 

inaccurate. Therefore, the privacy budget is only consumed in the iterative round of 

corrections, in which the privacy analysis is severely constrained. 

6. Experiments and results analysis 

The experiments were carried out in the following environment: Pentium Xeon 

E5-2620 V3, 32GB memory and one NVIDIA GeForce GTX 980 GPU, using the 

Adult dataset from the UCI machine learning library. The initial dataset contains 

48,842 records and 15 attributes. After removing unfavorable data, there are 35,561 

records and 14 attributes in experimental dataset. The Salary field was selected for 
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our experiments and the attacks aim to determine whether the annual income of an 

individual user surpasses 5,000 USD. The experimental results shed light on the 

privacy preserving methods for individual users, enterprises, public institutions or 

government during the release of big data. 

No data contains pre-defined correlation information. The elements in the 

correlation degree matrix ∆ in our simulation all fall between [-1, 1] and are linearly 

correlated. The matrix was generated by Algorithm 1. The threshold was set to 0.6. 

About one fourth of the records in the dataset are correlated with each other. The size 

of the  𝑘 − 1 group is about 10. A total of 10,000 linear searches were generated 

randomly, and the search results fell in [0, 1]. Let DR be the deviation rate. Then, the 

algorithm accuracy can be verified by: 

AD =
1

|𝐴|
∑ |(𝐴�̂�(𝓍) − 𝐴𝑖(𝓍))|𝐴𝑖∈𝐴

                             (23) 

where 𝐴 is the search result; �̂� is the search result distributed by the additive noise. 

To verify the accuracy, the Laplace mechanism and CS mechanism were 

contrasted in privacy budget and prediction accuracy, under the privacy budget 𝜖 of 

[0.1, 1], correlation degree threshold 𝑇  of 0.3 and 𝜇  of 0.7. The DRs of the two 

mechanisms are shown in Figure 1 below. It can be seen that the Laplace mechanism 

is, as expected, less accurate than the CS mechanism. This is because the privacy 

budget is only consumed in the correction iteration rounds of the CS mechanism, but 

in every release of search result in the Laplace mechanism. 

 

Figure 1. The DRs of Laplace mechanism and CS mechanism 

T is the threshold that determines whether the search result needs to be corrected 

in iteration. It directly bears on the execution of the correction function and search 
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result. Thus, the relationship between the number of corrections and the threshold T 

was verified under the privacy budget 𝜖 = 1. The results in Figure 2 show that the 

number of corrections decreased with the growth in T. When T was small, the number 

of all update rounds was 9,928; when T increased to 1, the number dropped to 62. As 

shown in Figure 3, the accuracy surged up with the increase of T, reached the 

maximum when T surpassed a threshold, and remained stable ever since. 

 

Figure 2. The relationship between the number of corrections and the threshold T 

 

Figure 3. The effects of threshold T on accuracy 
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7. Conclusions 

The traditional differential privacy mainly focuses on IID datasets, failing to 

ensure the privacy of correlated datasets. To solve the problem, this paper designs an 

algorithm capable of recognizing the differential privacy issue of the correlation and 

providing a data release mechanism for large-scale searches to reduce the loss of 

privacy budget and enhance data validity. The proposed algorithm was proved robust 

and effective through experiments. The future research will further investigate the 

differential privacy preserving of correlated datasets, including but not limited to 

effectively expressing the correlation degree matrix in big data, judging the 

importance of dataset released in each round under large-scale searches, and finding 

ways to improve the effect of the proposed algorithm. 
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