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In this paper, a bid-based dynamic economic dispatch (BBDED) problem is solved in the 

electricity market system under bidding strategies, including wind energy penetration using 

simulated annealing (SA) algorithm. The multi-objective dispatch model allows generating 

companies (GENCOs) and their customers to submit supply and demand bids to a market 

controller known as the independent system operator (ISO) and follow a bidding strategy. 

ISO is responsible for the market clearing and settlement to maximize the social profit and 

benefit for GENCOs and customers during trading periods. To study the effect and 

advantages of wind energy integration in the BBDED problem, the wind energy generation 

is computed using the forecasted wind speeds and included in the dispatch model. In this 

regard, the ISO's dispatch model is formulated as a bilevel nonlinear optimization problem. 

The higher-level is solving the market-clearing with and without wind energy, and the lower 

level is maximizing GENCO's social profit. The proposed SA algorithm is evaluated for 

optimality, convergence, robustness, and computational efficiency tested on an IEEE 30-

bus test system. The simulation results are compared with those found using different 

algorithm-based approaches, considering various constraints like power balancing, 

generator limits, ramp rate limits, and transmission losses. 
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1. INTRODUCTION

Today, large power systems were affected by the integration 

of renewable power supply sources. As industries and 

communities grow, consumer demand for power supply is 

increasing every day. In this regard, both conventional energy 

resources, and renewable energy resources like wind energy, 

represent the primary options available to the government for 

providing electricity to consumers [1]. The wind energy level 

penetrating the electricity market is quickly growing 

worldwide, which is environmentally and economically 

sustainable. In 2018, the wind industry's capacity grew to 591 

GW, increased by 9.6% from 2017 [2]. The deregulation of 

electricity systems leads to significant changes in the way 

electricity is traded. Consumers are autonomous in electricity 

market systems to select their electricity suppliers depending 

on different needs, unlike the monopolized systems. 

Deregulated electricity systems are based on competitive 

electricity markets comprising transactions between suppliers 

and consumers and ensuring policy rules and coordination to 

achieve competition and open access to market participants, 

unlike the monopolized systems. The goal of deregulation is 

to considerably reduce electricity prices by optimizing the 

electricity generation cost supplied to the consumer, which 

maximizes the social profit for the generating companies 

(GENCOs) while respecting the system's constraints, with no 

effect on its efficiency and protection. Wind energy is a 

renewable source that can achieve a high penetration level in 

modern deregulate electricity systems. Wind energy will cause 

additional uncertainties in the transaction due to the variability 

in wind speeds affecting the power system operation. To 

ensure robust wind energy trading in the electricity market, 

forecasted wind speeds, load forecasting, and power 

generation models to optimize market strategies and identify 

uncertainties are essential to ensure system reliability and 

economic benefits for GENCOs and customers [3, 4]. 

Dynamic economic dispatch (DED) is a significant 

optimization problem that studies the impact of wind energy 

integration. It is a highly constrained problem that obtains the 

optimized economic planning of the power generation units to 

satisfy the scheduled load in a specific period, taking into 

account various constraints, like power balance, unit capacity 

limits, and ramp rate limits. The DED problem is becoming 

complex and challenging to solve with the extensive 

incorporation of wind generators because of wind speed's 

uncertain nature [5, 6]. A DED that incorporates wind and 

photovoltaic power that deals with the stochastic and 

unpredictable nature of wind and solar energy generation 

while considering the differences between actual and predicted 

output power to achieve an optimized cost and optimal power 

dispatch is solved using a hybrid heuristic flower pollination 

algorithm with sequential quadratic programming [7]. A 

dynamic environmental economic dispatch (DEED) with wind 

energy penetration is solved using an enhanced multi-

objective differential evolution algorithm (EMODE), which 

uses the superiority of feasible solution (FS) and non-

dominated sorting (NDS) two selection strategies for 

improving the optimization effect [8]. Modeling of wind 
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environment dynamic economic dispatch in power system is 

solved via an OLHBMO meta-heuristic method which is a 

combination between online learning and honey bee mating 

optimization (HBMO) algorithms, two neural networks are 

trained when reached to the predefined threshold by the 

current and previous position of solutions to optimize the 

fitness values [9]. The evolution of the deregulated electricity 

market and the rapid development of variable renewable 

energy resources have developed various electricity market 

models. These market models have become the tools used by 

economists, engineers, and electricity market planners to 

operate and plan market models for efficient electricity 

trading. In modelling the electricity market, fuel source, 

availability, operating cost, and generator constraints are not 

the only factors to be considered but also market operators, 

power bidding, market prices, and, most importantly, market-

clearing, which is performed by the ISO [10]. For competitive 

electricity markets, bi-level optimization operation is used for 

capturing the interactions between the market operator and 

participants. Here, the objective of ISO is to ensure a balance 

between supply and demand. The bi-level optimization 

problem for ISO in its upper level is market-clearing, and the 

lower level is maximizing the social profit for participants 

[11].  

In this regard, the ISO may perform a bid-based dynamic 

economic dispatch model based on the participants' bidding 

strategies to clear the day-ahead electricity market, allowing 

GENCOs to submit in advance supply bids with the lowest 

generation cost seeking for a maximum profit, and satisfying 

customers demand bids. Several researchers have proposed a 

variety of methods and algorithms such as isolation niche 

immune genetic algorithm (INIGA) [12], evolutionary 

algorithm (EA) [13], symbiotic organisms search (SOS) [14], 

multi-echelon (ME) [15], quadratic programming (QP) [16], 

genetic algorithm (GA) [17], competitive swarm optimizer 

(CSO) [18], and the predictor-corrector interior-point 

quadratic programming (PCIPQP) algorithm [19] to solve 

different BBDED problems. This paper aims to solve the 

BBDED problem using the simulated annealing algorithm 

(SA), which mimics the annealing process in metallurgy for 

approximating the global minima and maxima. Therefore, the 

proposed SA is feasible to solve the BBDED problem only if 

it yields optimal solutions using a probability technique that 

accepts and enhances candidate solutions and guides infeasible 

solutions to the feasible space. To study the wind energy 

penetration effect in the BBDED problem and analyse it on 

generation cost and social profit, the wind energy utilized in 

this study is determined according to the forecasted wind 

speeds.  

 

 

2. PROBLEM FORMULATION  

 

The formulation of the BBDED mathematical model is 

presented as a bilevel problem of optimization. The higher 

level is the market-clearing, and the lowest level is the 

maximization of social profit, considering the minimization of 

the generation cost of generators. The objective function, 

including conventional power generators and wind energy 

generators, can be represented by the formula below.  
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where, Bcj(dj,t) and Cgi(pi,t) are the demand and supply bid 

functions of customers j and generator i, respectively; Cwk(pk,t) 

is the bid function of the wind generator k. dj,t is the demand 

bid amount of power for customer j at period t; pi,t is the supply 

bid amount of power for thermal generator i at period t; pw,t is 

the bid amount of wind generator w at period t. Nd is the 

customer's number; Ng is the number of thermal generators; Nw 

is the wind generator number. adj, bdj, and cdj are the bid 

demand function coefficients. agi, bgi, and cgi are the bid supply 

function coefficients; dk is the bid function coefficient of wind 

generator; t is the periods' number.  

 

2.1 Bidding strategies in the electricity market 

 

Bidding strategies can be implemented by setting the power 

capacity and price to be submitted as bids for each generator. 

The bidding strategies are either static or dynamic and 

generally depend on generation supply and the customer's 

demand. Each GENCO submits a supply bid in the electricity 

market, and each customer submits a demand bid to ISO. 

Usually, these bids are linked to an offered price and matched 

by the ISO. There are two components of the objective 

function. The first one is the customer benefit function. To 

achieve maximum benefit, the customer must implement a 

bidding strategy using the price bid coefficients (adj) and (bdj). 

The customers bidding strategy is implemented as High (H), 

Medium (M), and Low (L) bidding strategy according to the 

bid price coefficient. The authors have demonstrated through 

experiments and based on the literature, for high bidding 

strategy, (adj) ≥ 0.09, for medium bidding strategy, (adj) can be 

within the range of 0.05, and for low bidding strategy (adj) ≤ 

0.01. For the bid coefficient (bdj), it is formed using the 

equation 0 < (bdj) < λm, where λm is the market-clearing 

energy price, which can be determined by intersecting the 

GENCOs and customers bid curves [20]. The second one is 

the cost function of generators, which represents the supply 

side. Each GENCO should develop a bidding strategy 

according to the marginal cost to maximize the profit [21]. 

 

2.2 Problem constraints 

 

These constraints are particularly equality, inequality, and 

ramp-rate limits. 

 

2.2.1 Equality constraints 

It is known as the balance of active power flow between 

supply and demand in the power system, and it is given below. 

 

1 1

Ng Nd
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= =
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The calculation of the exact real power loss is complex. 

When developing optimization models that include power loss, 

approximating formulas are often sufficient. One such 

approximation technique is the B-matrix power loss formula 
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shown in (6). The use of the B-matrix approximation avoids 

the need to calculate the loss for each transmission line, as long 

as the structure of the power system remains relatively uniform. 

This approximation is effective for large variations in the 

system load. 

 

0 0 0
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where, Bi,j is the matrix loss coefficient; Bi,0 represents the 

vector loss coefficient; B0,0 represents the constant of loss;  

Loss coefficients formula derivation is based on the 

following four basic elements [22]: (1) The power factor for 

the generator busses remains constant. (2) The voltage angle 

at each voltage-controlled (PV) bus is constant. (3) The 

voltage amplitude at each PV bus is fixed. (4) The load current 

to total load current ratio remains constant. The coefficients 

lose significant precision when the calculations used to derive 

the loss formula are not correct. are violated. The coefficients 

of the polynomial loss equation are determined by the power 

flow solutions. 
 

2.2.2 Inequality constraints 

The conventional or wind generator is designed to produce 

electricity between a maximal and minimal secured range to 

prevent over-or under-generation during load satisfaction.  
 

, min maxi, t i,t i,tp p p   (7) 

 

min maxk,t k,t k,tp p p   (8) 

 

The demand side is also limited between a maximal and a 

minimal power bid to balance with the supply side. 
 

min maxj,t j,t j,td d d   (9) 

 

2.2.3 Ramp-rate limit constraints 

The output of a generator is limited by the ramp-rate limit. 

It represents the generated power variation, whether it 

increases (ramp-up) or decreases (ramp-down). It is therefore 

expressed in the unit of power output by the minute. 

 

( 1)

down up

i i,t i, t iR p p R− −   (10) 
 

 

 

where, Ri
down is the generator's maximal power decreasing 

capacity over a period; Ri
up is the generator's maximal power 

increasing capacity over a period; 

 

2.3 Wind energy  

 

Wind energy is one of the world's renewable energy source 

that has been largely used in the last decade. It has many 

benefits, like low investment cost as well as the absence of 

pollution. However, wind energy varies according to location 

and wind speed availability, leading to great uncertainty 

concerning the power produced. Wind speed has been 

calculated for the desired height according to the equation of 

power law [23].  
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where, Wsh is the wind speed at a specific height h; Ws10 is the 

standard wind speed at the height of 10m; N is the hellman 

coefficient (0.143). 

Wind energy generation varies mainly according to wind 

speeds, the air density, the area swept, and the generators' 

efficiency. The wind energy equation can be stated as follows: 

 

3

h

1
WP = .AD.a.e.Ws

2
 (12) 

 

where, AD is the density of air in kg/m3 (1.225); a is the wind 

generator swept area in m2; e is the efficiency constant of the 

wind generator (0.49); Wsh
3 is the wind speeds in m/s. 

Wind speed is a value that is variable in this equation by 

ignoring minor non-linearities. The function between a given 

wind speed and power output can be represented in the curve 

shown in Figure 1. 

 
 

Figure 1. Simple power curve for wind generator 
 

The figure above shows that no power is produced at wind 

speeds lower than (Vin) or higher than (Vout) the power 

produced at wind speeds between (Vr) and (Vout) is equivalent 

at the wind turbine's rated output, for wind speed from (Vin) to 

(Vr), the power produced is a linear function.  

 

 

3. OVERVIEW OF SA ALGORITHM SOLUTION  

 

Simulated annealing is a high-performance technique 

proposed in the optimization field in 1983 by Kirkpatrick Scott 

[24]. SA technique is based on the similarities between a 

minimization process in solving an optimization problem and 

the cooling of the molten metal. It is based on the annealing 

concept in metallurgy for improving the solid quality by 

searching for a minimum energy state. In the SA technique, 

physical annealing is simulated to find the global or near-

global optimal solution for an optimization problem. A 

parameter T0, known as temperature, is set in this algorithm. 

At higher temperatures, liquid melted metal is slowly cooling 

down to a low temperature until it solidifies. The temperature 

level in the SA technique is similar to the number of iterations 

when solving an optimization problem. For each iteration, a 

solution candidate is then generated. The solution will be 

accepted and then utilized to generate a new candidate solution 

if it is a better one. In the case of a deteriorated solution, it will 

be accepted when its acceptance probability Pr (Δ) is higher 

than a random number generated between (0,1). The 

acceptance probability is expressed as follows:  
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where, Δ is the level of deterioration from the solution that is 

new to the current solution, and T0 is the temperature level for 

generating this solution. Accepting a deteriorated solution in 

the process described above allows the simulated annealing for 

"jumping" out of the optimal local solution searching for the 

optimal global solution. In generating a new solution, the 

perturbation will be caused to the current one. The level of 

perturbation depends on the temperature at every iteration. The 

process of generating and testing the candidate solutions is 

performed for a given trial number to achieve the thermal 

equilibrium for every temperature. The SA technique, with a 

slowly cooling level, generally has a greater ability to search 

for the optimum solutions than a quickly cooling level. The 

following linear function controls the temperature decreasing 

iteratively [25]. 

 

0vT T=  (14) 

 

where, v is the number of iterations and ⍺ the temperature 

cooling factor, T0 represents the initial temperature, randomly 

chosen. The iteration process is over if there is no significantly 

improved solution after a predefined iterations number. It also 

can be finished when the maximal iteration number is attained. 

The proposed SA approach is presented in a flowchart shown 

in Figure 2. 

 

 
 

Figure 2. The flowchart of the SA algorithm 

 

 

4. NUMERICAL RESULTS AND DISCUSSIONS 

 

The SA algorithm is implemented in MATLAB and used 

for solving the BBDED problem applied on an IEEE 30-bus 

test system, including 6 thermal units, 1 wind turbine, and 2 

customers connected to 41 transmission lines. Each unit 

represents a generating company.  

The generators' cost coefficients and minimum and 

maximum supplied power of GENCOs represent the supply-

side bidding strategy. The customers' bids are submitted with 

a low strategy, medium strategy, and high strategy to represent 

the demand-side for two trading periods. The parameters of the 

proposed SA algorithm are presented in Table 1. 

 

Table 1. Parameters of the simulated annealing algorithm 

 
Parameters Constant values 

T0 300 °C 

α 0.9 

Maximal trials 10.e3 

TF 0.10 °C 

 

Two cases are studied in this paper without and with wind 

power integration where GENCOs and customers bid price 

and quantity limits are presented in Table 2 and Table 3, 

respectively, and taken from [21].  

 

Table 2. Bid data of generators 

 

Gen 
cgi 
($) 

bgi 
($/MWh) 

agi 
($/MWh2) 

Pmin 

(MW) 

Pmax 

(MW) 

Ri
down 

(MW/h) 

Ri
up 

(MW/h) 

G1 0 2.0 0.00375 50 200 65 85 

G2 0 1.75 0.01750 20 80 12 22 

G3 0 1.0 0.00625 15 50 12 15 

G4 0 3.25 0.00834 10 35 08 16 

G5 0 3.0 0.0250 10 30 06 09 

G6 0 3.0 0.0250 12 40 08 16 

 

Table 3. Bid data of customers 

 
 Customer 1 

Low/Medium/High 

Customer 2 

Low/Medium/High 

adj ($/MWh2) -0.06/ 0.07/0.1 -0.08/0.05/0.09 

bdj ($/MWh) 20 15 

cgi ($) 0 0 

Period 1 (Dmin to 

Dmax) (MW) 

100 to 150 50 to 100 

Period 2 (Dmin to 

Dmax) (MW) 

20 to 70 100 to 200 

 

Transmission losses are considered in both cases and 

represented using B-coefficients as follows [26]: 

 

3

0.200 0.010 0.015 0.005 0.00 0.030

0.010 0.30 0.020 0.001 0.012 0.010

0.015 0.02 0.100 0.01 0.010 0.008
1

0.005 0.001 0.01 0.150 0.006 0.050

0.000 0.012 0.010 0.006 0.250 0.020

0.03 0.010 0.008 0.050 0.020 0.210

ijB e −

− 


−
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4.1 Case 1: BBDED without wind energy integration 

 

In this case, the BBDED problem is solved in the absence 

of wind energy under bidding strategies in two trading periods. 

GENCO's and customers' bid data and the transmission loss B-

coefficients are taken in the simulated annealing algorithm as 

inputs.  
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The algorithm finds the optimized values of both supply and 

demand bidding quantities and calculating the generation costs, 

customers' benefits, and social profits. In low, medium, and 

high bidding strategies, the coefficients (adj) are assumed to be 

-0.06, 0.07, and 0.1 respectively for customer 1 and -0.08, 0.05, 

and 0.09, respectively for customer 2. The bidding coefficients 

(bdj) are taken 20 for customer 1 and 15 for customer 2 in all 

bidding strategies. In period 1, the customer 1 load demand is 

between a minimal of 100 MW and a maximal of 150 MW. 

The customer 2 load demand is between a minimal of 50 MW 

and a maximal of 100 MW. In period 2, the customer 1 demand 

is between a minimal of 20 MW and a maximal of 70 MW and 

the customer 2 demand is between a minimal of 100 MW and 

a maximal of 200 MW. The problem is treated as multi-

objective, the minimization of generation cost, and the 

maximization of the social profit simultaneously. Table 4 and 

Figure 3 present the optimal dispatch results for both periods 

after the market-clearing under the three bidding strategies. 

From Table 4, it can be seen for low bidding strategy that 

when the customers' demand decreased in period 2 with 

176.83 MW compared to period 1 with 213.46 MW, the 

generation cost decreased from 520.65 $ to 486.1 $ by 34.55 

$ which affected the customers benefit that reduced from 

2285.64 $ to 1795.43 $ by 490.21 $. As a consequence, the 

social profit is decreased from 1764.98 $ to 1309.21 $ by 

455.77 $. In medium bidding strategy, the customers' demand 

is increased in period 2 with 270 MW compared to period 1 

with 250 MW, the generation cost is increased from 639.18 

$ to 697.07 $ by 57.89 $, and the customers benefit also 

increased from 6575.00 $ to 6743.00 $, and that has affected 

the social profit which is maximized from 5935.81 $ to 

6045.92 $ by 110.11 $. In the high bidding strategy, the 

customers' demand is also increased from period 2 to period 1. 

The generation cost also increased from 639.08 $ to 696.91 

$ by 57.83 $ which is the same as in medium bidding strategy, 

but customers benefit increased significantly from 7650 $ to 

8490 $ which has affected the social profit much more which 

is maximized from 7010.91 $ to 7793.08 $ by 782.17 $. Figure 

3 resume the simulation results and shows that the total social 

profit is maximized in the case of high strategy with 14803.99 

$, due to the higher received benefit with 16140 $ when 

minimizing the generation cost to 1335.99 $ comparing to 

medium and low bidding strategies where the customer can 

submit the maximum of his power demand due to the higher 

received benefit. Figure 4 presents the total social profit 

convergence under low, medium, and high bidding strategy. 

The proposed method is compared for evaluation and 

validation to other known methods. Table 5 presents the 

simulation outcomes resulting from the SA algorithm 

compared to PSO, DE, SOS, and GA for IEEE 30-bus test 

system. 

 

Table 4. Optimal bid-based dispatch results under bidding strategies 

 
 Low Bidding Medium Bidding High Bidding 

Parameters Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 

P1(MW) 88.81 50.01 91.79 112.56 91.92 112.89 

P2(MW) 58.41 80.00 80.00 80.00 80.00 80.00 

P3(MW) 37.01 17.39 50.00 50.00 50.00 50.00 

P4(MW) 10.06 10.00 10.00 10.26 10.00 10.02 

P5(MW) 10.06 10.00 10.06 10.00 10.06 10.01 

P6(MW) 12.00 12.01 12.19 12.13 12.06 12.03 

Total Generation (MW) 216.38 179.43 254.05 274.95 254.06 274.97 

Customer 1 132.01 70.00 150.00 70.00 150.00 70.00 

Customer 2 81.45 106.83 100.00 200.00 100.00 200.00 

Total Demand (MW) 213.46 176.83 250.00 270.00 250.00 270.00 

System losses (MW) 2.92 2.60 4.05 4.95 4.06 4.97 

Generation cost ($) 520.65 486.21 639.18 697.07 639.08 696.91 

Customers benefit ($) 2285.64 1795.43 6575.00 6743.00 7650.00 8490.00 

Social profit ($) 1764.98 1309.21 5935.81 6045.92 7010.91 7793.08 

 

 
 

Figure 3. Comparison of results under bidding strategies 

 
 

Figure 4. Social profit convergence characteristics 
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Table 5. Results comparison with different approaches 

 

Bidding Strategies Approaches Total Gen cost ($) Total Customers benefit ($) Total Social profit ($) 

Low Bidding Strategy 

DE [20] 989.72 4101.3 3111.50 

PSO [20] 1851.0 3483.8 1632.80 

SOS [27] 901.6 4101.3 3199.60 

GA [17] 1021.95 4073.37 3051.41 

SA 1006.86 4081.07 3074.19 

Medium Bidding Strategy 

DE [20] 1431.5 13318 11886.50 

PSO [20] 1928.2 12141 10213.00 

SOS [27] 1369.9 13318 11948.00 

GA [17] 1337.63 13318 11980.35 

SA 1336.25 13318 11981.73 

High Bidding Strategy 

DE [20] 1431.5 16140 14708.5 

PSO [20] 1793.1 15570.5 13777 

SOS [27] 1369.2 16140 14770.7 

GA [17] 1336.43 16140 14803.55 

SA 1335.99 16140 14803.99 

 

It is noticed from Table 4 that the SOS algorithm has 

performed better than the compared algorithms by achieving 

the maximum total social profit with 3199.60 $ which is higher 

than PSO, DE, GA, and the proposed SA algorithms by 1566.8 

$, 88.1 $, 148.19 $, and 125.41 $, respectively just for low 

bidding strategy. On the other hand, for a medium bidding 

strategy, the proposed SA algorithm has achieved the 

maximum total social profit with 11981.73 $ which is higher 

than PSO, DE, SOS, and GA by 1768.73 $, 95.23 $, 33$.73$, 

and 1.38 $ respectively. As a consequence of a higher received 

customers benefit and a minimized generation cost compared 

to other algorithms. In the high bidding strategy, the proposed 

SA has outperformed the other algorithms by achieving a 

maximal profit of 14803.99 $ which is higher than PSO, DE,  

SOS, and GA by 1026.99 $, 95 $, 33.29 $, and 0.44 

$ respectively due to the higher obtained customers benefit and 

the minimized generation cost compared to the other 

algorithms. 

 

4.2 Case 2: BBDED with wind energy integration 

 

To study the wind energy integration effect on the BBDED 

problem, two results are compared, the generation cost and the 

social profit of participants, to show the wind energy 

integration's economic impact. The BBDED problem is solved 

with wind energy integration. The case of the high bidding 

strategy is considered for the investigation of the effect of 

wind energy injection during the electricity market trading 

periods. The wind energy generator output is computed using 

the Eq. (12) considering a linear wind speed variation from 

4.17m/s to 6.67 m/s, which is forecasted in a short duration (4 

hours) for the height of 10 m by using the historical forecasted 

wind speed data set from a meteorological wind station [28, 

29]. The level of wind energy penetration is computed 

according to the maximum wind energy (Pw = 64.865 MW) 

injected in the system with wind speed variation and estimated 

with 4 levels: 25 %, 50 %, 75%, and 100% Pw [30], as given 

in Table 6. 
 

Table 6. Forecasted wind speed data 

 
Hour Average wind 

Penetration level 

(%) 

Wind speed at 

10 m height 

(m/s) 

Wind 

energy 

(MW) 

1 25 4.17 15.835 

2 50 5.28 32.185 

3 75 6.11 49.965 

4 100 6.67 64.865 

Table 7. Results with wind power variation under high bidding strategy 

 
Pw (%) 25 % 50 % 75 % 100 % 

Parameters Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 

P1(MW) 75.55 95.63 58.57 79.07 50.14 60.81 50.04 50.00 

P2(MW) 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 

P3(MW) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 

P4(MW) 10.00 10.44 10.08 10.19 10.03 10.00 10.02 10.04 

P5(MW) 10.05 10.12 10.11 10.05 10.12 10.23 10.02 10.01 

P6(MW) 12.02 12.16 12.00 12.07 12.03 12.01 12.06 12.00 

Total Generation (MW) 253.47 274.21 252.97 273.59 252.77 273.03 252.76 272.76 

Customer 1 150.00 70.00 150.00 70.00 150.00 70.00 150.00 70.00 

Customer 2 100.00 200.00 100.00 200.00 100.00 200.00 100.00 200.00 

Total Demand (MW) 250.00 270.00 250.00 270.00 250.00 270.00 250.00 270.00 

System losses (MW) 3.47 4.21 2.97 3.59 2.77 3.03 2.76 2.76 

Generation cost ($) 607.00 663.10 577.99 629.97 563.81 596.98 539.08 578.51 

Customers benefit ($) 7650.00 8490 7650.00 8490.00 7650.00 8490.00 7650.00 8490.00 

Social profit ($) 7042.24 7826.89 7072.00 7860.02 7086.18 7893.01 7110.91 7911.48 
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The wind generator's cost coefficient is calculated from the 

equivalent coefficient of the conventional unit, with 37.55% 

[31, 32]. The bid-based dispatch was carried out for each wind 

speed, considering the discussed constraints in Eq. (5)-(10). In 

this case, two outcomes are simultaneously optimized as 

objective functions, minimizing the total generation cost and 

maximizing the total social profit with the wind speed/energy 

variation. The customers' load demand is kept as in the 

previous case. The simulation results are illustrated in Table 7, 

Figures 5 and 6 after the trading periods. 

 
Figure 5. Total generation cost with wind power penetration 

 
Figure 6. Total social profit with wind energy penetration 

 

From Table 7, Figure 5, and Figure 6, it is noticed that, when 

the injection of wind energy generation is increased, the 

thermal generators' power is continuously reduced, which 

leads to the minimization of total generation cost. If the wind 

generator works with 25% of its power injection, we can save 

1270.1 $ of total generation cost with a 14869.13 $ of total 

social profit. If the wind generator works with 100%, we can 

save 1117.59 $ of the total generation cost with 15022.39 $ of 

the total social profit. The customer benefit is kept higher and 

not affected by wind energy injection than system losses, 

which are decreased in all cases. Therefore, social profit is 

significantly maximized due to the minimization in the 

generation cost of thermal generators when wind energy is 

increased, as shown in Table 8, which compares the two study 

cases outcomes. 

 

Table 8. Results comparison of two study cases 

 

Case Without wind 

energy 

With wind 

energy 

Total Generation cost ($) 1335.99 1117.59 

Total Customers benefit ($) 16140 16140 

Total Social profit ($) 14803.99 15022.39 

System losses (MW) 9.03 5.52 

 

Table 8 shows that the BBDED solution using the SA 

algorithm, including wind energy, reduces thermal generators' 

output, transmission system losses, and the total cost of 

generation, which leads to a maximum social profit for the 

generating companies and an improved benefit for the 

customers. Figure 7 depicts the convergence curves of the 

proposed SA algorithm solution for both study cases. 

 

 
Figure 7. Social profit convergence curve comparison with 

and without wind energy 

 

 

5. CONCLUSIONS 

 

In this paper, a BBDED, including wind energy using an 

efficient SA algorithm is solved. An IEEE 30-bus test system 

with 6 units has been used to test and validate the proposed 

algorithm under various complex constraints such as power 

balance constraint, transmission line losses, generation limits, 

and ramp rate limits which are satisfied with the proposed SA. 

Fast convergence is achieved by treating the solutions with a 

higher precision probabilistic technique. Thus, the SA 

algorithm presented and implemented in this paper produces 

the best possible solutions for the BBDED problem with wind 

energy integration. In the first part of this paper, a comparison 

between bidding strategies is made, and it is shown that social 

profit is maximized when GENCOs and customers submit bids 

under a high bidding strategy, while the SA algorithm has 

succeeded in minimizing the generation cost and maximizing 

the social profit effectively compared to other heuristic 

algorithms. In the second part, the effect of wind energy is 

studied in the dispatching model. The BBDED with wind 

energy integration shows a better performance in minimizing 

the generation cost and system losses, leading to significantly 

maximized social profit, confirming the benefits of integrating 

renewables into electrical systems.  

Future work includes the integration of flexible alternating 

current transmission (FACT) devices in the BBDED problem 

in an integrated wind-thermal power system. 
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