
Horizontal Scaling for Containerized Application Using Hybrid Approach

Mahendra Pratap Yadav*, Gaurav Raj, Harishchandra A. Akarte, Dharmendra Kumar Yadav

Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India

Corresponding Author Email: 2015rcs52@mnnit.ac.in

https://doi.org/10.18280/isi.250601 ABSTRACT

Received: 3 October 2020

Accepted: 5 December 2020

Cloud computing is a paradigm to provide services to end-users through the Internet. The

availability of services to end-users is dependent on various factors such as the availability

of computing resources as well as the number of users to access those services. To manage

the real-time fluctuating workload cloud providers use elasticity mechanisms. Elasticity is

one of the important characteristics of cloud computing that dynamically allocates

computing resources to manage the fluctuating workload. The failure of allocation/de-

allocation of computing resources at the right moment leads to SLA violation, degradation

of services performance, maximum power consumption, minimum throughput, and

maximum response time. To address these challenges, we have proposed a hybrid approach

to perform horizontal elasticity. The proposed approach uses both reactive and proactive

approaches for provisioning/de-provisioning of computing resources. The simulation

results of the proposed model show that performance of system has improved in terms of

CPU utilization, response time, and throughput.

Keywords:

cloud computing, elasticity, auto-scaling,

machine learning, ARIMA, support vector

machine

1. INTRODUCTION

In the current era, cloud is an emerging technology that

provides on-demand resources for varying requirements on the

basis of a lease. There are various cloud platforms and virtual

data-centers, which provide elasticity of services in order to

handle the rapidly changing workload [1]. Elasticity is the

ability of a system to increase /decrease resources to adopt the

load variation in real-time. It is a dynamic property of cloud

computing. There are two advantages of service elasticity, first

is Quality of Service (QoS) which is achieved by optimizing

certain parameters such as response time, CPU load, numbers

of requests handled in a second, etc. There is an agreement

between cloud resource providers and clients to ensure QoS

using Service Level Agreements (SLAs). The second

advantage is that it reduces the overall power consumption by

preventing the system from over-provisioning of resources.

Over provisioning means, more resources have been allocated

than required to handle peak loads. Elasticity mainly involves

scalability and efficiency. Efficiency is about the percentage

of utilization of available computing resources while scaling

is performed. The lower the amount of resources needed the

better is the efficiency. Scalability is the property of a machine,

which enables it to handle the more workload by adding more

resources.

Cloud providers use a virtualization-based approach in

order to host their services. Virtualization [1, 2] refers to the

act of creating a virtual resource, including computer hardware

platforms, storage devices, and computer network resources.

Virtualization can be implemented with the help of

hypervisors and containers [3]. In comparison to hypervisors,

containers are lightweight software, which have quick start or

stop time and less overhead than virtual machines. Containers

allow a software developer to pack up an application with all

of its requirements, such as libraries and other dependencies,

and it can be shipped out as one package [2, 3]. Auto scaling

can be performed in two ways, which are reactive and

proactive approaches [4]. In reactive approach, one or more

threshold(s) can be used which need to be optimized such as

response time, CPU load, memory usage, etc. After a certain

interval, we find the resources exceeding this threshold and

based on that, resources can be increased or decreased. On the

other hand, in proactive scaling, we predict the workload of

upcoming time interval by applying some machine learning or

deep learning algorithms. After the prediction of workload, we

find the amount of resources needed to manage the load. While

using proactive approaches care should be taken for not

performing premature scaling operation. Premature scaling

means, just after scaling down, flood of requests arrives and

we have to scale up the resources again [5]. Therefore,

premature scaling will add overhead and will not be effective

from cloud provider’s point of view.

Auto-scaling can be more efficient if we use combination of

reactive and proactive approaches [4, 6]. Various proactive

approaches can be used to analyze the time-series data such as

AR (Auto Regressive), MA (Moving Average), ARMA (Auto

Regressive Moving Average), ARIMA (Auto-Regressive

Integrated Moving Average), etc. in order to predict the future

workload [4, 7]. The future workload can be transferred over

various machines through load balancer. The load balancer

uses different load balancing algorithms to distribute the

workload dynamically and uniformly across all the available

nodes. This improves the overall system performance. Cloud

load balancing is defined as the method of splitting workloads

and computing properties in a cloud-computing environment

[8, 9].

In this article, we have discussed a hybrid algorithm that

uses a reactive model (threshold-based policy) and time series

forecasting based proactive model for the provisioning and de-

provisioning of computing resources based on workload in

Ingénierie des Systèmes d’Information
Vol. 25, No. 6, December, 2020, pp. 709-718

Journal homepage: http://iieta.org/journals/isi

709

mailto:2015rcs52@mnnit.ac.in
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250601&domain=pdf

real time. The reactive approach is used for scaling out the

running containers when the workload increases and proactive

approach (Support Vector Regression (SVR)) for scaling in

the containers when the workload decreases. The experimental

results of proposed hybrid approach are compared with time

series forecasting models (ARIMA, and SARIMA). Based on

comparisons, we have found that the performance of proposed

hybrid approach is better than other two models in terms of

horizontal scaling, average CPU utilization and response time.

The rest of paper is organized as follows: In section 2,

motivation for the proposed work has been described. In

section 3, background and related technology have been given.

Section 4 presents the literature review for the work. In section

5 solution of the problem has been proposed. In section 6

experimental setup and result analysis have been done and the

last section (i.e. Section 7) concludes the work along with

future directions.

2. MOTIVATION

We have observed in many cases that the resources on the

cloud system have been underutilized and some requests from

the users are dropped. However, the request would have been

serviced, if there had been scaling of resources based on the

demand of the users. In addition, it would be very tedious to

scale the resources manually hence; we thought to scale up the

resources automatically through a scaling algorithm. We have

used horizontal scaling to handle workload with the help of a

load balancer. We have tried to search many metrics regarding

running containers and requests that are available to us that can

be potentially used to tell the state of the system. But, we found

that the response time produced by logs of load balancer could

be a very good metric to gain insight into the current load on

the system. The reactive model is used basically to quickly

scale-out in case of increasing workload. The proactive model

is primarily used to scale-in since it uses past data to forecast

future workload. Hence, we decided to scale horizontally

according to the response time of live requests to the web

server.

3. BACKGROUND AND RELATED TECHNOLOGY

3.1 Docker

Docker is an open software, which provides centralized

platform to execute an application. Docker wraps software

components into a complete standardized unit, which contains

everything required to run it i.e. runtime environment, tools or

libraries [10]. It guarantees that the software will always run

as expected. It provides the facility to run an application in an

isolated environment, which is called container. We can run

multiple containers simultaneously on a given host. It is

lightweight as compared to hypervisors, so it starts instantly

and uses less RAM. Docker is secure by default because each

container is isolated from one another. Docker works as a

client-server architecture. The Docker-daemon (server)

receives the commands from the Docker client through CLI or

rest APIs. Docker client and server can be present on the same

host machine or different hosts.

3.2 Docker swarm

A Docker swarm contains a group of systems, which are

running Docker and joined to make a cluster. It is a tool for

container Orchestration. Docker swarm is used to do health

check of every running container, ensure containers are upon

every system, scaling in or out the containers depending on the

upcoming load, and adding updates in the containers. These

above tasks are difficult to perform manually. Orchestration

means managing and controlling multiple Docker containers

as a single service. Docker Swarm, Kubernetes and Apache

Mesos are the tools available for orchestration. Containers in

a swarm are called nodes. Some nodes are made manager and

some are made workers. The manager node has total control

on the swarm created. The manager node assigns units of work

called tasks to worker nodes. We use Docker swarm to easily

use utilities for scaling up and down as the algorithm decides

the required number of containers [10].

3.3 HAProxy

HAProxy stands for High Availability Proxy, which is used

as a TCP/HTTP load balancer and provides proxying solution

[11, 12]. It acts as a TCP proxy that can accept a TCP

connection from a listening socket and then connect to a server

which allows the traffic to flow in both directions. It also acts

as an HTTP reverse proxy, which receives HTTP requests on

a listening TCP socket and then passes these requests to

servers using different connections. Figure 1 shows the basic

architecture of HAProxy load balancer.

Figure 1. HAProxy configuration

In this article, HAProxy acts as a server load balancer,

which is used for balancing the load of TCP connections and

HTTP requests. It spreads various requests across multiple

servers in order to optimize resource usage, maximize

throughput, avoid overloading of any server and minimize

response time. When the Tsung Benchmarking tool generates

the workload it gets transferred over the load balancer. For this,

we have used the HAProxy load balancer. The load balancer

transfers the incoming request over the server. The load

balancer stores all the logs of incoming request. This log data

will be used in proactive approach to perform the scale in

operation. There are various algorithms available in HAProxy

load balancer namely: Round robin, least connection, and

source IP for balancing the load.

By default, HA Proxy balances the requests in a round robin

manner between the containers hosting the server. It only

requires the HAProxy executable and a configuration file to

run. It is highly recommended to have a rsyslog daemon for

logging and the configuration files are parsed before starting

in order to bind all the listening sockets. Once HA Proxy is

started, it processes the incoming connections, periodically

710

checks the server’s status and exchanges information with

other HAProxy nodes. The processing of incoming

connections is the most complex task as it depends upon the

configuration possibilities and the various steps are as follows

[11]:

1. It accepts the incoming connections from listening

sockets that belong to a configuration entity known

as ‘frontend’ and it may refer to one or multiple

listening addresses.

2. It applies the frontend-specific processing rules to

these connections.

3. It further passes these incoming connections to

another configuration entity known as a “backend”,

which contains the list of servers and the load

balancing strategy for this list of servers.

4. It applies the backend specific processing rules to

these connections.

5. It decides which server to forward this connection,

according to some load balancing strategy.

6. It applies the backend-specific processing rules to the

response data.

7. It also applies the frontend-specific processing rules

to the response data.

8. Finally, it sends a log to the rsyslog server about what

happened in fine details.

3.4 Tsung benchmarking tool

We have used Tsung [13] for load testing of the system. The

programming language used by Tsung, is Erlang. It is used for

performance testing of a website, which is important for the

success of any website. It is also an important tool because

certain business sites have suffered serious downtimes when

they have a large number of visitors. If they use this tool before

their website or application deployment then they can check

the tolerance of their websites for large number of loads.

Tsung benchmarking tool has the following features:

1) High performance: It can simulate huge number of

simultaneous users.

2) Distributed: It can work for cluster scenario.

3) OS Monitoring: It can manage CPU, memory and

network traffic.
4) XML configuration system: Complex user’s scenarios

are written in XML file.

Tsung Benchmarking Tool has been used to generate the

load over the server. The tolerance of the proposed approach

is that the system does not go under load or overload. If it does,

they demand extra computing resources to manage the

workload. The additional computing resource is namely CPU.

The resource allocation or de-allocation is depended on the

predefined upper and lower threshold values. The upper and

lower predefined threshold values of computing resources are

85 percent and 20 percent, respectively.

4. RELATED WORK

In this section, work related to the recourse provisioning and

de-provisioning to manage the fluctuating workload for time

series data has been studied. Along with time series data

forecasting methods, many researchers have proposed an auto-

scaling mechanism based on many different strategies, namely

threshold-based or rule-based, control theory, reinforcement

learning, and queuing theory [6, 8, 14].

Al-Dhuraibi et al. [14] have presented a literature survey on

elasticity in cloud computing. The authors present the survey

for VMs and container-based elasticity, which has highlighted

the basic taxonomy of elasticity. This survey is divided into

three segments; the first define elasticity and related concepts

such as scalability and efficiency. They presented the extended

classification of elasticity based on the configuration, scope,

purpose, mode, policy, method, provider, and architecture,

which will be used to obtain different aspects. The third

presented the existing technology that is related to the

container. The authors also discussed the open issues and

research challenges about container elasticity. The authors

pointed different topics such as interoperability, granularity,

resource availability, a hybrid solution, start-up time,

threshold definition, prediction estimation error, an optimal

trade-off between the user’s requirement and provider’s

interests, a unified platform for elastic application and

evaluation methodology. They also presented the research

challenges about container-based elasticity such as monitoring

containers, container-based elasticity, combined elasticity

between VMs and containers.

Al-Dhuraibi et al. [15] presented a reactive approach that is

rule-based. This approach is used for vertical elasticity of

container with the help of ELASTICDOCKER. The

ELASTICDOCKER is an auto-scaler that is used to adjust the

container computing resources like memory and virtual CPU

cores based on workloads. The upper and lower threshold

values of a container are adjusted according to different

experimentation values, and then one of them, which has the

least response time, is chosen. The authors have allocated/de-

allocated the computing resources (memory and CPU) to a

container in a fixed manner. For example, when container

memory utilization has a value greater than the upper bound

of hits, then 256 Mb of memory is added to the container by

the auto-scaler. On the other hand, when the container memory

utilization is lower than the threshold, the auto-scaler will

decrease 128 Mb of memory. For de-provisioning, an auto-

scaling step is used so that there is no unexpected interruption

in the application's functionality when it is running. In addition,

the authors also do a live process migration from a hosted

machine to another machine when the resizing of a container

is not possible on the host machine.

Al-Dhuraibi et al. [16] have presented to coordinate the

container as well as virtual machine for vertical elasticity.

Authors have performed an auto-scaling mechanism for

containerized applications so that their computing resources

can be adjusted at both the container and VM levels with an

elastic controller's help according to the workload. This

controller directly modifies the container file system, namely

cgroup to execute the scaling mechanism (scaling up/down).

This scaling mechanism is executed based on the average

utilization of CPU or memory over a fixed interval of time and

compared it with its upper/ lower thresholds (70% 90%) value.

When the value after calculation reaches the threshold or the

logical conditions are met, the value of resources increases or

decreases by the controller using the values based on a

predefined rule. For example, suppose if the average memory

consumption of a container is greater than the upper threshold

for the last 16 seconds, memory size is increased to 256 MB

by the controller. It waits 10 seconds before accomplishing the

next scaling action. The proposed elasticity controller for

container vertical make it up to 18.34% and vertical elasticity

controller for VM makes it up to 70%. The proposed strategy

711

also outperforms horizontal elasticity by 39.6%.

Rule-based auto-scaling mechanisms are implemented in

the reactive approach. Different cloud organizations and their

platforms (such as Amazon EC2, Microsoft Azure, RightScale,

Docker, Open Stack, and OpenNebula [17]) use the reactive

approach to provide the computing resources to end-users.

Cloud providers define their scaling policies based on different

computing resource metrics to perform scale-up or down a

machine's resources. In the rule-based scaling approach, the

trigger action can be performed on a threshold value, either the

upper threshold or lower threshold value. The trigger action

can be performed when the selected metric is over (or under)

the specific threshold for a certain time interval period. The

trigger action can request auto-scalar to add or remove a

certain amount of computing resources from the physical

infrastructure to a machine. Some academician has worked

specific improvements for threshold-based technique, for

example, Hasan et al. [18] have implemented their auto-

scaling policies by considering the four threshold values. If the

auto-scaling strategy uses two thresholds value, the auto-

scaling perform finer decision. Besides the rule-based auto-

scaling mechanism, many researchers have proposed an auto-

scaling mechanism with control theory concepts. They have

been implemented through a controller. The controller is

responsible for maintaining the system performance at a

specific level with a control input. Maximum control-based

systems use the reactive mechanism.

DoCloud [19] provides an auto-scaling platform for an

elastic service. It finds out the number of containers required

according to the dynamic workload. It uses both reactive and

proactive approaches for auto-scaling, where the reactive

approach is used for scaling-out, and a proactive approach is

used for scaling-in the number of containers. In the reactive

approach, the threshold-based method is done by comparing

the CPU utilization of each container with a threshold value,

and in the proactive approach, ARMA (Auto Regressive

Moving Average) model is used for time series forecasting of

the workload and then convert it into the required number of

containers. It uses a hybrid approach, i.e., reactive as well as

proactive approaches, to avoid a premature scale-in operation,

which causes oscillations in the number of containers. The

threshold-based mechanism is a reactive auto-scaling

algorithm that enables users to define scaling up and scaling

down policies or rules based on different metrics. These rules

are defined as the lower and upper threshold for selected

metrics.

There are several auto-scaling mechanism proposals based

on the concept of control theory [20]. Most control systems are

based on reactive mechanisms. They usually implement a

controller that is responsible for maintaining the output of the

system. A controller has been implemented for maintaining the

system output at the desired level. The feedback controller

system [18, 21, 22] has the input at the desired level by

provisioning or de-provisioning resources. Another work for

auto elasticity was HPA (Horizontal Pod Autoscaler) [23],

which scales the number of containers that serve a given

application when the average CPU consumption by containers

is greater than the CPU average threshold value. This auto-

scaler is implemented as a control loop where it periodically

queries the CPU utilization to create a sufficient number of

containers (pods).

Container Resource Utilization Prediction Algorithm

(CRUPA) [24] is also another auto-scaling method. This

method used the ARIMA model for predicting the CPU

utilization and correspondingly to perform scaling of the

resources. It performs better than a threshold-based approach,

but the identification of parameters is a time-consuming task.

Also, it is not efficient to handle the oscillations in the

workload. In this paper, we have proposed an algorithm for

load balancing, i.e., Hybrid algorithm which uses both reactive

as well as proactive approach.

The proposed approach is different from the threshold-

based approach because our algorithm can efficiently handle

the oscillation mitigation (due to the use of a proactive

approach also), but this approach can cause sudden

provisioning or de-provisioning of the resources based on

workload. Our proposal is different from DoCloud because

DoCloud uses only the ARMA model for predicting the

workload, but we have used ARIMA and SVR models also

and then presented the comparison between the scaling results,

response rates, and CPU utilization. Our proposal is different

from the control system approaches because they are also

reactive approaches, and hence the problem of oscillation

mitigation will occur there. Our proposal is different from

HPA because HPA performs CPU consumption measurements,

and our algorithm also uses the CPU consumption. Still, along

with this, it also uses a predictive method for scaling, which is

not available in HPA. CRUPA performs CPU utilization

prediction, but our algorithm performs workload prediction,

and CRUPA performs sudden scaling of resources based on a

proactive approach but our algorithm uses a reactive approach

for scale-out and proactive approach for scale-in only when

the system becomes stable.

5. PROPOSED SOLUTION

5.1 Time series forecasting

Time Series [7, 25] data are experimental data observed at

various point in time. For example, any product like soap,

clothes, etc. has sales per day. Time Series data has many

characteristics like seasonality, trend and noise. Forecasting is

simply predicting the future data based on current and past

data. ARIMA (Auto Regressive Integrated Moving Average)

is one of the methods, which can be used for the forecasting.

In an ARIMA model, three parameters that are used to help

model the major aspects of a times series [25]: Seasonality(p),

trend(d), and noise(q).

• Autoregressive (p): Time series data of past time

points can have impact on current and future time

data. The ARIMA model to predict current and future

values uses this. ARIMA uses a number of lagged

observations of time series to forecast observations.

• Integrated (d): The time series is considered

nonstationary due to the presence of trend in any time

series. This property reduces seasonality from a time

series.

• Moving Average (q): Moving average reduces time

series non-determinism or random movements.

For the simulation of ARIMA model, three parameters,

namely seasonality (p), trend (d), and noise (q) has been used.

We have to fit the ARIMA (0, 1, 1) model. This sets the lag

value to 0 for auto-regression; the ARIMA model's difference

order is 1, which makes the time series stationary, and uses a

moving average model of 1.

The mathematical equation is used by ARIMA model is [4]:

712

y(t) = µ+φ1yt−1+......+φpyt−p−θ1et−1−......−θqet−q (1)

where, µ is a constant, φ terms are the lagged values of y (AR

term), and θ terms are lagged values of error (MA term). There

is also an enhancement of ARIMA model, which is dependent

on the seasonality of the data, that is known as Seasonal

ARIMA (SARIMA). Seasonality means the changes in the

data that forms a regular pattern and keeps repeating itself after

fixed time interval. SARIMA incorporates both seasonal and

non-seasonal factors like a multiplicative model. A seasonal

ARIMA model is formed by including additional seasonal

terms in the ARIMA […]. The seasonal part of the model

consists of very similar words to the model's non-seasonal

components, but they involve backshifts of the seasonal period.

To configure SARIMA, it requires different hyper parameters

for both the series's trend and seasonal elements [26, 27]. For

the simulation we have used SARIMA with order (1, 1, 1) and

seasonal order (0, 0, 0, 12).

Another important time series-forecasting model is SVR

(Support Vector Regression). Support Vector Regression [4,

28] is a regression model, which uses same principles as SVM

(Support Vector Machine). Following are the important

parameters of SVR:

• Kernel: A Kernel helps us to find a hyper plane in

the higher dimensional space without increasing the

computational cost.

• Hyper plane: This is separation line between two

classes of data. We are going to define it as the line

that will help us to predict target value or continuous

value.

• Boundary Line: There are two lines other than

Hyper Plane, which create a margin.

• Support Vectors: Support Vectors are data points,

which are closest to the boundary. The distance of the

points is minimum or least.

Consider two boundary lines (Decision Boundary Lines) are

‘a’ distance from hyper plane. Therefore, these are lines that

we draw at a distance ‘+ɛ’ and ‘−ɛ’ from the hyper plane.

Assuming that the equation of hyper plane is as follow:

Y = wx + b (2)

Then the equation of decision boundary become:

wx + b = ɛ (3)

wx + b = − ɛ (4)

Thus, any hyper plane that satisfies our SVR should satisfy:

ɛ −< Y − wx − b < + ɛ (5)

Our main aim here is to decide a decision boundary at ‘ɛ’

distance from the original hyper plane such that data points

closest to the hyper plane or the support vectors are within that

boundary line. Hence, we are going to take only those points

that are within the decision boundary and have the least error

rate, or are within the Margin of Tolerance. This gives us a

better fitting model.

5.2 Proposed scaling models

(1) Reactive Model: This model is used to scale-out the

number of containers. Since the load increases rapidly, we

need to increase quickly the instances of our webserver to

manage the fluctuating workload. Therefore, the reactive

approach is best for rapidly handling the huge load.

Developers set an upper threshold for some resource

utilization; the system collects the resource utilization data in

every container at a certain time interval. If some of the

containers’ resource utilization exceeds the given upper

threshold, new containers are spawned, more containers will

be started and added to handle the varying load. The Reactive

Model Scaling [22] algorithm (i.e., Algorithm 1) is as follows:

Algorithm 1: Reactive Model Scaling

Input: Initial running containers, i.e., n_current

Output: Required number of containers

I. begin

II. n_reactive  0

III. # n_overload is the number of overloaded

containers

IV. n_overload  0

V. for c in running_containers:

VI. #if load in container c is greater than upper

threshold value

VII. if load_c >= upper_threshold:

VIII. n_overload += 1

IX. n_reactive  n_overload * (1 – upper_

threshold) / upper_threshold

X. end

XI. return n_current + n_reactive

(2) Proactive Model: Proactive models are mainly used to

scale-in the number of containers. We have used ARIMA,

SARIMA, and SVR as our proactive algorithms. For ARIMA

and SRIMA, we used the grid search to find the optimal set of

parameters that yield our model's best performance. We used

the minimum AIC (Akaike Information Criteria) value to

select parameters for our model. We used the Radial Basis

Function (RBF) kernel to calculate the workload for SVR. The

hybrid algorithm is used either after a long time or when the

system is stable or safe to reduce the number of containers. It

runs after a short period of ∆(T) to forecast the future load.

This predicted load is then converted to the required number

of containers. Figure 2 shows the working procedure of the

MAPE architecture that can be used for workload prediction,

and based on that hybrid approach, it finds out how many

containers are required to manage the fluctuating workload.

5.3 Hybrid scaling algorithm

Reactive and Proactive both models are used

simultaneously to perform the horizontal scaling (i.e.,

Algorithm 2). As scale-out should be quick enough, since the

load is changing rapidly, we use the reactive model for this

purpose. We use docker API in python to scale in and out web

server services. The scale-in should not be premature;

otherwise, it may cause oscillations in the number of

containers if clients' requests are increased quickly just after

scale-in occurs. Scale-in should only occur when the web

application does not need the containers any more in the near

future. In our algorithm, only during the following continuous

k periods, the numbers of containers predicted by the proactive

model are all below current running containers, and then some

containers will be stopped. Algorithm 2 shows the hybrid

model scaling approach that can perform the horizontal

elasticity.

713

Figure 2. MAPE working procedure

Algorithm 2: Hybrid Model Scaling

Input: Initial running containers, i.e., n_current and delay

for scale in, i.e., max_scaling_period

Output: Required number of containers

I. begin

II. # Number of containers obtained from reactive

and proactive models

III. n_proactive  proactiveModel()

IV. n_reactive  reactiveModel()

V. if n_reactive > n_current:

VI. last_scaling_period = 0

VII. updateContaiers(n_reactive)

VIII. else if last scaling period >= max scaling

period:

IX. last scaling period = 0

X. updateContainers(n_proactive)

XI. else

XII. last_scaling_period += 1

XIII. end

XIV. return n_current + n_reactive

6. EXPERIMENTAL SETUP AND RESULT ANALYSIS

In this section, we have discussed all the necessary steps that

are used to implement proposed scenario.

6.1 Create a Docker compose file

Docker composes files and commands are used to deploy

the services on the swarm and specify the initial configuration

of the available containers:

docker stack deploy -c [DOCKER COMPOSE FILE]

STACK_NAME

In this Docker-compose file, we specify the images used by

services. We specify the replicas for each service, i.e., initial

no. of containers, port mappings, and resource limits for CPU

and memory. Since we required one HTTP server, so for that

purpose, we used HAProxy, and hence we need to create a

container with HAProxy that would listen to port 3000 and

balance the load for the request to different web server

containers listening on port 80. In order to create these

containers, we have created a Docker-compose file, with the

help of that we have created two services:

1) The first service is for web server container, which is

created with the help of the Docker image. For this

service, we have exposed port 80. We also specified the

initial number of replicas that we wanted to create for

this image. Then, we put all these containers in a

network called web.

2) The second service is for HAProxy container, which is

created with the help of HAProxy Docker image. The

algorithm used for load balancing was also specified

under the environment variables and the local address

of rsyslog server was also specified in the same

environment variables section. It depends on the node

servers, so it would not boot until all the replicas of the

node servers are up and running. It also shares the

docker.sock file which is used by the HAProxy

container to learn about all the containers in its network.

For this container we expose port 3000 and then put this

container in the same web network. Further, we made

this node as the manager node. The final thing was to

create a network called web and this network is an

overlay network because here we wanted that all the

containers connected to that node can communicate

with each other securely. In the Docker-compose file,

the mapping of system ports to the ports of containers

is very important. At first, the port 80 of system is

mapped to port 3000 of HAProxy since all the requests

are first sent to the load balancer and the web server is

listening on port 80. In order to get the stats of the load

balancer, port 1936 of the HAProxy is also open and

mapped to port 1936 of the system which is used to

listen these stats.

6.2 Create a docker swarm

Docker swarm is used to manage the containers in an

efficient manner in order to increase the throughput. The

714

following command is used to initialize the swarm

docker swarm init

The network, all the services and all the containers are

called stack. To create our web stack using node server

containers and HAProxy containers, we used Docker stack

command, but we want to point to the stack of our docker-

compose.yml file, so it will build the stack according to our

plan there. We can do it by writing the following command:

Docker stack deploy --compose-file= docker- compose.yml

We used the deploy command to deploy a new stack. It can

also be used to update an existing stack. When we hit

http://localhost:3000/, then we will be getting the container id

in the response.

6.3 Generating load using Tsung benchmarking tool

We have used Tsung in order to generate the workload.

Tsung gives us flexibility to generate the variable and constant

load, which helps us to improve our prediction. And it helps

us to visualize the different variations in load. For the

generation of the load, we define a load progression step in

XML file. The format is something like:

<load>

<arrivalphase phase="1" duration=

"10"unit="minute">

<users interarrival="2" unit=

"second"></users>

</arrivalphase>

</load>

With this setup, during the 10 minutes of the test, a new user

will be created in every 2 seconds. It is up to us to add any

number of arrival phases, as we want. We can also add

maximum number of users, which can be generated in one

arrival phase. Tsung is also used to produce log files, reports

and graphs for real time analysis. It produces these analytic on

port 8091.

6.4 Plotting of the results

For the plotting of the results, we have used Gnu plot, which

is a command-line driven graphing utility for Linux. Here, we

are plotting the number of containers corresponding to the

workload versus time graph.

set style line 1 lc rgb ’#0060ad’ lt 1

lw 2 pt 7 ps 1.5

plot ’plotting_data.dat’ with

linespoints ls 1

6.5 Result analysis

To explain the working procedure, we have created two

different scenarios of load using Tsung. The two scenarios are

completely opposite of each other and show how our algorithm

is able to adapt these different use cases.

1) In first scenario, the load grows smoothly, then it

keeps stable, then it drops slowly.

2) In second scenario, we tried to give a shaking load,

where load increases and decreases rapidly again.

In first scenario (Figure 3), the number of containers varies

quickly with respect to changing load. As load increases, the

reactive model is quick to scale-out. In the duration of stable

load, numbers of containers remain constant. Then as the load

drops, our proactive model reduces the number of containers

once the load keeps decreasing. In the simulation, we have

considered one parameter such as CPU load. The proposed

approach performs horizontal elasticity. In the horizontal

elasticity, when the computing resource utilization reaches up

to a predefined threshold, the auto-scaler performs the trigger

action and creates a new machine instance. When we go for

vertical elasticity, then we will use the single parameter. In

vertical elasticity, we will increase or decrease the single

parameter based on the utilization.

Figure 3. Number of Containers v/s Workload for Scenario 1

Figure 4. Number of Containers v/s Workload for Scenario 2

In second scenario (Figure 4), even if the variation of load

is high, our algorithm does not hastily decrease the number of

containers until the load is stable. The number of the container

decreases in the proactive mode. The proactive approach is

used to predict the number of containers still needed in the

future to manage the workload. When the algorithm requests

to execute the scale-out command, the auto-scaler waits 10

seconds before executing it. In this time interval if the

715

workload suddenly increases, it protects the system from going

into an overloaded state. It stays 10 seconds, which avoids

system failure, so it does not waste computing resources. This

ensures better QoS and makes it less sensitive to flash crowds.

We have also shown the comparison between different

predictive models that we have used like ARIMA, SARIMA

and SVR. From Figure 3, we can observe that the maximum

number of containers required is least in SVR and it can

predict the decrements in workload much efficiently. In Figure

5, we have also compared the number of responses fulfilled

per second when using three different predictive models and

here we can observe that the response rate of SVR is better

than other two models, i.e., SVR fulfill more requests per

second and SARIMA also performs quite good in terms of

requests fulfillment.

Figure 5. Comparison of Response rate

Figure 6. Comparison of CPU utilization

In Figure 6, we have also compared the average CPU

utilization of all the running containers using these three

models and observed that the CPU utilization is better in SVR

followed by SARIMA and lastly ARIMA model for prediction

in workload.

In Figure 6, the simulation has been done through workload

generated tool, namely Tsung. The load varies with the

number of increases or decreases in hits. The Tsuing can

generate 5000 requests/second. With the different time

interval and number of hits, the number of containers may

increase or decrease in the simulation. The simulation has been

done in both the minimum and maximum load to check the

system performance and increase/decrease the number of

containers. The proposed approach uses the reactive approach

to increase the number of containers when the workloads

increase, and a proactive approach when the number of

containers decreases.

Table 1. Number of Containers corresponding to Workload

Sr.

No.
Timer Workload

Hybrid

using

ARIMA

model

Hybrid

using

SARIMA

model

Hybrid

using

SVR

model

1 0 0.815 10 10 10

2 10 0.5425 10 10 10

3 50 0.77 12 12 12

4 100 1.5975 17 10 10

5 150 2.16 24 15 13

6 200 2.5225 35 21 20

7 250 2.46 46 31 31

8 300 2.5725 49 40 42

In Table 1, we have shown the required number of

containers corresponding to changing workload for all three

models, i.e., ARIMA, SARIMA and SVR, which we have used

in our hybrid algorithm.

7. CONCLUSION AND FUTURE DIRECTION

The proposed strategy explores the use of a hybrid approach

using both reactive and proactive models for horizontal scaling

(e.g., number of containers) to manage the fluctuating

workload. The reactive model is used basically to quickly

scale-out in case of increasing workload. The proactive model

is primarily used to scale-in since it uses past data to forecast

future workload. Even with a high load variation, this

algorithm does not hastily decrease the number of containers

until the load becomes stable. The proposed approach gets the

best of both reactive and proactive scaling and tries to

eliminate any limitations if these approaches are applied

exclusively. The experimental results also show that it offers

good efficiency and scalability. In the future, we can use this

model for hybrid scaling, where horizontal and vertical scaling

is done together to make it more efficient. Here, we consider

only one variable for the forecasting; for better results, we can

use other variables like memory, users, CPU, etc. We can also

use other sophisticated algorithms like TOPSIS, PID, etc, for

reactive and proactive scaling and compare it to our current

results.

ACKNOWLEDGMENT

This research was supported/partially supported by

[Visvesvaraya PhD scheme for Electronics and IT, Ministry of

Electronics and Information Technology, Government of

India]. We thank our colleagues from [Motilal Nehru National

Institute of Technology Allahabad, Prayagraj, India] who

provided insight and expertise that greatly assisted the

research, although they may not agree with all of the

interpretations/conclusions of this paper.

716

REFERENCES

[1] Zhang, Q., Cheng, L., Boutaba, R. (2010). Cloud

computing: state-of-the-art and research challenges.

Journal of Internet Services and Applications, 1(1): 7-18.

https://doi.org/10.1007/s13174-010-0007-6

[2] Smith, J., Nair, R. (2005). Virtual Machines: Versatile

Platforms for Systems and Processes. Elsevier.

https://doi.org/10.1016/B978-1-55860-910-5.X5000-9

[3] Seo, K.T., Hwang, H.S., Moon, I.Y., Kwon, O.Y., Kim,

B.J. (2014). Performance comparison analysis of Linux

container and virtual machine for building cloud.

Advanced Science and Technology Letters, 66(105-111).

https:// doi.org/10.14257/ASTL.2014.66.25

[4] Moreno-Vozmediano, R., Montero, R.S., Huedo, E.,

Llorente, I.M. (2019). Efficient resource provisioning for

elastic Cloud services based on machine learning

techniques. Journal of Cloud Computing, 8(1): 5.

https://doi.org/10.1186/s13677-019-0128-9

[5] Jiang, J., Lu, J., Zhang, G., Long, G. (2013). Optimal

cloud resource auto-scaling for web applications. In 2013

13th IEEE/ACM International Symposium on Cluster,

Cloud, and Grid Computing, Delft, Netherlands, pp. 58-

65. https://doi.org/10.1109/CCGrid.2013.73

[6] Roy, N., Dubey, A., Gokhale, A. (2011). Efficient

autoscaling in the cloud using predictive models for

workload forecasting. 2011 IEEE 4th International

Conference on Cloud Computing, Washington, DC,

USA. https://doi.org/10.1109/CLOUD.2011.42

[7] Messias, V.R., Estrella, J.C., Ehlers, R., Santana, M.J.,

Santana, R.C., Reiff-Marganiec, S. (2016). Combining

time series prediction models using genetic algorithm to

autoscaling web applications hosted in the cloud

infrastructure. Neural Computing and Applications,

27(8): 2383-2406. https://doi.org/10.1007/s00521-015-

2133-3

[8] Cocaña-Fernández, A., Sánchez, L., Ranilla, J. (2016).

Leveraging a predictive model of the workload for

intelligent slot allocation schemes in energy-efficient

HPC clusters. Engineering Applications of Artificial

Intelligence, 48: 95-105.

https://doi.org/10.1016/j.engappai.2015.10.003

[9] HAPROXY. Haproxy documentation. Available from

https://cbonte.github.io/haproxy-dconv/2.0/intro.html

3.1/, accessed on dated 10-08-2019.

[10] DOCKER. Introduction to docker. Available from

https://docs.docker.com/config/containers/resource

constraints/, accessed on dated 10-01-2019.

[11] LOAD BALANCING. Introduction to haproxy and load

balancing concepts. Available from

https://www.digitalocean. com/community/tutorials/an-

introductionto-haproxy-and-load-balancingconcepts/,

accessed on dated 18-06-2020.

[12] ANICAS, M. An introduction to haproxy and load

balancing concepts. Available from

https://www.digitalocean.com/community/tutorials/anin

troduction-to-haproxy-andload-balancing-concepts,

accessed on dated 10-05-2020.

[13] TSUNG BENCHMARK. Tsung benchmarking tool.

Available from http://tsung.erlang- projects.org/user

manual/, accessed on dated 22-05-2020.

[14] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.

(2017). Elasticity in cloud computing: state of the art and

research challenges. IEEE Transactions on Services

Computing, 11(2): 430-444.

https://doi.org/10.1109/TSC.2017.2711009

[15] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.

(2017). Autonomic vertical elasticity of docker

containers with ELASTICDOCKER. In 2017 IEEE 10th

international conference on cloud computing (CLOUD),

Honolulu, CA, USA, pp. 472-479.

https://doi.org/10.1109/CLOUD.2017.67

[16] Al-Dhuraibi, Y., Zalila, F., Djarallah, N., Merle, P.

(2018). Coordinating vertical elasticity of both

containers and virtual machines. In: Proceedings of the

8th International Conference on Cloud Computing and

Services Science - Volume 1: CLOSER, INSTICC, pp.

322-329. https://doi.org/10.5220/0006652403220329

[17] Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.

(2012). IaaS cloud architecture: From virtualized

datacenters to federated cloud infrastructures. Computer,

45(12): 65-72. https://doi.org/10.1109/MC.2012.76

[18] Hasan, M.Z., Magana, E., Clemm, A., Tucker, L.,

Gudreddi, S.L.D. (2012). Integrated and autonomic

cloud resource scaling. In 2012 IEEE Network

Operations and Management Symposium, Maui, HI,

USA, pp. 1327-1334.

https://doi.org/10.1109/NOMS.2012.6212070

[19] Kan, C. (2016). DoCloud: An elastic cloud platform for

Web applications based on Docker. 2016 18th

International Conference on Advanced Communication

Technology (ICACT), Pyeongchang, South Korea.

https://doi.org/10.1109/ICACT.2016.7423440

[20] De Abranches, M.C., Solis, P. (2016). An algorithm

based on response time and traffic demands to scale

containers on a Cloud Computing system. In 2016 IEEE

15th International Symposium on Network Computing

and Applications (NCA), pp. 343-350.

https://doi.org/10.1109/NCA.2016.7778639

[21] Padala, P., Hou, K.Y., Shin, K.G., Zhu, X., Uysal, M.,

Wang, Z., Merchant, A. (2009). Automated control of

multiple virtualized resources. In Proceedings of the 4th

ACM European Conference on Computer Systems, pp.

13-26. https://doi.org/10.1145/1519065.1519068

[22] Gao, Y., Li, Q. (2019). A new framework for the

complex system’s simulation and analysis. Cluster

Computing, 22: 9097-9104.

https://doi.org/10.1007/s10586-018-2071-9

[23] GOOGLE. Google horizontal pod auto-scaler. Available

from https: //github.com

/kubernetes/kubernetes/blob/release-1.2/docs/design/

horizontal-pod-autoscaler.md, accessed on dated 10-05-

2019

[24] Meng, Y., Rao, R.N., Zhang X., Hong, P. (2016).

CRUPA: A container resource utilization prediction

algorithm for auto-scaling based on time series analysis.

In: 2016 International Conference on Progress in

Informatics and Computing (PIC), pp 468-472.

https://doi.org/10.1109/PIC.2016.7949546

[25] ABU, S. Time series forecasting for seasonal arima using

python.

https://www.seanabu.com/2016/03/22/timeseries-

seasonal-ARIMA-model-in-python/.

[26] Malik, F. (2012). Understanding auto regressive moving

average model — arima.

https://medium.com/fintechexplained/understanding-

auto-regressivemodel-arima-4bd463b7a1bb, accessed on

Dec. 1, 2019.

717

[27] SARIMA documentation.

https://otexts.com/fpp2/seasonal-arima.html, accessed

on Sep. 10, 2019.

[28] SHARP, T. An introduction to support vector regression

(svr). https://towardsdatascience.com/an-introduction-

to-support-vectorregression-svr-a3ebc1672c2, accessed

on Jan. 12, 2020.

718

