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Cloud computing is a paradigm to provide services to end-users through the Internet. The 

availability of services to end-users is dependent on various factors such as the availability 

of computing resources as well as the number of users to access those services. To manage 

the real-time fluctuating workload cloud providers use elasticity mechanisms. Elasticity is 

one of the important characteristics of cloud computing that dynamically allocates 

computing resources to manage the fluctuating workload. The failure of allocation/de-

allocation of computing resources at the right moment leads to SLA violation, degradation 

of services performance, maximum power consumption, minimum throughput, and 

maximum response time. To address these challenges, we have proposed a hybrid approach 

to perform horizontal elasticity. The proposed approach uses both reactive and proactive 

approaches for provisioning/de-provisioning of computing resources. The simulation 

results of the proposed model show that performance of system has improved in terms of 

CPU utilization, response time, and throughput. 
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1. INTRODUCTION

In the current era, cloud is an emerging technology that 

provides on-demand resources for varying requirements on the 

basis of a lease. There are various cloud platforms and virtual 

data-centers, which provide elasticity of services in order to 

handle the rapidly changing workload [1]. Elasticity is the 

ability of a system to increase /decrease resources to adopt the 

load variation in real-time. It is a dynamic property of cloud 

computing. There are two advantages of service elasticity, first 

is Quality of Service (QoS) which is achieved by optimizing 

certain parameters such as response time, CPU load, numbers 

of requests handled in a second, etc. There is an agreement 

between cloud resource providers and clients to ensure QoS 

using Service Level Agreements (SLAs). The second 

advantage is that it reduces the overall power consumption by 

preventing the system from over-provisioning of resources. 

Over provisioning means, more resources have been allocated 

than required to handle peak loads. Elasticity mainly involves 

scalability and efficiency. Efficiency is about the percentage 

of utilization of available computing resources while scaling 

is performed. The lower the amount of resources needed the 

better is the efficiency. Scalability is the property of a machine, 

which enables it to handle the more workload by adding more 

resources.  

Cloud providers use a virtualization-based approach in 

order to host their services. Virtualization [1, 2] refers to the 

act of creating a virtual resource, including computer hardware 

platforms, storage devices, and computer network resources. 

Virtualization can be implemented with the help of 

hypervisors and containers [3]. In comparison to hypervisors, 

containers are lightweight software, which have quick start or 

stop time and less overhead than virtual machines. Containers 

allow a software developer to pack up an application with all 

of its requirements, such as libraries and other dependencies, 

and it can be shipped out as one package [2, 3]. Auto scaling 

can be performed in two ways, which are reactive and 

proactive approaches [4]. In reactive approach, one or more 

threshold(s) can be used which need to be optimized such as 

response time, CPU load, memory usage, etc. After a certain 

interval, we find the resources exceeding this threshold and 

based on that, resources can be increased or decreased. On the 

other hand, in proactive scaling, we predict the workload of 

upcoming time interval by applying some machine learning or 

deep learning algorithms. After the prediction of workload, we 

find the amount of resources needed to manage the load. While 

using proactive approaches care should be taken for not 

performing premature scaling operation. Premature scaling 

means, just after scaling down, flood of requests arrives and 

we have to scale up the resources again [5]. Therefore, 

premature scaling will add overhead and will not be effective 

from cloud provider’s point of view.  

Auto-scaling can be more efficient if we use combination of 

reactive and proactive approaches [4, 6]. Various proactive 

approaches can be used to analyze the time-series data such as 

AR (Auto Regressive), MA (Moving Average), ARMA (Auto 

Regressive Moving Average), ARIMA (Auto-Regressive 

Integrated Moving Average), etc. in order to predict the future 

workload [4, 7]. The future workload can be transferred over 

various machines through load balancer. The load balancer 

uses different load balancing algorithms to distribute the 

workload dynamically and uniformly across all the available 

nodes. This improves the overall system performance. Cloud 

load balancing is defined as the method of splitting workloads 

and computing properties in a cloud-computing environment 

[8, 9].  

In this article, we have discussed a hybrid algorithm that 

uses a reactive model (threshold-based policy) and time series 

forecasting based proactive model for the provisioning and de-

provisioning of computing resources based on workload in 
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real time. The reactive approach is used for scaling out the 

running containers when the workload increases and proactive 

approach (Support Vector Regression (SVR)) for scaling in 

the containers when the workload decreases. The experimental 

results of proposed hybrid approach are compared with time 

series forecasting models (ARIMA, and SARIMA). Based on 

comparisons, we have found that the performance of proposed 

hybrid approach is better than other two models in terms of 

horizontal scaling, average CPU utilization and response time. 

The rest of paper is organized as follows: In section 2, 

motivation for the proposed work has been described. In 

section 3, background and related technology have been given. 

Section 4 presents the literature review for the work. In section 

5 solution of the problem has been proposed. In section 6 

experimental setup and result analysis have been done and the 

last section (i.e. Section 7) concludes the work along with 

future directions. 
 

 

2. MOTIVATION 

 

We have observed in many cases that the resources on the 

cloud system have been underutilized and some requests from 

the users are dropped. However, the request would have been 

serviced, if there had been scaling of resources based on the 

demand of the users. In addition, it would be very tedious to 

scale the resources manually hence; we thought to scale up the 

resources automatically through a scaling algorithm. We have 

used horizontal scaling to handle workload with the help of a 

load balancer. We have tried to search many metrics regarding 

running containers and requests that are available to us that can 

be potentially used to tell the state of the system. But, we found 

that the response time produced by logs of load balancer could 

be a very good metric to gain insight into the current load on 

the system. The reactive model is used basically to quickly 

scale-out in case of increasing workload. The proactive model 

is primarily used to scale-in since it uses past data to forecast 

future workload. Hence, we decided to scale horizontally 

according to the response time of live requests to the web 

server.  
 

 

3. BACKGROUND AND RELATED TECHNOLOGY 

 

3.1 Docker 

 

Docker is an open software, which provides centralized 

platform to execute an application. Docker wraps software 

components into a complete standardized unit, which contains 

everything required to run it i.e. runtime environment, tools or 

libraries [10]. It guarantees that the software will always run 

as expected. It provides the facility to run an application in an 

isolated environment, which is called container. We can run 

multiple containers simultaneously on a given host. It is 

lightweight as compared to hypervisors, so it starts instantly 

and uses less RAM. Docker is secure by default because each 

container is isolated from one another. Docker works as a 

client-server architecture. The Docker-daemon (server) 

receives the commands from the Docker client through CLI or 

rest APIs. Docker client and server can be present on the same 

host machine or different hosts.  

 

3.2 Docker swarm 

 

A Docker swarm contains a group of systems, which are 

running Docker and joined to make a cluster. It is a tool for 

container Orchestration. Docker swarm is used to do health 

check of every running container, ensure containers are upon 

every system, scaling in or out the containers depending on the 

upcoming load, and adding updates in the containers. These 

above tasks are difficult to perform manually. Orchestration 

means managing and controlling multiple Docker containers 

as a single service. Docker Swarm, Kubernetes and Apache 

Mesos are the tools available for orchestration. Containers in 

a swarm are called nodes. Some nodes are made manager and 

some are made workers. The manager node has total control 

on the swarm created. The manager node assigns units of work 

called tasks to worker nodes. We use Docker swarm to easily 

use utilities for scaling up and down as the algorithm decides 

the required number of containers [10].  

 

3.3 HAProxy  

 

HAProxy stands for High Availability Proxy, which is used 

as a TCP/HTTP load balancer and provides proxying solution 

[11, 12]. It acts as a TCP proxy that can accept a TCP 

connection from a listening socket and then connect to a server 

which allows the traffic to flow in both directions. It also acts 

as an HTTP reverse proxy, which receives HTTP requests on 

a listening TCP socket and then passes these requests to 

servers using different connections. Figure 1 shows the basic 

architecture of HAProxy load balancer.  

 

 
 

Figure 1. HAProxy configuration 

 

In this article, HAProxy acts as a server load balancer, 

which is used for balancing the load of TCP connections and 

HTTP requests. It spreads various requests across multiple 

servers in order to optimize resource usage, maximize 

throughput, avoid overloading of any server and minimize 

response time. When the Tsung Benchmarking tool generates 

the workload it gets transferred over the load balancer. For this, 

we have used the HAProxy load balancer. The load balancer 

transfers the incoming request over the server. The load 

balancer stores all the logs of incoming request. This log data 

will be used in proactive approach to perform the scale in 

operation. There are various algorithms available in HAProxy 

load balancer namely: Round robin, least connection, and 

source IP for balancing the load. 

By default, HA Proxy balances the requests in a round robin 

manner between the containers hosting the server. It only 

requires the HAProxy executable and a configuration file to 

run. It is highly recommended to have a rsyslog daemon for 

logging and the configuration files are parsed before starting 

in order to bind all the listening sockets. Once HA Proxy is 

started, it processes the incoming connections, periodically 
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checks the server’s status and exchanges information with 

other HAProxy nodes. The processing of incoming 

connections is the most complex task as it depends upon the 

configuration possibilities and the various steps are as follows 

[11]: 

1. It accepts the incoming connections from listening 

sockets that belong to a configuration entity known 

as ‘frontend’ and it may refer to one or multiple 

listening addresses.  

2. It applies the frontend-specific processing rules to 

these connections.  

3. It further passes these incoming connections to 

another configuration entity known as a “backend”, 

which contains the list of servers and the load 

balancing strategy for this list of servers.  

4. It applies the backend specific processing rules to 

these connections. 

5. It decides which server to forward this connection, 

according to some load balancing strategy. 

6. It applies the backend-specific processing rules to the 

response data.  

7. It also applies the frontend-specific processing rules 

to the response data.  

8. Finally, it sends a log to the rsyslog server about what 

happened in fine details.  

 

3.4 Tsung benchmarking tool 

 

We have used Tsung [13] for load testing of the system. The 

programming language used by Tsung, is Erlang. It is used for 

performance testing of a website, which is important for the 

success of any website. It is also an important tool because 

certain business sites have suffered serious downtimes when 

they have a large number of visitors. If they use this tool before 

their website or application deployment then they can check 

the tolerance of their websites for large number of loads. 

Tsung benchmarking tool has the following features:  

1) High performance: It can simulate huge number of 

simultaneous users.  

2) Distributed: It can work for cluster scenario.  

3) OS Monitoring: It can manage CPU, memory and 

network traffic.  
4) XML configuration system: Complex user’s scenarios 

are written in XML file. 
 

Tsung Benchmarking Tool has been used to generate the 

load over the server. The tolerance of the proposed approach 

is that the system does not go under load or overload. If it does, 

they demand extra computing resources to manage the 

workload. The additional computing resource is namely CPU. 

The resource allocation or de-allocation is depended on the 

predefined upper and lower threshold values. The upper and 

lower predefined threshold values of computing resources are 

85 percent and 20 percent, respectively. 

 

 

4. RELATED WORK 

 

In this section, work related to the recourse provisioning and 

de-provisioning to manage the fluctuating workload for time 

series data has been studied. Along with time series data 

forecasting methods, many researchers have proposed an auto-

scaling mechanism based on many different strategies, namely 

threshold-based or rule-based, control theory, reinforcement 

learning, and queuing theory [6, 8, 14]. 

Al-Dhuraibi et al. [14] have presented a literature survey on 

elasticity in cloud computing. The authors present the survey 

for VMs and container-based elasticity, which has highlighted 

the basic taxonomy of elasticity. This survey is divided into 

three segments; the first define elasticity and related concepts 

such as scalability and efficiency. They presented the extended 

classification of elasticity based on the configuration, scope, 

purpose, mode, policy, method, provider, and architecture, 

which will be used to obtain different aspects. The third 

presented the existing technology that is related to the 

container. The authors also discussed the open issues and 

research challenges about container elasticity. The authors 

pointed different topics such as interoperability, granularity, 

resource availability, a hybrid solution, start-up time, 

threshold definition, prediction estimation error, an optimal 

trade-off between the user’s requirement and provider’s 

interests, a unified platform for elastic application and 

evaluation methodology. They also presented the research 

challenges about container-based elasticity such as monitoring 

containers, container-based elasticity, combined elasticity 

between VMs and containers. 

Al-Dhuraibi et al. [15] presented a reactive approach that is 

rule-based. This approach is used for vertical elasticity of 

container with the help of ELASTICDOCKER. The 

ELASTICDOCKER is an auto-scaler that is used to adjust the 

container computing resources like memory and virtual CPU 

cores based on workloads. The upper and lower threshold 

values of a container are adjusted according to different 

experimentation values, and then one of them, which has the 

least response time, is chosen. The authors have allocated/de-

allocated the computing resources (memory and CPU) to a 

container in a fixed manner. For example, when container 

memory utilization has a value greater than the upper bound 

of hits, then 256 Mb of memory is added to the container by 

the auto-scaler. On the other hand, when the container memory 

utilization is lower than the threshold, the auto-scaler will 

decrease 128 Mb of memory. For de-provisioning, an auto-

scaling step is used so that there is no unexpected interruption 

in the application's functionality when it is running. In addition, 

the authors also do a live process migration from a hosted 

machine to another machine when the resizing of a container 

is not possible on the host machine. 

Al-Dhuraibi et al. [16] have presented to coordinate the 

container as well as virtual machine for vertical elasticity. 

Authors have performed an auto-scaling mechanism for 

containerized applications so that their computing resources 

can be adjusted at both the container and VM levels with an 

elastic controller's help according to the workload. This 

controller directly modifies the container file system, namely 

cgroup to execute the scaling mechanism (scaling up/down). 

This scaling mechanism is executed based on the average 

utilization of CPU or memory over a fixed interval of time and 

compared it with its upper/ lower thresholds (70% 90%) value. 

When the value after calculation reaches the threshold or the 

logical conditions are met, the value of resources increases or 

decreases by the controller using the values based on a 

predefined rule. For example, suppose if the average memory 

consumption of a container is greater than the upper threshold 

for the last 16 seconds, memory size is increased to 256 MB 

by the controller. It waits 10 seconds before accomplishing the 

next scaling action. The proposed elasticity controller for 

container vertical make it up to 18.34% and vertical elasticity 

controller for VM makes it up to 70%. The proposed strategy 
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also outperforms horizontal elasticity by 39.6%. 

Rule-based auto-scaling mechanisms are implemented in 

the reactive approach. Different cloud organizations and their 

platforms (such as Amazon EC2, Microsoft Azure, RightScale, 

Docker, Open Stack, and OpenNebula [17]) use the reactive 

approach to provide the computing resources to end-users. 

Cloud providers define their scaling policies based on different 

computing resource metrics to perform scale-up or down a 

machine's resources. In the rule-based scaling approach, the 

trigger action can be performed on a threshold value, either the 

upper threshold or lower threshold value. The trigger action 

can be performed when the selected metric is over (or under) 

the specific threshold for a certain time interval period. The 

trigger action can request auto-scalar to add or remove a 

certain amount of computing resources from the physical 

infrastructure to a machine. Some academician has worked 

specific improvements for threshold-based technique, for 

example, Hasan et al. [18] have implemented their auto-

scaling policies by considering the four threshold values. If the 

auto-scaling strategy uses two thresholds value, the auto-

scaling perform finer decision. Besides the rule-based auto-

scaling mechanism, many researchers have proposed an auto-

scaling mechanism with control theory concepts. They have 

been implemented through a controller. The controller is 

responsible for maintaining the system performance at a 

specific level with a control input. Maximum control-based 

systems use the reactive mechanism.  

DoCloud [19] provides an auto-scaling platform for an 

elastic service. It finds out the number of containers required 

according to the dynamic workload. It uses both reactive and 

proactive approaches for auto-scaling, where the reactive 

approach is used for scaling-out, and a proactive approach is 

used for scaling-in the number of containers. In the reactive 

approach, the threshold-based method is done by comparing 

the CPU utilization of each container with a threshold value, 

and in the proactive approach, ARMA (Auto Regressive 

Moving Average) model is used for time series forecasting of 

the workload and then convert it into the required number of 

containers. It uses a hybrid approach, i.e., reactive as well as 

proactive approaches, to avoid a premature scale-in operation, 

which causes oscillations in the number of containers. The 

threshold-based mechanism is a reactive auto-scaling 

algorithm that enables users to define scaling up and scaling 

down policies or rules based on different metrics. These rules 

are defined as the lower and upper threshold for selected 

metrics.  

There are several auto-scaling mechanism proposals based 

on the concept of control theory [20]. Most control systems are 

based on reactive mechanisms. They usually implement a 

controller that is responsible for maintaining the output of the 

system. A controller has been implemented for maintaining the 

system output at the desired level. The feedback controller 

system [18, 21, 22] has the input at the desired level by 

provisioning or de-provisioning resources. Another work for 

auto elasticity was HPA (Horizontal Pod Autoscaler) [23], 

which scales the number of containers that serve a given 

application when the average CPU consumption by containers 

is greater than the CPU average threshold value. This auto-

scaler is implemented as a control loop where it periodically 

queries the CPU utilization to create a sufficient number of 

containers (pods). 

Container Resource Utilization Prediction Algorithm 

(CRUPA) [24] is also another auto-scaling method. This 

method used the ARIMA model for predicting the CPU 

utilization and correspondingly to perform scaling of the 

resources. It performs better than a threshold-based approach, 

but the identification of parameters is a time-consuming task. 

Also, it is not efficient to handle the oscillations in the 

workload. In this paper, we have proposed an algorithm for 

load balancing, i.e., Hybrid algorithm which uses both reactive 

as well as proactive approach. 

The proposed approach is different from the threshold-

based approach because our algorithm can efficiently handle 

the oscillation mitigation (due to the use of a proactive 

approach also), but this approach can cause sudden 

provisioning or de-provisioning of the resources based on 

workload. Our proposal is different from DoCloud because 

DoCloud uses only the ARMA model for predicting the 

workload, but we have used ARIMA and SVR models also 

and then presented the comparison between the scaling results, 

response rates, and CPU utilization. Our proposal is different 

from the control system approaches because they are also 

reactive approaches, and hence the problem of oscillation 

mitigation will occur there. Our proposal is different from 

HPA because HPA performs CPU consumption measurements, 

and our algorithm also uses the CPU consumption. Still, along 

with this, it also uses a predictive method for scaling, which is 

not available in HPA. CRUPA performs CPU utilization 

prediction, but our algorithm performs workload prediction, 

and CRUPA performs sudden scaling of resources based on a 

proactive approach but our algorithm uses a reactive approach 

for scale-out and proactive approach for scale-in only when 

the system becomes stable. 

 

 

5. PROPOSED SOLUTION 

 

5.1 Time series forecasting  

 

Time Series [7, 25] data are experimental data observed at 

various point in time. For example, any product like soap, 

clothes, etc. has sales per day. Time Series data has many 

characteristics like seasonality, trend and noise. Forecasting is 

simply predicting the future data based on current and past 

data. ARIMA (Auto Regressive Integrated Moving Average) 

is one of the methods, which can be used for the forecasting. 

In an ARIMA model, three parameters that are used to help 

model the major aspects of a times series [25]: Seasonality(p), 

trend(d), and noise(q). 

• Autoregressive (p): Time series data of past time 

points can have impact on current and future time 

data. The ARIMA model to predict current and future 

values uses this. ARIMA uses a number of lagged 

observations of time series to forecast observations. 

• Integrated (d): The time series is considered 

nonstationary due to the presence of trend in any time 

series. This property reduces seasonality from a time 

series.  

• Moving Average (q): Moving average reduces time 

series non-determinism or random movements. 

 

For the simulation of ARIMA model, three parameters, 

namely seasonality (p), trend (d), and noise (q) has been used. 

We have to fit the ARIMA (0, 1, 1) model. This sets the lag 

value to 0 for auto-regression; the ARIMA model's difference 

order is 1, which makes the time series stationary, and uses a 

moving average model of 1. 

The mathematical equation is used by ARIMA model is [4]: 
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y(t) = µ+φ1yt−1+......+φpyt−p−θ1et−1−......−θqet−q (1) 

 

where, µ is a constant, φ terms are the lagged values of y (AR 

term), and θ terms are lagged values of error (MA term). There 

is also an enhancement of ARIMA model, which is dependent 

on the seasonality of the data, that is known as Seasonal 

ARIMA (SARIMA). Seasonality means the changes in the 

data that forms a regular pattern and keeps repeating itself after 

fixed time interval. SARIMA incorporates both seasonal and 

non-seasonal factors like a multiplicative model. A seasonal 

ARIMA model is formed by including additional seasonal 

terms in the ARIMA […]. The seasonal part of the model 

consists of very similar words to the model's non-seasonal 

components, but they involve backshifts of the seasonal period. 

To configure SARIMA, it requires different hyper parameters 

for both the series's trend and seasonal elements [26, 27]. For 

the simulation we have used SARIMA with order (1, 1, 1) and 

seasonal order (0, 0, 0, 12). 

Another important time series-forecasting model is SVR 

(Support Vector Regression). Support Vector Regression [4, 

28] is a regression model, which uses same principles as SVM 

(Support Vector Machine). Following are the important 

parameters of SVR:  

• Kernel: A Kernel helps us to find a hyper plane in 

the higher dimensional space without increasing the 

computational cost. 

• Hyper plane: This is separation line between two 

classes of data. We are going to define it as the line 

that will help us to predict target value or continuous 

value.  

• Boundary Line: There are two lines other than 

Hyper Plane, which create a margin.  

• Support Vectors: Support Vectors are data points, 

which are closest to the boundary. The distance of the 

points is minimum or least. 

Consider two boundary lines (Decision Boundary Lines) are 

‘a’ distance from hyper plane. Therefore, these are lines that 

we draw at a distance ‘+ɛ’ and ‘−ɛ’ from the hyper plane. 

Assuming that the equation of hyper plane is as follow: 

 

Y = wx + b (2) 

 

Then the equation of decision boundary become:  

 

wx + b = ɛ (3) 

 

wx + b = − ɛ (4) 

 

Thus, any hyper plane that satisfies our SVR should satisfy: 

 

ɛ −< Y − wx − b < + ɛ (5) 

 

Our main aim here is to decide a decision boundary at ‘ɛ’ 

distance from the original hyper plane such that data points 

closest to the hyper plane or the support vectors are within that 

boundary line. Hence, we are going to take only those points 

that are within the decision boundary and have the least error 

rate, or are within the Margin of Tolerance. This gives us a 

better fitting model.  

 

5.2 Proposed scaling models  

 

(1) Reactive Model: This model is used to scale-out the 

number of containers. Since the load increases rapidly, we 

need to increase quickly the instances of our webserver to 

manage the fluctuating workload. Therefore, the reactive 

approach is best for rapidly handling the huge load. 

Developers set an upper threshold for some resource 

utilization; the system collects the resource utilization data in 

every container at a certain time interval. If some of the 

containers’ resource utilization exceeds the given upper 

threshold, new containers are spawned, more containers will 

be started and added to handle the varying load. The Reactive 

Model Scaling [22] algorithm (i.e., Algorithm 1) is as follows: 

 

Algorithm 1: Reactive Model Scaling 

Input: Initial running containers, i.e., n_current  

Output: Required number of containers  

I.  begin  

II.  n_reactive  0  

III.  # n_overload is the number of overloaded 

containers  

IV. n_overload  0 

V. for c in running_containers: 

VI. #if load in container c is greater than upper 

threshold value  

VII. if load_c >= upper_threshold:  

VIII. n_overload += 1  

IX. n_reactive  n_overload * (1 – upper_ 

threshold) / upper_threshold  

X. end  

XI. return n_current + n_reactive  

 

(2) Proactive Model: Proactive models are mainly used to 

scale-in the number of containers. We have used ARIMA, 

SARIMA, and SVR as our proactive algorithms. For ARIMA 

and SRIMA, we used the grid search to find the optimal set of 

parameters that yield our model's best performance. We used 

the minimum AIC (Akaike Information Criteria) value to 

select parameters for our model. We used the Radial Basis 

Function (RBF) kernel to calculate the workload for SVR. The 

hybrid algorithm is used either after a long time or when the 

system is stable or safe to reduce the number of containers. It 

runs after a short period of ∆(T) to forecast the future load. 

This predicted load is then converted to the required number 

of containers. Figure 2 shows the working procedure of the 

MAPE architecture that can be used for workload prediction, 

and based on that hybrid approach, it finds out how many 

containers are required to manage the fluctuating workload. 

 

5.3 Hybrid scaling algorithm  
 

Reactive and Proactive both models are used 

simultaneously to perform the horizontal scaling (i.e., 

Algorithm 2). As scale-out should be quick enough, since the 

load is changing rapidly, we use the reactive model for this 

purpose. We use docker API in python to scale in and out web 

server services. The scale-in should not be premature; 

otherwise, it may cause oscillations in the number of 

containers if clients' requests are increased quickly just after 

scale-in occurs. Scale-in should only occur when the web 

application does not need the containers any more in the near 

future. In our algorithm, only during the following continuous 

k periods, the numbers of containers predicted by the proactive 

model are all below current running containers, and then some 

containers will be stopped. Algorithm 2 shows the hybrid 

model scaling approach that can perform the horizontal 

elasticity. 
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Figure 2. MAPE working procedure 

 

Algorithm 2: Hybrid Model Scaling  

Input: Initial running containers, i.e., n_current and delay 

for scale in, i.e., max_scaling_period  

Output: Required number of containers  

I. begin  

II. # Number of containers obtained from reactive 

and proactive models  

III. n_proactive  proactiveModel() 

IV. n_reactive  reactiveModel() 

V. if n_reactive > n_current: 

VI. last_scaling_period = 0 

VII. updateContaiers(n_reactive)  

VIII. else if last scaling period >= max scaling 

period:  

IX. last scaling period = 0  

X. updateContainers(n_proactive) 

XI. else  

XII. last_scaling_period += 1 

XIII. end  

XIV. return n_current + n_reactive  

 

 

6. EXPERIMENTAL SETUP AND RESULT ANALYSIS  

 

In this section, we have discussed all the necessary steps that 

are used to implement proposed scenario. 

 

6.1 Create a Docker compose file 

 

Docker composes files and commands are used to deploy 

the services on the swarm and specify the initial configuration 

of the available containers:  

 

docker stack deploy -c [DOCKER COMPOSE FILE] 

STACK_NAME 

 

In this Docker-compose file, we specify the images used by 

services. We specify the replicas for each service, i.e., initial 

no. of containers, port mappings, and resource limits for CPU 

and memory. Since we required one HTTP server, so for that 

purpose, we used HAProxy, and hence we need to create a 

container with HAProxy that would listen to port 3000 and 

balance the load for the request to different web server 

containers listening on port 80. In order to create these 

containers, we have created a Docker-compose file, with the 

help of that we have created two services: 

1) The first service is for web server container, which is 

created with the help of the Docker image. For this 

service, we have exposed port 80. We also specified the 

initial number of replicas that we wanted to create for 

this image. Then, we put all these containers in a 

network called web. 

2) The second service is for HAProxy container, which is 

created with the help of HAProxy Docker image. The 

algorithm used for load balancing was also specified 

under the environment variables and the local address 

of rsyslog server was also specified in the same 

environment variables section. It depends on the node 

servers, so it would not boot until all the replicas of the 

node servers are up and running. It also shares the 

docker.sock file which is used by the HAProxy 

container to learn about all the containers in its network. 

For this container we expose port 3000 and then put this 

container in the same web network. Further, we made 

this node as the manager node. The final thing was to 

create a network called web and this network is an 

overlay network because here we wanted that all the 

containers connected to that node can communicate 

with each other securely. In the Docker-compose file, 

the mapping of system ports to the ports of containers 

is very important. At first, the port 80 of system is 

mapped to port 3000 of HAProxy since all the requests 

are first sent to the load balancer and the web server is 

listening on port 80. In order to get the stats of the load 

balancer, port 1936 of the HAProxy is also open and 

mapped to port 1936 of the system which is used to 

listen these stats.  

 

6.2 Create a docker swarm  

 

Docker swarm is used to manage the containers in an 

efficient manner in order to increase the throughput. The 
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following command is used to initialize the swarm 

 

docker swarm init 

 

The network, all the services and all the containers are 

called stack. To create our web stack using node server 

containers and HAProxy containers, we used Docker stack 

command, but we want to point to the stack of our docker-

compose.yml file, so it will build the stack according to our 

plan there. We can do it by writing the following command: 

 

Docker stack deploy --compose-file= docker- compose.yml 

 

We used the deploy command to deploy a new stack. It can 

also be used to update an existing stack. When we hit 

http://localhost:3000/, then we will be getting the container id 

in the response. 

 

6.3 Generating load using Tsung benchmarking tool  

 

We have used Tsung in order to generate the workload. 

Tsung gives us flexibility to generate the variable and constant 

load, which helps us to improve our prediction. And it helps 

us to visualize the different variations in load. For the 

generation of the load, we define a load progression step in 

XML file. The format is something like:  

 

<load> 

<arrivalphase phase="1" duration= 

"10"unit="minute"> 

<users interarrival="2" unit= 

"second"></users> 

</arrivalphase> 

</load> 

 

With this setup, during the 10 minutes of the test, a new user 

will be created in every 2 seconds. It is up to us to add any 

number of arrival phases, as we want. We can also add 

maximum number of users, which can be generated in one 

arrival phase. Tsung is also used to produce log files, reports 

and graphs for real time analysis. It produces these analytic on 

port 8091. 

 

6.4 Plotting of the results  

 

For the plotting of the results, we have used Gnu plot, which 

is a command-line driven graphing utility for Linux. Here, we 

are plotting the number of containers corresponding to the 

workload versus time graph.  

 

set style line 1 lc rgb ’#0060ad’ lt 1 

lw 2 pt 7 ps 1.5 

plot ’plotting_data.dat’ with 

linespoints ls 1 

 

6.5 Result analysis  

 

To explain the working procedure, we have created two 

different scenarios of load using Tsung. The two scenarios are 

completely opposite of each other and show how our algorithm 

is able to adapt these different use cases.  

 

1) In first scenario, the load grows smoothly, then it 

keeps stable, then it drops slowly.  

2) In second scenario, we tried to give a shaking load, 

where load increases and decreases rapidly again. 

 

In first scenario (Figure 3), the number of containers varies 

quickly with respect to changing load. As load increases, the 

reactive model is quick to scale-out. In the duration of stable 

load, numbers of containers remain constant. Then as the load 

drops, our proactive model reduces the number of containers 

once the load keeps decreasing. In the simulation, we have 

considered one parameter such as CPU load. The proposed 

approach performs horizontal elasticity. In the horizontal 

elasticity, when the computing resource utilization reaches up 

to a predefined threshold, the auto-scaler performs the trigger 

action and creates a new machine instance. When we go for 

vertical elasticity, then we will use the single parameter. In 

vertical elasticity, we will increase or decrease the single 

parameter based on the utilization. 

 

 
 

Figure 3. Number of Containers v/s Workload for Scenario 1 

 

 
 

Figure 4. Number of Containers v/s Workload for Scenario 2 

 

In second scenario (Figure 4), even if the variation of load 

is high, our algorithm does not hastily decrease the number of 

containers until the load is stable. The number of the container 

decreases in the proactive mode. The proactive approach is 

used to predict the number of containers still needed in the 

future to manage the workload. When the algorithm requests 

to execute the scale-out command, the auto-scaler waits 10 

seconds before executing it. In this time interval if the 
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workload suddenly increases, it protects the system from going 

into an overloaded state. It stays 10 seconds, which avoids 

system failure, so it does not waste computing resources. This 

ensures better QoS and makes it less sensitive to flash crowds. 

We have also shown the comparison between different 

predictive models that we have used like ARIMA, SARIMA 

and SVR. From Figure 3, we can observe that the maximum 

number of containers required is least in SVR and it can 

predict the decrements in workload much efficiently. In Figure 

5, we have also compared the number of responses fulfilled 

per second when using three different predictive models and 

here we can observe that the response rate of SVR is better 

than other two models, i.e., SVR fulfill more requests per 

second and SARIMA also performs quite good in terms of 

requests fulfillment.  

 

 
 

Figure 5. Comparison of Response rate 

 

 
 

Figure 6. Comparison of CPU utilization 

 

In Figure 6, we have also compared the average CPU 

utilization of all the running containers using these three 

models and observed that the CPU utilization is better in SVR 

followed by SARIMA and lastly ARIMA model for prediction 

in workload.  

In Figure 6, the simulation has been done through workload 

generated tool, namely Tsung. The load varies with the 

number of increases or decreases in hits. The Tsuing can 

generate 5000 requests/second. With the different time 

interval and number of hits, the number of containers may 

increase or decrease in the simulation. The simulation has been 

done in both the minimum and maximum load to check the 

system performance and increase/decrease the number of 

containers. The proposed approach uses the reactive approach 

to increase the number of containers when the workloads 

increase, and a proactive approach when the number of 

containers decreases. 

 

Table 1. Number of Containers corresponding to Workload 

 

Sr. 

No. 
Timer Workload 

Hybrid 

using 

ARIMA 

model 

Hybrid 

using 

SARIMA 

model 

Hybrid 

using 

SVR 

model 

1 0 0.815 10 10 10 

2 10 0.5425 10 10 10 

3 50 0.77 12 12 12 

4 100 1.5975 17 10 10 

5 150 2.16 24 15 13 

6 200 2.5225 35 21 20 

7 250 2.46 46 31 31 

8 300 2.5725 49 40 42 

 

In Table 1, we have shown the required number of 

containers corresponding to changing workload for all three 

models, i.e., ARIMA, SARIMA and SVR, which we have used 

in our hybrid algorithm.  
 

 

7. CONCLUSION AND FUTURE DIRECTION 

 

The proposed strategy explores the use of a hybrid approach 

using both reactive and proactive models for horizontal scaling 

(e.g., number of containers) to manage the fluctuating 

workload. The reactive model is used basically to quickly 

scale-out in case of increasing workload. The proactive model 

is primarily used to scale-in since it uses past data to forecast 

future workload. Even with a high load variation, this 

algorithm does not hastily decrease the number of containers 

until the load becomes stable. The proposed approach gets the 

best of both reactive and proactive scaling and tries to 

eliminate any limitations if these approaches are applied 

exclusively. The experimental results also show that it offers 

good efficiency and scalability. In the future, we can use this 

model for hybrid scaling, where horizontal and vertical scaling 

is done together to make it more efficient. Here, we consider 

only one variable for the forecasting; for better results, we can 

use other variables like memory, users, CPU, etc. We can also 

use other sophisticated algorithms like TOPSIS, PID, etc, for 

reactive and proactive scaling and compare it to our current 

results. 
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