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ABSTRACT
Due to uncertainty in it, noise prevents exact prediction of the future from the past. Noise is generally described 
by spectral densities of certain functional dependence on frequency. Years of research revealed relations 
between natural phenomena and noise spectral distributions of either man-made or natural sources of differ-
ent spectral density signal content. However, since many random functions of noise appear in nature and in 
technology in power spectra and power law relations, certain categories of noise spectral density distributions 
are generally described as powers of frequency¸ being grouped in such a way that each one represents certain 
specifi c natural and man-made phenomena. On the other hand, most of the natural phenomena have fractal 
dimensions that combine together spectral behaviour that occurs in reality as can be seen by measurements 
results. The paper shows these functional descriptions of noise in terms of colours and their combination with 
fractals theories, which enable development of advanced technologies  
Keywords: Frequency dependent noise, stochastic fractals and noise, applications.   

‘I ascribe to nature neither beauty, deformity, order, nor confusion. It is only from the view point 
of our imagination that we say that things are beautiful or unsightly, orderly or chaotic’. 

Baruch Spinoza, 1665                                                                                                                              

1 DETERMINISM, UNCERTAINTY AND LIFE
Noise is a basic entity in the essence of life as explained in [1]. ‘Deterministic life’ may become 
impossible for human beings, since it means clear knowledge of the future, including unavoidable 
disasters, with no hope for a change. On the other hand, uncertainty encourages going on with 
life, trying to improve and maintain current states, accomplish targets and keep an amount of 
 optimism.

Noise appears in all areas of science and technology, and it is involved with everything in life. 
It can be described by suitable mathematical formulation that illustrates different topics in an abstract 
way and leads to general conclusions. An important feature is that there are many kinds of noise 
which differ by their dependence on frequency. Each such dependence leads to different phenomena 
in nature and different applications.   

2 EXAMPLES  OF FREQUENCY DEPENDENCE OF NOISE 

2.1 Ambient noise in the sea

While signals are desirable sounds, in the case of ambient sounds, noise is undesired.  Different 
kinds of noise in the sea, with different spectra, have been formulated in the past as a consequence 
of a huge amount of research. This formulation includes functional relations such as white noise, 
pink noise and tonal components.

A pioneering research was done by Knudsen et al. [2]; see Fig. 1. They obtained the following 
relation for sea surface agitation at 1–100 kHz:
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SPL k1  is a constant that depends on the sea state.  f – frequency (Hz)
Mellen [3] obtained through classical statistical mechanics, theoretical formulae for the ambient 

ocean noise at the ultrasonic band f > 50 kHz, which is due to thermal noise. The result for the ther-
mal noise is:

 NL f dB re Pa The frequency f in kHz= − + ( )15 20 110lg ; ; .m  (2)                                                             

In general, as Wenz [4] has shown, the ambient noise consists of at least three constituents: turbulent 
pressure fl uctuations (1–100 Hz), wind dependent noise due to bubbles and spray that result from 
surface agitation (50 Hz to 20 kHz) and density-dependent ocean traffi c (100–100 Hz). See Fig. 2.  
Using the graph, the relevant components can be added. Yet, the overall dependence of noise on 
frequency is clearly observed. The ‘rule of fi ves’ of Wenz considers both frequency and wind speed 
on noise level is: 

 NL f U f U( , ) [lg lg ( )]= − × ( ) −25 5
3

10
510 10   (3)     

It is very important to note that the amalgamated observation of the ambient noise reveals a similar-
ity structure, in both the acoustical and wind dependency, as Kerman [5] has shown.   

This topic is reviewed, for example, by Urick [6] and Carey & Richard [7]. 

2.2 Illustration of the effect of frequency shift of noise spectra on annoyance; see Rosenhouse [8]

Annoyance by noise depends strongly on its informative, spectral contents and individual effect on 
people. Yet, standards dictate certain formal limitations, ignoring such details. In practice it happens 
in many cases of recreational areas, industrial premises and other kinds of activities, that even when 

Figure 1: Knudsen et al. [2] curves of underwater noise.
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results of measurements satisfy the standards limits, complaints do not stop, often involving threats 
of legal acts. The following case study of the effect, based on actual acoustic measurements, shows 
factors that cause extreme sensitivity to certain noise patterns, even if the total amount of noise 
remains unchanged. The effect of noise colour difference is enhanced if the added noise has a certain 
periodicity, located where the background noise has lower masking effect. Since in many cases the 
background noise has less annoyance effect or resembles white or pink noise, other noise sources of 
different spectra can be clearly heard, if they include local amplitudes in the frequency domain that 
are higher than the background noise. 

The following example is of neighbours’ complaints about intruding noise coming from a com-
plex of swimming pools. The spectra of different cases of noise are given in Fig. 3. The top fi gure in 
Fig. 3 is a spectrum of noise without children’s shouts from a nearby swimming pool, where lower 
frequencies are dominant. The neighbours did not complain about that. Almost the same happens 
when transportation noise is included but the lower frequencies became more dominant, but neigh-
bours did not complain about that. See bottom fi gure in Fig. 3. The spectrum in the middle fi gure is 
for the case where children’s shouts were added. Those shouts caused a dominant effect at higher 
frequencies and this was the problem that needed to be solved.   

Figure 2: Composite ambient noise spectra — Wenz [4]. 
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Acoustic solutions include means for undesirable noise reduction to levels much below the back-
ground noise, by as much as 9 decibels, to allow background noise masking of disturbing sources. 
Such reduction alters the intruding noise status from being strongly heard at the privacy zone. 

3 COLOURS OF NOISE
The noise scales were discovered by Johnson [9], where the random process S (f) is given by the 
following general dependence on frequency. 

 S f C
f

( ) ;= a   C is a constant. (4)
 f is the frequency in Hertz. 

Following this defi nition, research has shown later that many phenomena in physics (including 
astrophysics and geophysics), biology, technology, speech and music, economics and psychology 
are involved with the noise range 0 5 1 5. .≤ ≤a  as will be shown later.

A form of a white noise is Johnson’s noise (Johnson [10]) which results from a thermal excitation 
of electrical components, such as a resistor. The noise is caused by the motion of the charge of atoms 
from which the resistor is built. The thermal excitation is caused by heat, and thus, when the resistor 

Figure 3:  The effect of noise spectra of a swimming pools complex on residential areas. Top part: 
No children’s shouts and no transportation noise. Middle part: Children’s shouts added. 
Lower part: Transportation noise added.
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gets hotter it becomes noisier. Many tests of electrical equipment and components are using several 
colours: white noise, pink or brown, and researchers and laboratories have, for many decades, been 
applying various standard noise colours for different acoustic measurements. The different colours 
(white which is proportional to 1 0/ f , pink which is proportional to 1 1/ f , brown which is proportional 
to 1 2/ f  and others) have different coeffi cients, α, as will be discussed later, and the power spectra 
being a plot of a square magnitude of the Fourier transform against log frequency as shown in Fig. 4.

3.1 White noise

White noise is proportional to one. See Fig. 5.

 S f C
f

S f C
f

( ) ; ( )= = ∴ =a a 0 0 , C is a constant (5)

‘White noise’ is a random signal of no correlation at two difference times.  Its power spectral density 
is fl at over the whole range of frequency bands. Theoretically, the frequency band of white noise is 

Figure 4: A scheme of common colours of noise. White noise is represented by a horizontal line. 

Figure 5: A typical plot of white noise.
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infi nite and as a result carries an infi nite power which, also, does not depend on time. Acoustic white 
noise is analogous to optical ‘white light’, which also consists of a fl at power spectrum that has equal 
quantities of intensity at all the frequencies within the visible light. Analogously, acoustic white 
noise contains equal quantities of intensity at all the audible frequencies. In this case, each amplitude 
has the same chance to be at a certain point as any other amplitude has. Thus, it is not diffi cult to 
create white noise by using a program that generates stochastic signals of the size −0.5 to 0.5. 

White light includes all the visible colours equally, and as a result it is practically a broad band 
noise. White noise does not necessarily represent each phenomenon that occurs in nature. Fre-
quently, there is interest in Gaussian distribution of the acoustic power, where most of its values are 
close to zero.  Frequently, there is also interest in values that range between −0.5 and 0.5, as the 
Gaussian distribution gives.     

While a Gaussian process is a stochastic process, for which any fi nite combination of samples will 
be normally distributed, many other kinds of possible probability density distributions that are avail-
able suit other applications, such as Laplace and Cauchy probability density functions. A major 
difference between distributions is the thickness of their ‘tails’. There is a chance that a thicker tail 
will be responsible for more extreme events (Rosenhouse [11]) and the larger the Gaussian bell for 
the same average of noise distribution (e.g. the noise of aircrafts take off measured at a control point 
near an airport) the noisier the extreme cases. 

Gaussian White Noise (GWN)–The Gaussian distribution has a mean value (m) of a certain 
value that is statistically calculated, as well as the standard deviation (σ). In the case of Gaussian 

white noise the mean or the expected value is zero: m E x x p x dx= = ⎡⎣ ⎤⎦ =
−∞

∞

∫( ) ( ) 0, and the mean 

standard deviation, σ of the pseudo random sequence becomes: s = −( ) = ( )E x m E x2 2
, for 

m=0. x is a random variable defi ned on a probability space. p (x) is the probability density function 
(pdf). If x is a discrete random variable, then a probability mass function (pmf), f(x) is used and: 

 E x x p x dx
i

( ) ( ) ;= ⎡⎣ ⎤⎦ =∑ 0  s = −( ) = ( )E x m E x2 2
, for m = 0. (6)

GWN provides simulation of real situations in our world. It is often used as a source of numbers 
generator due to its independent statistical features. 

An additive white Gaussian noise (AWGN) channel is regularly used in communication. 
The input signal s (t) is contaminated by noise, n (t), that can be AWGN, during its transmission 

from the source location to the receiver, and it becomes distorted in amplitude and phase, including 
a varying time delay.  The result is the output:

 y t s t n t( ) ( ) ( )= +  (7)

3.2 Pink noise

Pink noise depends on the ratio 1/f. Its bandwidth ranges up to 20 kHz. See Fig. 6:

S f C
f

( ) ;= =a a 1  

 S f C
f

( )∴ =  C is a constant (8)

Examples in nature include brain EEG, brain MEG, human heart sound, human time estimation, 
squid giant axon, vacuum tube and semiconductor noise, music and natural sounds. 
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As a result of this dependence, pink noise has a uniform distribution along the logarithmic fre-
quency scale, which means a fl at spectral density as a function of the percentage of the band 
width–or an equal power for each octave band. It means that pink noise is a frequency spectrum with 
an intensity that decays approximately at the rate of 3 dB per octave (or 10 dB per each decade). 
Practically, passing white noise through a fi lter of 3 dB per octave intensity decay yields pink noise. 

Pink noise has applications in sound and audio systems and tests. Since pink noise is perceived as 
more natural for the human ear, it is very popular in investigation of tests in building and environ-
mental acoustics. This application has advantages, since 1/3rd octave bands suit humans’ ability to 
discriminate irregularities of the frequency response, and also since measurement of 1/3rd octave 
bands smoothens many very narrow peaks.  

The fl icker noise, which is 1/f noise, is very close to pink noise. The difference is that the fl icker 
noise is limited to 2 kHz. It is used in solid state physics and it describes noise radiated from defects 
along the wave-guide channel, as a result of base currents in conductors (Barnes and Allan [12]).  

3.3 Brown or Brownian noise

Brown noise is the integral of white noise. See Fig. 7. Its defi nition is:

S f C
f

( ) ;= =a a 2  

 S f C
f

( )∴ = 2  C is a constant (9)

If H = 0.5 then Brownian motion occurs, with independent and uncorrelated increments. H > 0.5 
yields smooth curves and positive correlated increments. H < 0.5 results in erratic rough curves and 
increments with negative correlation. 

Each point along the route of Brownian motion depends on the value of the previous point. Each 
new point is moved stochastically a little bit from the previous state due to a ‘random walk’, a term 
originally coined by Pearson [13]. Brown noise is generated by addition of a random number to the 
previous value. 

Equation 9 shows that brown noise expresses a drop of 20 dB per decade or 6 dB per octave band. 
That drop means more energy at the lower frequencies and a roar of low frequencies. It is heard also 
as the fall of water in water cascades or heavy rain.  

As it is, Brownian noise can be heard if it is acoustic, but in general it carries a mathematical 
statistical form of many aspects which makes it universal, including thermal fl uctuations that have 
proven the existence of molecules, life, earth, and environmental sciences, as well as stock market 
behaviour, being in general responsible for dynamical life sustaining processes under the same title 
of Brownian noise.  

Figure 6: A typical plot of pink noise.
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The situation where stochastic events, such as pollen movement in fl uids (see Fig. 8) and their 
collective behaviour can be quantitatively given in terms of probability and statistics, leads to the 
general mathematical theory of the ‘random walk’. This theory has uses in many areas, such as 
molecular biology, wireless nets and changes in the stock market. 

The mathematical formality of describing Brownian motion (BM) can be modelled by a simple 
description as follows:   

The position of a particle x(t) at the time t is a result of a random process. The change of location 
in each step leads to a new location as follows:

 x x v( ) ( ) ( , ).t t t t N+ = +Δ Δ 0 5 0 1   (10)

v is the average speed of a particle and N(0,1) is a normal randomly distributed variable. The incre-
ment x(t2) – x(t1) has a Gaussian distribution, with the average E and the variance = σ2 (σ − standard 
deviation) properties as follows:

 E x t x t Var x t x t t t( ) ( ) ; ( ) ( ) .2 1 2 1 2 10−[ ] = −[ ] ∝ −  (11)

Figure 7: An example of Brownian noise–Hurst parameter = 0.5–performed by Daphne Sobolev.

Figure 8: Brownian motion as measured by Perrin (1909).
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The position of a particle x(t) is continuous, but not differentiable. The increments:

x t t x t
x t rt x t

r
( )

( ) ( )
.0 0

0 0
0 5+ − ( ) + −⎡⎣ ⎤⎦and  are statistical self-similar. Also: If t0 = 0, x(t0) = 0, then, 

x(t) and 
x rt
r
( )
.0 5  are statistically equivalent. These last assumptions allow for development of the algo-

rithm that generates 1D Brownian motion.  
The fractional Brownian motion (fBm) is a continuous Gaussian process BH(t), on [0,T]. It starts 

at zero and has zero expectation for all t’s in this domain. In fact it is an extension of the Brownian 
motion (Bm), which carries the form:

 var ( ) ( )x t x t t t H
2 1 2 1

2−[ ] ∝ −  (12)

x t and r x rtH( ) ( )  are statistically self-similar with respect to the Hurst parameter (or index), which 
is a real number associated with fBm. Thus, the fBm is properly rescaled by dividing the amplitudes 
by rH. 
0 1≤ ≤H  determines the roughness of the curve. H, which is associated with fBm, is a real num-

ber named after Hurst (Hurst, [1951] ), and it was introduced by Mandelbrot and van Ness [1968]. 
The increment ΔB t B t B tH H H( ) ( ) ( )= − −1  is the fractional Brownian noise.

The fBm satisfi es the following covariance function:

 E B t B t t t t tH H
H H H( ) 1

2
1
2

1
21

2
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⎣
⎤
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The fBm of the Weyl type (see in Mandelbrot and van Ness [1968], is defi ned as
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for t > 0 and for t < 0. (14)

Both fBm of the Riemanian – Liouville type and the one of Weyl type are self-similar, having the 
property:

 B at a B t aH
H

H( ) ( );≡ > 0;  (15)   

The symbol ≡ in eqn (15) is equality in the stochastic sense. Hence, Weyl integral is a fractional 
integral of white noise, used to defi ne the Brownian motion process. The random walk is based on 
the mutual dependence between two random variables–e.g. Gaussian distribution:

 p x m
x m

i
i( , , ) exps

s p s
=

− −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2 2

2

2  (16)

This link was very important for the future development of tools to forecast stock market behaviour 
as the wave principle suggested by Elliott (1871–1948) in a book he published in 1940. 
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Figure 9: An example of price changes of a stock, self-similar and self-affi ne systems.

3.4 Black noise

It is an anti-phased white noise, which as such it cancels the primary white noise, by a negative 
overlapping the original signal shape. By defi nition, it is an ‘anti-sound’, which has a specifi c appli-
cation of cancelling undesirable noise. This is the meaning of active noise control.

Black noise is also defi ned as noise whose spectrum varies as:

S f C
f

( ) ;= >a a 2  

 S f C
f

( )∴ < 2  C is a constant (17)

Black noise is used to describe various environmental processes as natural and unnatural catastro-
phes–as fl oods, drought, bear-like fi nancial markets and population persistence problems because of 
environmental changes, all backed up by scientifi c evidence. Such disasters tend to appear in groups.         

4 SUMMARY
Noises can be classifi ed in accordance with the specifi c spectral shapes and specifi c parameters of 
each topic involved. Some basic ideas about noise, out of a huge amount of topics in science, art, 
medicine and technologies involved with noise were presented here. Noise is colourful. It exists 
everywhere, carrying endless shapes.   
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