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ABSTRACT
Large elastic deformation is used in order to model the mechanics of left ventricular contraction. The active 
force generated by the myocardium is modeled as force/unit myocardial volume in the mathematical formal-
ism describing the local equilibrium of forces in the myocardium. Expressions for the stress components are 
derived by assuming a cylindrical geometry for the left ventricle, the total stress is expressed as the sum of a 
component due to the deformation of the passive medium of the myocardium and an active component induced 
by the tension in the muscular fibers. It is shown that knowledge of the tension generated by the muscular fiber 
in the myocardium can lead to useful information for the estimation of the pseudo-strain energy function used 
to express the stress‑strain constitutive relations in a non-linear model.
Keywords: active force of the myocardium, cardiac mechanics, mathematical modeling of ventricular contraction, 
pressure‑volume relation in the left ventricle.

INTRODUCTION1 
Many articles have been devoted to the study of stress‑strain relations in the myocardium and how 
to formulate a pseudo-strain energy function W that is used to derive the constitutive relations 
between stress and strain [1–4]. Previous studies by the authors [5–9] have shown how the active 
force developed by the myocardium can be modeled as force generated by unit volume of the myo-
cardium in the mathematical formalism used to describe the local equilibrium of forces. This 
mathematical approach was successfully developed by using large elastic deformation [5, 8] as well 
as linear elasticity [6]. For this purpose the total stress in the myocardium is expressed as the sum of 
a contribution due to the stress generated by the deformation of the passive isotropic medium of the 
myocardium, and a contribution coming from the stress induced by the active muscular fibers.  
A mathematical description of how this splitting is done can be found in the work of Spencer [10]. 
The approach used in this study is similar to the approach used in some studies in which the pseudo-
strain energy function W is split into the sum of an isotropic component and an anisotropic component 
in the form W = Wiso + Waniso [11], the link between the two approaches is evident from what follows. 
We also show in this study how the calculation of the stress in the myocardium can be based on the 
knowledge of the muscular fiber tension T without an explicit knowledge of the pseudo-strain energy 
function W, which presents a possible way to estimate W as a result of the method of calculation 
shown in this study.

ACTIVE FORCE OF THE MYOCARDIUM2 
The myocardium is represented as a thick-walled cylinder (see Fig. 1 & Fig. 2), with the myocardial 
muscular fibers arranged in a helical way in a passive soft incompressible medium assumed to be iso-
tropic. Inertia forces and viscous forces are neglected in the quasi-static approximation used in this 
study. The unit tangent vector t in the direction of the helical fiber makes an angle g(r) with the unit 
vector eq pointing in the circumferential direction and can be expressed in the form (see Fig. 1)

	
cos ( ) sin ( )r rg g= + ze eqt 	 (1)
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Figure 1: � (er, eq, ez) are three unit vectors in a cylindrical coordinates system. A unit vector t 
tangent to the direction of a helical muscular fiber in the myocardium makes an angle g(r) 
with the unit vector eq in the circumferential direction.

Figure 2:  The left ventricle is represented as a thick-walled cylinder, with inner radius ri and outer 
radius ro, wall thickness h = ro – ri. A helical fiber is projected as a dotted circle on the 
cross-section. The radial active force/unit volume of the myocardium is Dc(r) = –Dr(r) in 
the notation of the text. Pi is the left ventricular pressure, Po is the outer pressure on the 
epicardium.
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Notice in this case div t = 0 which in conjunction with the result given by Peskin [12] allows one to 
express the active force/unit myocardial volume in the form

	

d( )
( , , )

dr z

T
D D D

sq= =D
τ 	 (2)

where T(r, z) is the tension/unit myocardial area generated by the muscular fibers, d/ds = t·∇ with 
∇ standing for the gradient symbol which in cylindrical coordinates is given by

	

1
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The unit vectors in cylindrical coordinates are given by er , eq and ez. Performing the differentiation 
on the right hand side of eqn (2) gives the following results
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The active stress tensor q (components qij) represents the stress components in an orthogonal cylin-
drical coordinate system induced by the muscular fiber stress T(r, z). By taking into consideration 
eqn (1), the components of the active stress qij = T tij (see [13]) are given in a cylindrical coordinate 
system by the following relations:
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The relation between the active force/unit myocardial volume D= (Dr, Dq, Dz) and the active stress 
tensor q can be obtained by using Gauss theorem. The traction force Fa acting on a closed surface A 
enclosing a volume V inside the myocardium can be expressed in the form

	
d (div )dV= =∫∫ ∫∫∫aF q A q 	 (6)

Consequently the active force/unit myocardial volume can be expressed as

	 div=D q 	 (7)

We take into consideration eqn (5) and the fact that the solution is independent of the q-coordinate 
(symmetry around the z-axis). The expression of the divergence in cylindrical coordinates (see 
[8]) gives
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from which we retrieve the relations given in eqn (4). We notice from eqns (4) and (5) that we have 
the relations

	

z zz
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r z z
qqq
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= ‑ = =

∂ ∂
	 (9)

QUASI-STATIC EQUILIBRIUM CONDITiON3 
We assume symmetry around the z-axis (solution independent of q). Under this assumption the  
total stress components tij must satisfy the quasi-static equilibrium condition div t = 0, which in 
cylindrical coordinates is expressed as follows:
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We shall simplify the problem by assuming that tzr and tzq are independent of z variable, which gives

	
2

1 2const constr rzr t H rt Hq = = = =
	

(11)

The boundary conditions for the radial stress on the surface of the cylinder can be expressed as follows:

	 = ‑ = ‑( ) ( )rr i i rr o ot r P t r P 	 (12)

We now use the decomposition tij = sij + qij. By using eqns (9), eqns (10) can be written in the form
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The force/unit volume of the myocardium Dr appearing in eqn (13a) is similar, but not identical, to 
the introduction of the derivative of a hydrostatic pressure in eqn (26) of reference [14]. Another, but 
different, attempt to divide the stress in the myocardium into two components can be found in [15].

Some simplifying assumptions concerning the dependence on the z variable will be introduced. 
By noting that trq = srq (qrq = 0), trz = srz (qrz = 0) and trr = srr (qrr = 0), one can write by referring to 
eqns (11) and (12)

	
2

1 2const constr rzr H r Hqs s= = = = 	 (14)

	 ( ) ( )rr i i rr o or P r Ps s= ‑ = ‑ 	 (15)

Two useful relations that we shall apply in our calculations are: first the moment of forces M around 
the z-axis is assumed zero (no external moment applied around the z-axis).
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22 ( ) 0
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z zri
M q r drq qp s= + =∫ 	 (16)

from which we can assume that

	 z zqq qs = ‑
	

(17)

Second from the equilibrium of forces in the vertical direction we get

	
0zz zzqs x+ + = 	 (18)

where x is the traction on the cross-section and it is assumed to vary linearly over the cross-section
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We have taken in our calculation the stress at the endocardium xend = 0.5Pi and at the epicardium  
xepi = –0.01Pi based on estimate of the average traction xav = (Piri

2 – Poro
2)/(ro

2 – ri
2).

DEFORMATION GRADIENT4 
The thick-walled cylindrical structure representing the left ventricle is supposed to have a stress free 
configuration with coordinates (R,  Q, Z), at end-diastole the cylindrical coordinates are represented 
by (red, qed, zed) and finally by (r, q, z) during the systolic phase. The coordinate transformation from 
one configuration to the other is expressed as follows:

	 q a= = Q =1 1( )ed ed ed edr r R z k z 	 (20)

	 2 2 2 2( ) ( ) ( )ed ed ed ed z ed ed edr r r z r z k z k rqq a q y q w= = + + χ = + + 	 (21)

The two preceding equations can be combined together to give

	 ( ) ( ) ( )zr r R Z R z k Z k Rqq a y w= = Q + + χ = + Q + 	
(22)

The deformation gradient F1 for the transformation (R, Q, Z) → (red, qed, zed) can be expressed as 
follows (see [2]):

	

1 1

1

d1
0 0

d

0 0

1

0 0

ed ed ed ed

ed ed ed ed ed
ed ed

ed ed ed

r r r r

R R Z R
r r

F r r
R R Z R

z z z

R R Z k

q q q

 ∂ ∂ ∂ 
  ∂ ∂Q ∂   

∂ ∂ ∂   = =   ∂ ∂Q ∂   
∂ ∂ ∂   

  ∂ ∂Q ∂   

a

	 (23)

The deformation gradient F2 for the transformation (red, qed, zed) → (r, q, z) is given by
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The deformation gradient F = F2* F1 of the combined transformation is given by
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(25)

By assuming that the contraction takes place at constant volume, the incompressibility constraint is 
expressed as follows:

	
2 2 2

3 2 1(det ) (det ) (det ) 1I F F F= = ∗ = 	 (26)

where I3 is the third invariant of the matrix F. By calculating the determinants in eqn (26), equating 
to one and then integrating we get
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The constants in eqns (27)–(29) are defined as follows: K1 = α1k1, K2 = α2k2z – y2k2q and K = K1K2 = 
α1k1α2k2z – α1k2qk1y2 = αkz – kqy. The inner radius is Ri in the stress free configuration and ri during 
the systolic phase.

The helical configuration of a muscular fiber in the myocardium is supposed to be confined to a 
cylindrical surface. A unit vector t in the direction of the fiber in the deformed configuration will 
make an angle g(r) calculated with respect to the circumferential direction (see Fig. 1), in the stress 
free configuration the corresponding unit vector is to and the angle is go(r), the relation between 
these two vectors are given by
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where lf is the stretch ratio in the direction of the fiber. By using eqn (25) we can write
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We can model first go(r) and then use eqns (31, 32) to calculate g(r). But in view of the method of 
calculation we are going to use later on, it is easier to model directly g(r) and then to calculate back 
go(r) at the end if needed. Consequently we shall assume directly either a linear variation for g(r) 
across the myocardium of the form
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or a cubic variation of the form [16]
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In our calculation, we have taken gend = 35° and gepi = –35°. The radial variation for these two mod-
els is shown in Fig. 3. lf can be calculated from eqns (31) and (32) by eliminating cos(go) and sin(go) 
from these two equations.

CONSTITUTIVE RELATIONS5 
The relation between stress and strain is expressed with what is called constitutive relation. It is 
expressed by calculating the left or right Cauchy‑Green deformation tensors, respectively, B = F*FT 
or C = FT*F. In this study we shall use the model of Humphrey and Yin [1] which focus on a  
subclass of transverse isotropic material with pseudo-strain energy function W given by

	 W = W(I1, lf),	 (35)

where I1 is the first invariant of the matrix B, I1 = tr(B). Written explicitly the expression of B 
becomes
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Figure 3:  Linear model (eqn (33)) and non-linear model (eqn (34)) for the variation of g(r) with the 
radial distance r from endocardium to epicardium.
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By using eqn (36) the Cauchy stress tensor t can be expressed as follows (see [1]):

	 12ij ij I ij f f i jt p W B Wld l t t= ‑ + + 	 (37)

where WI1 = ∂W/∂I1 and Wlf = ∂W/∂lf, p is a Lagrange multiplier introduced to express the incom-
pressibility condition that the contraction of the myocardium is assumed to take place at constant 
volume. By writing the total stress tij = sij + qij it is possible to split eqn (37) into two parts. The first 
part has the form

	 12ij ij I ijp W Bs d= ‑ +
	

(38)

where sij is the stress resulting from the deformation of the isotropic passive medium of the myocardium, 
and the second part has the form

	
, withij f f i j f fq W T Wl ll t t l= = 	 (39)

where qij is the stress induced by the muscular fiber tension T(r, z) and reflects the directional 
character of the stress. Equation (38) can be written in explicit form as follows:
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In the applications that follow, we shall neglect dc/dR and dw/dR that are relatively small. This 
simplifies the numerical procedure of calculation used in what follows.

MATHEMATICAL PROCEDURE OF CALCULATION6 
The numerical procedure used in what follows avoids an explicit knowledge of the pseudo-strain 
energy function W(I1, lf). If the values of the fiber tension T are known, then we can calculate 
directly Dr, szq and szz from eqns (4a), (17) and (18). We then proceed by eliminating –p and  
WI1 from eqns (42–45) and we get
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and
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Equations (46) and (47) are the basis of the calculation outlined in what follows. We notice for 
instance from Fig. 5 that szq is zero for a value of r we indicate by rz, the corresponding value Rz is 
calculated from eqn (27). The numerator of eqn (46) gives

	
2 0z zk k Rqa y+ = 	 (48)

and we have from the incompressibility condition

	 zk k Kqa y‑ = 	 (49)

where 2 2 2 2( ) / ( )o i o iR R r rK = ‑ ‑  from eqn (27). By solving eqns (48) and (49) we get
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These two values are then substituted in eqn (46) evaluated at ri and ro with the boundary conditions 
given by eqn (15). We get the two following relations:
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where cfi = σzq(ri)/(σzz(ri) + Pi) evaluated at ri, cfo = szq(ro)/(szz(ro) + Po) evaluated at ro and 
det = k q
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2 . The two roots kq and kz of eqns (52) and (53) are calculated by using Newton  
iteration procedure. For this purpose we calculate the Jacobian
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We start with an approximation of kz and kq. The iteration process is expressed in the form 
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which gives the values of kz and kq at the (j + 1)th iteration in terms of the preceding jth iteration. 
Having calculated these two parameters we can then calculate α and y. srr is then calculated from 
eqn (46) and sqq from eqn (47).

NUMERICAL APPLICATIONS7 
The three simulations described in what follows follow the same steps of calculation. Simulation #1 
is based on data for the fiber tension T calculated from Fig. 7A of Feit [17], and simulations #2 and 
#3 are based on data of T/Pi calculated from Fig. 5 of Chadwick [13] who uses in his simulation the 
same dimension ro and ri reproduced from Feit. Consequently the three simulations use the same 
values for the outer radius ro = 3.38 cm, the inner radius ri = 1.02 cm and length l = 3.06 cm.

Simulation #17.1 

A linear variation of g(r) is assumed (see eqn (33)). The radial contraction force Dc = –Dr is positive 
during the systolic phase or late diastolic phase and it is calculated from eqn (4a), both T and Dc are 

Figure 4: � Simulation #1, radial variation from endocardium to epicardium of the fiber tension  
T (left), and of the radial active force/unit volume of the myocardium Dc = –Dr (right).

Figure 5: � Simulation #1, radial variation from endocardium to epicardium of the stress component 
szq (left), and of the axial stress szz (right).
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plotted against r in Fig. 4. The variation of szq (see eqn (17)) and szz (see eqn (18)) with r is shown in 
Fig. 5, szq = 0 for rz = 2.2 cm which is used to calculate Rz in eqn (48). We have taken in our calculation 
the inner pressure Pi = 10 mmHg from the work of Feit [17] and we have assumed that the outer pressure 
Po ≈ 0.05Pi. The corresponding dimensions in the stress free configuration were estimated as Ro = 
3.48 cm and Ri = 1.15 cm, srr = trr (qrr = 0) and sqq are calculated as indicated in Section 6 and the results 
are shown in Fig. 6 together with qqq and tqq = qqq + sqq. Calculated values of kq = ‑0.4699, kz = 0.9350,  
α = 1.0603 and y = 0.1011. Finally the variation with respect to r of Wln and WI1 is shown in Fig. 7.

Simulation #27.2 

A linear variation of g(r) is assumed (see eqn (33)). The radial contraction force Dc = ‑Dr is positive 
during the systolic phase or late diastolic phase and it is calculated from eqn (4a), both T/Pi and Dc 
are plotted against r in Fig. 8. The variation with respect to r of szq (see eqn (17)) and szz (see eqn 
(18)) is shown in Fig. 9, szq = 0 for rz = 2.2 cm which is used to calculate Rz in eqn (48). We have 

Figure 6. � Simulation #1, radial variation from endocardium to epicardium of the radial stress srr 
(left), and of the circumferential stress qqq (+), sqq (x) and (*) tqq = qqq + sqq (right).

Figure 7: � Simulation #1, radial variation from endocardium to epicardium of Wlf (eqn (39)) (left), 
and WI1 (eqn (42)) (right).
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taken in our calculation the inner pressure Pi = 1 mmHg based on the work of Chadwick [13] and we 
have assumed that the outer pressure Po ≈ 0. The corresponding dimensions in the stress free con-
figuration were estimated as Ro = 3.455 cm and Ri = 1.08 cm, srr = trr (qrr = 0) and sqq are calculated 
as indicated in Section 6 and the results are shown in Fig. 10 together with qqq and tqq = qqq + sqq. 
Calculated values of kq = 0.2011, kz = 0.9905, α = 1.0388 and y = –0.0413. Finally the variation with 
respect to r of Wln and WI1 is shown in Fig. 11.

Simulation #37.3 

A cubic variation of g(r) is assumed (see eqn (34)). The radial contraction force Dc = ‑Dr is posi-
tive during the systolic phase or late diastolic phase and it is calculated from eqn (4a), both T/Pi 
and Dc are plotted against r in Fig. 12. The variation with respect to r of szq (see eqn (17)) and  
szz (see eqn (18)) is shown in Fig. 13, szq = 0 for rz = 2.2 cm which is used to calculate  

Figure 8: � Simulation #2, radial variation from endocardium to epicardium of the fiber tension T/Pi 
(left), and of the radial active force/unit volume of the myocardium Dc = –Dr (right).

Figure 9: Simulation #2, radial variation from endocardium to epicardium of the stress component 
szq (left), and of the axial stress szz (right).
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Figure 10: � Simulation #2, radial variation from endocardium to epicardium of the radial stress srr 
(left), and of the circumferential stress qqq (+), sqq (x) and (*) tqq = qqq + sqq (right).

Figure 11: � Simulation #2, radial variation from endocardium to epicardium of Wlf (eqn (39)) (left), 
and WI1 (eqn (42)) (right).

Rz in eqn (48). We have taken in our calculation the inner pressure Pi = 1 mmHg based on the 
work of Chadwick [13] and we have assumed that the outer pressure Po ≈ 0. The corresponding 
dimensions in the stress free configuration were estimated as Ro = 3.455 cm and Ri = 1.08 cm, 
srr = trr (qrr = 0) and sqq are calculated as indicated in Section 6 and the results are shown in 
Fig. 14 together with qqq and tqq = qqq + sqq. Calculated values of kq = 0.2011, kz = 0.9905,  
α = 1.0388 and y = ‑0.0413. Finally the variation with respect to r of Wln and WI1 is shown  
in Fig. 15.

The three examples show the wide variation of WI1 from one example to another. The values 
of Ro and Ri chosen are not unique, the simulation is very sensitive to the values of the para
meters chosen and there is unfortunately no systematic and simultaneous measurement of all 
the parameters needed for our simulation. On the other hand one should notice the similarity of 
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Figure 12: � Simulation #3, radial variation from endocardium to epicardium of the fiber tension T/Pi 
(left), and of the radial active force/unit volume of the myocardium Dc = ‑Dr (right).

the curves for Wln and T (or T/Pi), which is due to the fact that the stretch ratio ln is varying 
around unity (see eqn (39)). The calculation of the components of the stress has been carried out 
without explicit knowledge of the pseudo-strain energy function W(I1, lf). The next step is to 
study a procedure by which one can recover W(I1, lf) from the knowledge of the partial deriva-
tives Wlf and WI1.

CONCLUSION8 
The total stress in the myocardium can be split into two components, a component due to the defor-
mation of the passive isotropic medium of the myocardium and a component induced by the active 
muscular fibers T. By using this approach we have been able under some assumptions to derive these 

Figure 13: � Simulation #3, radial variation from endocardium to epicardium of the stress component 
szq (left), and of the axial stress szz (right).
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parts of the stress without explicit knowledge of the pseudo-strain energy function W. This method 
is sensitive to the parameters chosen in the calculation, unfortunately not all are measured simultane-
ously. By integrating the partial derivatives of W one can possibly gain better understanding of how 
one can choose directly a mathematical model for W.
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