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The purpose of this study is to investigate the computing capabilities of machine learning
algorithms and remotely sensed signals to extract the agricultural information. Many

techniques and models have been developed to extract information from the remotely
sensed observations, but it remains an exigent problem due to the accuracy, reliability and
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MDA MDG ’ ’ ' ' spectral Landsat-8 data has been explored in the proposed work. An initial attempt has been

made in this study to select important parameters to be used as input to the machine learning
method. Mean Decrease Accuracy and Mean Decrease Gini measures of random forest
algorithm have been used to select the important parameters for predictive modelling. The
results of the study revealed that Green Normalized Vegetation Index, Normalized
Difference Vegetation Index and Land Surface Water Index performed best among other
indices. Bands B2, B3, B6 and B7 of Landsat-8 recorded as top scorers. The proposed work
focused on ensemble machine learning methods to optimize the correlation of historical
crop yield values with spectral information. The Random Forest method exhibits a
significant performance (RMSE= 1.51 t/ha and R? = 0.94) as compared with other methods
such as Classification and Regression Tree, Support Vector Regression and K-Nearest
Neighbor. The proposed model based on random forest algorithm is best among all the
scenarios and growth stages, whereas model based on classification and regression tree
performs worst in all the cases. The proposed study indicates that the numerical value of a
single spectral parameter and single-date data is not sufficient for the reliable yield
estimation because it is difficult to discriminate some of the crops due to similar phenology
in a particular growth period.

1. INTRODUCTION

High-performance computing and recent development in
the field of statistical analysis based on remotely sensed
observations in the spatial as well as the temporal domain,
leads to the optimized and effective decision making [1].
Historical and ground truth information guided by remote
sensing observations has been repeatedly and effectively used
to monitor the agricultural fields and other important resources
[2]. Further, the extracted information and geoinformatics
tools may be beneficial to automate the crop inventory process
[3]. Hence, computing methods such as Digital Image
Processing (DIP) and geoinformatics play an important role in
the estimation of yield and crop area [4].

Predictive models based on the fusion of historical data and
remote sensing observations have been successfully used since
the last few decades to improve the agricultural statistics [5, 6].
Despite the developments in the technology, only a few
methods exhibit a strong match between predicted yield and
observed yield [7]. Basso et al. [8] presented a detailed review
of crop yield estimation models and suggested using remote
sensing data as an input to the forecasting model. The study
also suggested the use of a simple empirical model based on
the correlation between the spectral, biophysical,
meteorological parameters and the crop yield. Various models
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have been proposed in the past to estimate the yield of different
crops such as wheat, rice, maize and sugarcane. Teal et al. [9]
explored that the correlation between the spectral information
and corn yield was exponential. In contrast to this, Ma et al.
[10] found that the power function best represented the
correlation of the soybean yield and spectral data.

This work aims to develop a model based on the machine
learning algorithm to predict the sugarcane yield from spectral
observations. The temporal profile of spectral vegetation
indices and historical crop yield records has been used as input
to the underlying model to obtain a reliable estimate of the
sugarcane yield. Different regression models have been
developed to predict the sugarcane yield. These models have
been developed on the basis of statistical analysis and
extracted numerical values of vegetation indices acquired
during the best predicted period.

Subsequently, the obtained information may be useful for
the policy-makers and agricultural scientists to support their
decisions regarding the regional agricultural risks in the near
future.

2. RELATED WORK

Recent developments in the computing methods allowed the


https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340607&domain=pdf

user to extract information with ease even from the massive
amount of data. Zhu et al. [11] demonstrated deep learning
model Long Short Term Memory (LSTM) for the
classification of GPS data. The study also suggested the use of
optimized parameters for the effective extraction of the
information. The study also explored the recent methods such
as Back Propagation Neural Network (BPNN), Random Forest
(RF) and Convolutional Neural Networks (CNN). Relevant
Component Analysis (RCA) [12] based on machine learning
has been presented for the classification of remotely sensed
data. The performance of RCA method was significantly better
than the traditional methods. The machine learning methods
may be used to extract the thematic information from the
satellite data that can be employed for various domains such
as Agriculture, Urban Planning, Disaster Management and
Climatic studies. Various agricultural applications and
operations such as yield estimation, area estimation and
monitoring of the crop growth can be carried out easily under
the guidance of these models and remotely sensed data [13].

Dadhwal et al. [14] discussed that the spectral data has been
predominately used for the agricultural applications since the
launch of the civilian remote sensing program in 1960. The
paper also described Crop Identification Technology
Assessment for Remote Sensing (CITARS) and Large Area
Crop Inventory Experiment (LACIE) related to agricultural
applications of remote sensing [15, 16]. Researchers in the past
discussed recent advancements in information technology and
spatial and spectral information that can assist the policy-
makers in extracting the information related to the crop yields
more accurately. Timely and accurate information is a
prerequisite for reliable predictive modelling and efficient
crop growth monitoring [17]. Nitrogen content of the plant, an
indicator of the plant growth, may be estimated from Near
Infrared (NIR) reflectance [18]. Spatio-temporal trend
analysis of Land Surface Temperature (LST) is important to
study the impact of climate change on the agricultural
environment [19]. The problem of misclassification due to the
spatial resolution or presence of attenuations such as clouds
may affect the predictive accuracy. The problem of
misclassification due to the spatial resolution or presence of
attenuations such as clouds may affect the predictive accuracy.
Some recent methods of bagging, boosting and stacking may
significantly improve predictive accuracy [20].

Gunnula et al. [21] proved that the relationship between
information and sugarcane yield is highly significant. Rahman
and Robson [22] proposed a sugarcane yield prediction
algorithm based on values obtained from Landsat data. The
algorithm estimated the sugarcane yield with a significant
correlation (R? = 0.69).

However, sometimes the yield models based on spectral
data or indices may not perform well due to the low spatial
resolution or the quality of the other input data. The resolution
and quality of the spectral data may be enhanced using pan
sharpening algorithms, the fusion of data from multiple
sources and the application of temporal profile of the available
information [23].

Rao et al. [24] suggested that multi-temporal spectral data
should be applied for the predictive modelling for sugarcane
yield as single date imagery of Landsat data is not sufficient to
participate in the model. Gers [25] developed a model based
on multi-temporal Landsat data and sugarcane yield at
Umfolozi in South Africa. Vo et al. [26] suggested using the
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temporal profile of the historical data for the predictive model
based on machine learning methods K-Means Clustering and
Support Vector Machine (SVM). B&uéet al. [27] presented a
model based on regression with R? value of 0.78 between the
sugarcane yield and the NDVI at the ripening stage of the
sugarcane. Morel et al. [28] compared various crop yield
forecasting methods based on the empirical relation of NDVI
values with yield records.

Researchers in the past suggested the enhancement of the
model by the use of input from known crops or by the use of
meteorological data and biophysical parameters. Almeida et al.
[29] estimated the yield of sugarcane with an acceptable error
of 1% to the actual yield. Fernandes et al. [30] proposed a
model based on the decision tree with R? value of 0.56 between
sugarcane yield and multi-temporal NDVI. The model also
explained the variations of NDVI values during the different
development phases such as establishment, vegetative
development and senescence. Rembold et al. [31] suggested
the use of ground truth data with remote sensing information
for the quality analysis. Marin and Jones [32] developed a
process based model based on the variations in LAI of
sugarcane. Mello et al. [33] proposed a technique based on
spectral data from 2003 to 2012 to predict the yield with an
error of 0.8%.

Ahamed et al. [34] presented a comprehensive review on
the use of methods based on remotely sensed data to liberate
robust, reliable, timely and accurate information. The brief
review of the available literature revealed that selection and
combination of appropriate spatial as well as spectral
information along with suitable processing methods for the
extraction of information related to sugarcane is most
important, particularly for the small areas. Hence, the present
work has been devoted to the use of spectral data in the
temporal domain to automate the prediction of sugarcane yield.
Various machine learning methods such as RF, SVR, and
CART have been employed for the prediction and feature
selection.

3. MODELLING FRAMEWORK

This work is focused on timely and accurate estimates about
the sugarcane yield and by-products to enable the policy-
makers to make decisions about the food grain production.
Data and information from multiple sources are integrated to
guide the analysis process further. This section is devoted to
the brief details of the study area, data used and the formulae
and methods used to develop the sugarcane yield model.

3.1 Datasets used for the modelling

The most important input data for models related to the
yield estimation is satellite data. They become very popular in
recent years because of their better spatial and spectral
resolutions and their capacity to generate multi-temporal
products. The data from the Landsat-8 has been used in this
study. The details of the satellite images and the ancillary data
used in the study have been presented in Section 4. Various
vegetation indices generated from spectral bands have been
investigated in the proposed work. The mathematical
formulation and the brief description of each vegetation index
used in the proposed model have been presented in Table 1.



Table 1. Spectral vegetation indices

Index Formula Ref.
RVI NIR ref 35
R_ref [33]
NDVI NIR ref — R_ref 36
NIR ref + R_ref [36]
(NIR_ref —R_ref)(1+1L)
AVI
SAV NIR ref + Rref +1L [37]
GNDVL NIR ref — G_ref 18
NIR ref + G_ref [38]
(NIR_ref —R_ref)(1+1L)
AVI
o8 NIR ref + R ref +0.16 [39]
DVI NIR ref — R ref [40]
NIR ref — ((2+R_ref) — B_re
ARVI _ref —((2*Rref) — B ref) [41]
NIR ref + ((2 *xR_ref) — B_ref)
GCI NIR ref 42,38
G ref [42, 38]
G(NIR_ref —R_re
EVI (NIR ref — R ref) [43, 44]
NIR_ref + C1(R_ref) — C2(B_ref) + L
VARI G_ref —R_ref 45
G_ref —R ref — B_ref [43]
NDWI G_ref — NIR_ref 46
G_ref + NIR_ref [46]
NDMI NIR ref — SWIR _ref A7
NIR ref + SWIR_ref 471
NR Rref 48
NIR ref + R_ref + G_ref [48]
NG G_ref 48
NIR ref + R_ref + G_ref [48]
NIR ref
NN [48]

NIR ref + R_ref + G_ref

where, NIR_ref is the reflectance in the near infrared band,
R_ref is the reflectance of the red band, G_ref is reflectance
of the green band, B_ref is reflectance of the blue band of
Landsat-8 and L is the soil and canopy adjustment constant.
Normalized Difference Vegetation Index (NDVI), Green
Normalized Difference Vegetation Index (GNDVI), Enhanced
Vegetation Index (EVI), Soil Optimized Vegetation Index
(SAVI) and its optimized version (OSAVI) are most
commonly used indices for agricultural applications of remote
sensing, whereas, the simplest index is Ratio Vegetation Index
(RVI). These indices generally vary between -1 and +1.
Atmospherically Resistant Vegetation Index (ARVI) and
Visible Atmospherically Resistant Index (VARI) may be used
for the correction of atmospheric scattering errors such as
aerosols. Normalized Difference Moisture Index (NDMI) and
Normalized Difference Water Index (NDWI) can be used for
the assessment of water and moisture content in the plants and
crops. NDMI is also referred as Land Surface Water Index
(LSWI). These indexes are also useful to determine the Land
Surface Temperature (LST) and can be employed for the
irrigation management. Green Chlorophyll Index (GCI) was
introduced to estimate the chlorophyll content and total
pigment of a plant. Some other indices such as Normalized
Green (NG), Normalized Near Infrared (NN) and Normalized
Red can be used to extract the agricultural information based
on the remotely sensed data. Generally, the negative values
and values near to zero are specific to soil with no vegetation
or sparse vegetation. In contrast the surfaces covered by dense
and healthy vegetation have values 0.7 to 1.0. These
vegetation indices play an important role in the extraction of
thematic information from the remotely sensed data. Various
crop growth, crop area estimation, crop yield estimation and
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crop simulation models in the recent past employed these
vegetation indices as input parameters.

Sugarcane yield records and other parameters have been
collected from the different agricultural fields of Khelri and
Dhanauri areas in the Himalayan foothills. The area belongs to
Bhadarabad region of Haridwar district in Uttarakhand State
of India. The collected data has been kept for the training and
testing of the underlying models in the study. Data have been
collected from the State Agriculture Department, nearby
sugarcane industries and by interviewing the farmers.

3.2 Feature selection

The use of remotely sensed data in the temporal domain
always leads to a large number of features. The high
dimensionality increases the complexity of the underlying
model as well as the execution time [49]. Methods based on
machine learning may be used to select and evaluate features
to improve the performance of the underlying model [50].
Bocca et al. [51] discussed the importance of feature selection
methods in the context of accurate and reliable sugarcane yield
modelling. In addition to the reducing complexity and
computational time, feature selection allows a better
interpretation of the underlying model [52]. They investigated
the use of Correlation-based Feature Selection (CBFS),
Forward Feature Selection (FFS), Variance Inflation Factor
(VIF) and Random Forest Variable Importance (RFVarlmp)
algorithm for the machine learning model of sugarcane yield.
Their results indicate that the feature selection improves the
accuracy of the model and reduces the chances of over-fitting.
Hence, the minimization and optimization of the input
variables are essential aspects of the development of a yield
estimation model. The selection of bands and indices for the
analysis based on remote sensing may be handled through the
use of Principal Component Analysis (PCA) and Exploratory
Factor Analysis (EFA) [53]. The proposed study applied
random forest based methods for selecting important variables
to generate the datasets for the model.

3.3 Regression modelling — methods and implementation

Preliminary analysis has been performed on the correlation
of extracted indices from spectral data and the historical yield
records from the year 2015 to 2018. The database for each crop
type in the experimental area is prepared on the basis of the
Pearson correlation coefficient (r). The coefficient r is the
relation between the historical crop yield (y) and mean
vegetation index (x) values for each crop in the temporal
domain. The dates having maximum, minimum, mean and the
integrated values of the corresponding index for each pixel are
stored in another database. The time period associated with the
maximum correlation value has been recognized as an optimal
period for the prediction of crop yield.

Mathematically, the crop yield matrix for each crop
("yield*?¢") and the matrix containing NDVI values is given
by:

yield,,
yieldtyPe = : (1)
yield,
X e
xtPe =| : 2)
X



where:
n = No. of pixels in the study area;
t = Total number of periods of the year for NDVI;

type = Crop type.

After the successful generation of the database for the
regression modelling, the identification of the optimal period
for the prediction of crop yield has been processed based on
the random forest measures MDA and MDG. The selected
periods have been used as the independent variables in the
proposed regression models.

3.4 Modelling methods and implementation

Preliminary analysis has been carried out on the basis of
simple models such as linear model, logarithmic model,

polynomial model, exponential model and power series model.

Detailed analysis based on machine learning methods SVR,
CART, KNN and RF have been carried out for regression
modelling. All these methods have been implemented using
the open-source software “R”. The package “caret” has been
used to write down the source code for the proposed regression
modelling [54]. The tuning parameters for each method have
been used in the proposed work to optimize the overall
performance. Tuning parameter for CART is maxdepth, two
parameters o and C for SVR, one parameter k for KNN and
two parameters ntree and mtry for RF.

3.5 Performance evaluation measures

Performance evaluation measures such as MAE, RMSE and
R? have been used to investigate the performance and behavior
of the predictive models to estimate the sugarcane yield in the
study area.

3.5.1 Root Mean Square Error (RMSE)

Statistical indicator RMSE has been used to enumerate the
weighted variations between the estimated and actual yield.
Mathematically, it is expressed as:

1n—1

_ . — )2

nZ(pyz 0y;)
i=0

3.5.2 Mean Square Error (MSE)

The ground truth values and the predicted values by the
underlying algorithm have been normalized in [0, 1]. The
average of the square of the differences between the
normalized ground truth and evaluated normalized values have
been calculated using the formula:

RMSE = 3)

n-1
1
MSE = =" (py; = oy)? )
i=0

3.5.3 Mean Absolute Error (MAE)
The mean of the absolute differences between the predicted
and actual values has been calculated using the formula:

n—-1

1
MAE = ;Z lpy; — oyl (%)
i=0
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where, n is the total number of observations, py denotes
estimated or predicted yield oy is the observed or actual yield.
These performance evaluation metrics have been used in the
different modules of the proposed model.

3.6 Algorithm for predictive model

The methodology adopted to design and develop the
proposed predictive model has been shown in Figure 1. The
modules used in the development of the model have been

represented by the following algorithm.

Algorithm 1: Proposed algorithm for Predictive Model

Module 1: Acquisition of Data:

- Meteorological

- Yield records

- Spectral observations

Module 2: Pre-processing:

- Removal of the images with cloud cover greater than 20%

- Conversion from DN to reflectance

- Temporal Profile of Spectral signals

- Generation of vegetation indices

Module 3: Feature Selection:

- Selection of important bands and indices (MDA, MDG)

Module 4: Preliminary Analysis:

- Correlation of yield data and NDVI extracted in Module 2

- For each year, the optimal date for each pixel stored in
another database

- Mean NDVI calculation for all the pixels obtained in
Module 3

- Correlation of mean NDVI and Crop Yield data is
recalculated for the sugarcane

- Identify the best period for the estimation

- Development of simple regression models

- Performance evaluation using RMSE and Tukey’s Test

Module 5: Modelling based on Machine Learning Methods:

- Selected methods: SVR, CART, KNN and RF

- Single-year modelling for each growth stage

- Multiple-years modelling for each growth stage

- Performance evaluation (MAE, RMSE and R?)

- Analysis based on the obtained results for Site 1 and Site 2

All the modules are implemented with the help of open
source software QGIS and R. The modules of the proposed

algorithm have been implemented as following sub-algorithms:

Sub-Algorithm 1: Creation of LayerStack

j €1
fori=1tondo
if image i _meta_cloud < 20 then
Convert_DNtoRe f (Ti)
fork=1t7do
PushTi(Band k) to LayerStack
end for
for M =110 10do
PushTi(VI _m) to LayerStack
end for
j€j+1
end if
end for



Sub-Algorithm 2: Variable Importance

fori=1tojdo
plotMDA(laytertack(i);)
plotMDG (laytertack(i);)
end for
optimize(ntree, mtry; oobmin)
for x =1 to ntree do
calculateOOB(mtry, oobmin)
calculateOOB(mtry=2,; oobmin)
calculateOOB((sqrt(mtry); oobmin)
end for
select ntree and corresponding mtry with minimum OOB

Sub-Algorithm 3: Yield Estimation Model

validationIndex € createDataPartition(mydata, p = 0:80)
validation € mydata[-validationIndex; |

dataset € mydata[validationindex; |

trnControl trainControl(method = “repeatedcv”’; n = 10, rep
=3)

model.fit € train(Crop.; dataset; method=(SVR, CART,KNN,
RF)

validation of model on sample data

All the modules have been implemented and the results
obtained have been discussed in the next section. The
performance comparison of the machine learning methods
used in the proposed work has been carried out to select the
best model for the prediction.

Temporal Satellite Data p— GIS Mapping
-

1
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Sugarcane Fields

|

I'emporal Profile
of VI
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[ I Single-year and
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Figure 1. Flow diagram of proposed methodology

4. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed work is focused on the yield estimation of
sugarcane, based on the spectral parameters and the yield
records obtained during 2015, 2016, 2017, 2018 and 2019.
Machine learning methods such as random forest, support
vector regression, k-nearest neighbor and classification and
regression tree have been tested as predictive model for the
underlying work. Random forest measures MDA and MDG
have been explored for the purpose of dimensionality
reduction.

4.1 Extraction of spectral observations

The satellite data for the modeling activity has been
obtained from the Landsat-8 and downloaded from
https://earthexplorer.usgs.gov. The spectral data was obtained
in the form of Digital Numbers (DN). For accurate analysis of
the spectral data, the DN was converted to actual reflectance
values with the help of metadata (MTL File) provided with the
spectral observations. The spectral observations were received
in different bands such as Blue Band, Green Band, Red Band
and Near Infrared Band. After the acquisition and
preprocessing of the satellite data the process for the extraction
of spectral indices has been employed to extract particular and
relevant information. The significance of each index has been
discussed in the section 3.1. The development of the model
starts with an initial phase of feature selection. Total of 40
cloud-free satellite images acquired through the entire growth
seasons have been used for the analysis (Table 2). The images
have been assigned the names according to the date and year
of acquisition. First image acquired in 2015 has been
designated as T1 1, second image as T1 2 and so on up to the
image T1_6 for the last image acquired on 11" November in
the year 2015. Similarly, the images for the year 2016 prefixed
with T2 and the sequence number of the images (1 to 8) has
been used as a suffix. The nomenclature of all the other images
has been assigned in a similar manner. The spectral bands and
vegetation indices extracted from these images have been
provided as input to the feature selection phase.

Table 2. Landsat dataset used in the study

Image Date Image Date
T1 1 Apr. 17,2015 T3 7  Oect. 31,2017
T1 2 May 03,2015 T3_8 Nov. 16,2017
T1 3 May 19,2015 T3_9 Dec. 02,2017
T1 4  Sep.08,2015 T4 1 Mar. 24,2018
T1 5 Oct. 10,2015 T4 2  Apr. 25,2018
Tl 6 Nov.11,2015 T4 3 May 11,2018
T2 1 Mar. 03,2016 T4 4  Jun. 12,2018
T2 2 May21,2016 T4 5  Sep. 16,2018
T2 3 Aug.25,2016 T4 6  Oct. 02,2018
T2 4  Sep.26,2016 T4 7  Oct. 18,2018
T2.5 Oct. 12,2016 T4_8 Nov. 19,2018
T2 6  Oct. 28,2016 T4 9 Dec. 05,2018
T2 7 Nov.13,2016 T5_1  Feb. 23,2019
T2 8 Nov.29,2016 T5_2  Apr. 28,2019
T3 1 Mar. 05,2017 T53 May 30,2019
T3 2 May 08,2017 T5_4  June 15,2019
T3 3 May24,2017 T5.5 July 01,2019
T3 4  Sep.13,2017 T5.6  Oct. 21,2019
T3_5 Sep.29,2017 T5_7 Nov. 06,2019
T3 6  Oct. 15,2017 T5 8 Dec. 08,2019




4.2 Optimal selection of predictors

Seven spectral bands (B1 to B7) and 11 vegetation indices
(DVI, GNDVI, LSWI,NDVI, NG, NN, NR, OSAVI, RVI, and
SAVI) have been analyzed to select predictors. The selection
process of the predictors has been performed using random
forest measures MDA and MDG. The scores of both MDA and
MDG have been presented in Table 3. It has been observed
that both spectral bands and spectral indices have scored well
during the entire growing season.

The MDA scores for the LSWI, NDVI and B4 have been on
the higher side, whereas MDG scores of LSWI, B2 and B3
have been recorded at the top during the initial growing period
of sugarcane (GS1). This may be due to the presence of the
greenness of the ratoon plants. The vegetation indices GNDVI,
LSWI, NDVI, NG and band B6 recorded higher values. On
similar trends, the behavior of the different bands and indices
during the growing season was distinguishable.

The overall scores of both measures have been presented in

Table 3, and their comparison has been shown in Figure 2. It
has been observed that performance of the band B1 remains
almost at the lower level for both cases in each growing stage.
This may be attributed to the fact that Bl may be effectively
applicable to water related studies. Vegetation indices SAVI
and OSAVI did not performed well as they are well suited for
the soil related studies. The comparison of the scores revealed
that GNDVI, NDVI and LSWI performed best among other
indices. Bands B2, B3, B6 and B7 recorded as top scorers.
Indices SAVI, OSAVI, RVI, DVI, NG, and NN as well as
bands B1 and B5 have not performed well during the feature
selection process. These bands and indices have been left out
during the development of the yield estimation model. The top
five variables from each score have been selected (represented
by bold face in Table 3 under Total Score) for further analysis.
Hence, the total 40 (10 variables during each growth stage)
variables have been selected to participate in the model
development.

Table 3. Feature selection using MDA and MDG

Features GS1 GS2 GS3 GS4 Total Score
MDA MDG MDA MDG MDA MDG MDA MDG MDA MDG
B1 0.00 033 0.62 1.69 1.92 495 075 065 329 7.6l
B2 7.33  10.00 3.53 5.18  7.68 145 393 1.33 2246 17.95
B3 648 941 396 497 8.5 1.77 7.19 0.85 25.78 17.00
B4 737  7.51 3.23 6.71 7.31 286 250 079 2041 17.86
B5 5.71 245 569 295 368 0.00 6.17 082 2125 6.22
B6 7.04 201 590 908 7.0 279 6.51 10.00 26.55 23.88
B7 6.65 276 434 429 7.59 1.91 594 799 2452 16.95
DVI 0.87 1.26 210 089 274 049 298 027 8.68 2091
GNDVI 249 1.82 596 891 217 473 234 219 1296 17.65
LSWI 1000 9.19 854 743 753 277  6.69 203 32.75 2142
NDVI 779 266 740 357 9.07 372 10.00 1.80 34.26 11.75
NG 2.19 1.73 967 734 205 597 3091 145 1781 1649
NN 1.41 0.68 1.19  0.00 1.79 5091 145 000 584 6.5
NR 1.93  0.60 4.87 1.72 1.02 4091 356  0.63 11.38 7.86
OSAVI  0.12  0.00 1.15 1.94  0.78 1.73 1.57 054 3.62 421
RVI 042 078 034 142 215 530 0.00 0.57 2091 8.07
SAVI 1.55 040 090 0.34 1.82  0.82 1.93 1.14  6.19 2.70
for the extracted sugarcane fields in the study area have been
50 demonstrated in Figure 3. The cavernous study of the graph
revealed the increasing trend of NDVT at the initial period i.e.,
50 to 55 days after the plantation (DAP). The NDVI shoots up
S2 Score again towards the grand growth stage and finally dips around
5 Il von the maturity stage.
£ Il wos The correlation of sugarcane yield and NDVI values has
° been recorded as 0.75. In contrast, the correlation of wheat and
‘ L II ‘ rice is below 0.6 in the area as given in Table 4. The correlation
"l . coefficient value of 0.77 has been recorded around the
e o e e e 2SS o-e5<s maturity stage of sugarcane. These observations are in
bEEEEEEBzq2 22z é g 3 agreement with the findings of Almedia et al. [29] to observe
Feature

Figure 2. MDA and MDG scores of feature selection
4.3 Results of preliminary analysis

The vegetation index NDVI has been selected for the
preliminary analysis for the yield estimation of sugarcane. The
temporal profile of NDVI has been examined for each year of
the study. The mean NDVI values from the year 2015 to 2018
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the relationship between NDVI and yield data during eight to
ten months of the growing season.

Table 4. Results of correlation analysis

Crop Correlation Coefficient (r) Best Period
Type (DAP)
Sugarcane 0.75 210-270
Wheat 0.59 -
Rice 0.55 -
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Figure 3. Mean NDVI values of sugarcane fields

Regression analysis of mean NDVI (during the optimal
growth period) and the historical yield records of underlying
area have been presented in Table 5.

Table 5. Regression equations for the yield estimation

Model Equation R?
Polynomial y = 60.20x% — 32.74x + 52.07 0.555

Linear y = 28.19x — 36.77 0.553
Exponential y = 38.56¢0-553% 0.549
Power Series y = 61.71x%278 0.546
Logarithmic y =14.17In(x) — 60.75 0.550

Statistical analysis has been carried out to explore the
significance of the results obtained from simple regression
models. The most conservative multi comparison “Tukey’s
Test” [55] has been implemented to carry out the analysis. The
outcome of the Tukey’s test indicates that the difference
between the simple regression based models was not highly
significant. Hence, machine learning methods have been
investigated to analyze the other indices and bands acquired
during the entire growth season.

4.4 Regression modelling - machine learning methods

Preliminary analysis indicates that non-linear models may
produce better results for the yield estimation. Hence, the
proposed work investigated CART, KNN, RF and SVR
methods of machine learning to estimate the sugarcane yield
based on remotely sensed data.

The predictive models have been trained, tested and
validated for the different scenarios based on the single-year
and the multiple-years. Each scenario is further subdivided as
per the growth stage in each year. The scenarios and their
abbreviations have been given in Table 6. Machine learning
modelling for the twenty-five cases (five scenarios and five
stages in each scenario) has been explored in the current work.
Error analysis and the relationship of predictors and yield
values have been monitored for each scenario and case
separately. The analysis based on different scenarios has been
presented in the next section.

Table 6. Scenarios used in the modelling

Scenario Year Growth Stage
S1 2015 Germination Stage (GS1),
S2 2016 Tillering Stage (GS2),
S3 2017 Grand Growth Stage
S4 2018 (GS3),
S5 2015, 2016, 2017, Maturity Stage (GS4),
2018 Peak of Growth (PG)
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4.4.1 Single-year modelling

The yield records and the spectral information acquired at
each growth stage of the year 2015 have been used as inputs
for the scenario S1. The outcomes of machine learning
methods for scenario S1 have been presented in Table 7. It has
been observed that the spectral information has been strongly
correlated with yield records during the grand growth stage
(GS3). Minimum values of MAE (2.20 t/ha) and RMSE (3.01
t/ha) have been recorded for the RF model. The performance
of the CART model has been the lowest with a maximum
value of MAE (4.65 t/ha) and RMSE (6.02 t/ha) and the lowest
value of R? (0.24). It has been ascertained from the
comparative performance that the initial stages of sugarcane
growing seasons are not significant for the yield estimation.

The models for the scenario S2 have been developed on the
basis of data from the year 2016. The results acquired after the
successful application of the model have been presented in
Table 8.

Table 7. Comparative performance of scenario (S1)

Model MAE
GS1 GS2 GS3 GS4 PG
SVR 398 364 274 343 298
CART 446 465 285 358 3.9
KNN 419 392 267 395 3.06
RF 346 330 220 3.11 257
RMSE
Model — sl Gs2  Gs3  Gs4 PG
SVR 539 502 373 467 3.90
CART 575 602 370 469 430
KNN 560 529 349 518 3.99
RF 448 424 301 401 3.39
R2
Model =l Gs2  Gs3 Gs4 PG
SVR 021 031 063 041 059
CART 0.19 016 061 044 048
KNN  0.17 024 065 031 055
RF 044 047 072 051 063

Table 8. Comparative Performance of Scenario (S2)

MAE
Model =i Gs2  Gs3  Gs4 PG
SVR 341 333 226 341 251
CART 371 386 246 358 276
KNN 354 364 247 330 271
RF 305 314 207 280 219
RMSE
Model —C6i Gs2 Gs3 Gs4 PG
SVR 425 421 294 416 325
CART 462 479 3.5 437 3.49
KNN 436 452 304 413 344
RF 384 406 266 348 287
RZ
Model =i Gs2  Gs3  Gs4 PG
SVR 036 036 067 039 059
CART 026 021 063 034 056
KNN 032 029 065 039 057
RF 046 040 073 055 0.68

The grand growth stage (GS3) is again highly correlated
with the yield records of the year 2016. The best values for the



performance measures are MAE (2.07 t/ha), RMSE (2.66 t/ha)
and R? (0.73), whereas the lowest performance values are
MAE (3.86 t/ha), RMSE (4.79 t/ha) and R? (0.21) respectively.
The observations from the scenario S2 reveal that Grand
Growth stage (GS3) and RF method is important for the yield
estimation. On the other hand, the tillering stage (GS2) and
CART method is the least important for the sugarcane yield
estimation.

Similar results have been obtained for the year 2017 for the
selection of model as well as the relationship between yield
records and growth stage. However, the inferior results in
terms of RMSE and MAE have been obtained. On the other
hand, the R? values have been significantly enhanced from
0.63 t0 0.75, 0.61 to 0.72, 0.72 to 0.76 and 0.75 to 0.81 since
year 2015. The values of the MAE, RMSE and R? for the
scenario S3 have been given in Table 9.

Table 9. Comparative performance of scenario (S3)

MAE
Model = i Gs2  Gs3  Gs4 PG
SVR 377 377 244 365 283
CART 455 456 261 428 3.04
KNN 409 422 250 374 321
RF 358 356 208 327 245
RMSE
Model =l Gs2  Gs3  Gs4 PG
SVR 485 469 321 466 372
CART 564 581 337 545 3.9
KNN 522 530 3.17 49 414
RF 469 457 273 424 3.9
R2
Model =i Gs2  Gs3  Gs4 PG
SVR 043 047 075 048 0.6
CART 027 025 072 028 0.63
KNN 035 032 076 040 057
RF 047 050 081 058 074

Table 10. Comparative performance of scenario (S4)

MAE
Model =i Gsz Gs3_Gs4 PG
SVR 364 335 231 331 235
CART 372 420 240 366 3.11
KNN 38 392 249 338 279
RF 306 315 197 284 225
RMSE
Model =l Gsz2 Gs3 Gsa PG
SVR 487 447 324 425 332
CART 488 532 323 460 434
KNN 511 497 319 423 385
RF 427 421 270 3.80 3.14
RZ
Model =i Gsz  Gs3  Gs4 PG
SVR 031 041 070 048 0.69
CART 036 025 070 039 050
KNN 024 029 070 049 059
RF 047 049 078 056 0.72

The outcomes of scenario S4 indicate that the best value of
R? (0.78) has been decreased from 0.81 obtained in the year
2017. For better analysis, these results have been validated
from the validation samples. These validation samples neither
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belong to training samples nor to the testing. The observations
of scenario S4 have been given in Table 10. The analysis based
on the performance evaluation metrics (MAE, RMSE and R?)
for the single-year modelling for all the scenarios have been
shown in Figures 4, 5 and 6. It has been observed that the
results for the years 2017 and 2018 during the grand growth
stage are best, but the observations from other years are also
significant. The behavior of the peak of the growth period (PG)
is also significant but less than the grand growth (GS3) stage.
The comparison of the methods for the modelling exhibits that
the performance of the RF is best for each of the metrics. On
the other hand, the performance of the CART is lowest among
all the methods. The next section has been devoted to the
multiple-years scenario S5.
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Figure 4. MAE analysis of single-year scenarios
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4.4.2 Multiple-years modelling

The yield records and spectral information from the years
2015 to 2018 have been fused for multiple-year modelling.
The outcomes of the model based on the scenario S5 have been
given in Table 11. A comprehensive study of the outcomes
indicates that the performance of the multiple-years model is
significantly better than that of single-year models. The RF
model is best among all the scenarios, whereas CART
performs worst in all the cases, as shown in Figure 7. The
MAE values have been significantly improved from the
highest value of 1.97 in the year 2018 to 1.05 for multiple-
years. Similarly, the RMSE values are also improved from
2.66 in the year 2016 to 1.51 and R? values increased to 0.94
from the highest value of 0.81 in the year 2017. The RMSE
and R? values range from 1.65-3.04, 0.77-0.94 for RF models
for spectral data of growth stage (GS3). Hence, the analysis
based on the machine learning model reveals that the non-
linear models outperformed the linear models to estimate the
sugarcane yield based on the remote sensing data.

Table 11. Comparative performance of scenario (S5)

MAE
Model =l Gs2  Gs3 Gs4 PG
SVR 326 222 184 286 211
CART 302 213 185 266 222
KNN 354 263 213 316 239
RF 182 123 105 156 123

RMSE
Model =l Gs2  GS3  Gs4 PG
SVR 492 304 271 396 3.07
CART 456 279 249 356 3.13
KNN 523 343 279 421 327
RF 209 165 151 218 1.77
RZ
Model =™ Gs2  GS3 Gs4 PG
SVR 050 074 079 055 0.73
CART 059 077 082 063 072
KNN 042 066 077 049 0.69
RF 090 093 094 088 092
CART KNN
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Figure 7. Comparative analysis of multiple-year scenario

The fused data from multiple years show a significant
improvement over the single-year models. The data obtained
during the grand growth stages of the growing season are more
important than other stages. However, the data extracted from
the peak growth date, i.e., the maximum value of each spectral
parameter has similar performance, but lower than that of the
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grand growth stage (GS3). These results may be due to the fact
that yield records are highly correlated with the canopy’s
vigour status. The sugarcane canopies have a stronger vigour
during the grand growth stages and have a sharp increase in
greenness during this period. After the grand growth period,
this greenness starts converting into the sugar content and
color of canopy cover changes to yellowish.

4.5 Models performance of field samples in study area

The regression models have been validated on the sample
data from different fields in the study area. The sample data
neither belongs to the training data nor to the testing data
during the development of the model. The sample data was
exploited for the analysis of differences between the predicted
and the observed yield. The values obtained from the analysis
of RMSE and R? are presented through the scatter plots for
different sites and different years. The scatter plots between
observed and predicted sugarcane yield values for the year
2016 are shown in Figure 8. The performance of the model is
low for site 2 as compared to site 1. The RMSE values for site
1 and site 2 are 1.72 (t/ha) and 2.06 (t/ha) respectively. The
values for the R? have been recorded as 0.91 and 0.85 for site
1 and site 2, respectively. The majority of the points are
concentrated around the bisector line. It indicates that the
model has been trained significantly for the average yield
values that consistently remain between 55 to 70 in the study
area.
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Figure 8. Correlation between predicted and observed
sugarcane yield for RF model on validation dataset of year
2016

A similar type of performance has been observed for the
year 2017 in both the sites. RMSE values have been observed
as 1.86 (t/ha) and 2.01 (t/ha) for site 1 and site 2, respectively,



whereas the R? values have been observed as 0.88 and 0.82.
The obtained results for the year 2017 have been given by the
Figure 9. These observations are due to the fact that there are
some minor variations such as farming practice and irrigation
timings. These variations in the different areas have been
significantly captured by the underlying machine learning
model.

The scatter plots for the years 2018 and 2019 of both sites
have been shown in Figures 10 and 11, respectively. The range
of the performance indicator RMSE is between 1.72 to 1.96
(t/ha) and from 2.00 to 2.72 (t/ha) for site 1 and site 2,
respectively. The range of the R? values is between 0.87 to
0.91 for site 1 and 0.74 to 0.85 for site 2. These observations
indicate that the performance of the models based on RF is
quite satisfactory for both the sites.

It has been observed that the numerical value of a single
spectral parameter and single-date data is not sufficient
because it is difficult to discriminate some of the crops due to
similar phenology in a particular growth period. Hence, in the
proposed work, the single-year and multiple-years models
have been developed using machine learning methods.
Machine learning methods have been used to handle the
variations in spectral information. These variations may be
attributed to diverse agricultural practices. These include
variations in soil properties, date of sowing, and variety of
plants, integrated pest management, and temporal and spatial
variation of crop growth. From the food management point of
view, the preferable period for crop yield prediction should be
as early as possible before the harvesting period. Field
experimentation indicates that reliable predictions can only be
made if physical phenomena of the crop growth cycle and crop
yield are studied and modelled.

RMSE=1.86 .
R?=0.88 o
oy 70 .
-
= -
k]
2
>
3
g 60
(]
(2]
o
o]
50
50 60 70
Predecited Yield (t/ha)
(a) Site 1 — Dhanauri
801 RMSE=2.01
R?=0.82 .
L]
o
<
£70
ke,
2
=
o
[3]
e
5 60
[
el
o
50

50 60 70 80
Predecited Yield (t/ha)
(b) Site 2 — Khelri

Figure 9. Correlation between predicted and observed
sugarcane yield for RF model on validation dataset of year
2017

80 RMSE=1.96
2_,
R?=0.87 D)
T
=
270
k)
T
>
nel
2
5 60
17
0
o]
50

50 80 70 80
Predecited Yield (t/ha)
(a) Site 1 — Dhanauri
801 RMSE=2.72
R%=0.74
L ]
L
= <
=
e
2
>_
hel
[}
c
[3]
w
o
(@]
50 70 80

60
Predecited Yield (t/ha)
(b) Site 2 — Khelri

Figure 10. Correlation between predicted and observed
sugarcane yield for RF model on validation dataset of year

2018
801 RMSE=1.90
R?=0.87
©
s
£ 704
o)
°
p
e
[}
e
5 604
[%2]
Qo
O

50
50 60 70 80
Predecited Yield (t/ha)
(a) Site 1 — Dhanauri
801 RMSE=2.00
R?=0.84 eiTe

©
<
£ 70+
he)
Q
U=
kel
2
S 60
(72}
Qo
(@]

50

50 60 70 80

Predecited Yield (t/ha)
(b) Site 2 — Khelri

Figure 11. Correlation between predicted and observed
sugarcane yield for RF model on validation dataset of year
2019



The results and their interpretations indicate that the
proposed predictive model is reliable and effective for the
yield estimation of sugarcane using remote sensing data. The
machine learning method (Random Forest) has been found as
best in comparison to other linear and non-linear models. The
analysis concludes that the RF method outperforms the other
methods statistically.

5. CONCLUSIONS

Sugarcane yield estimation model based on the temporal
profile of spectral information of Landsat-8 has been explored
in the current work. An initial attempt has been made in this
study to select important parameters to be used as input to the
machine learning model. Preliminary correlation and
regression analysis based on NDVI values have been carried
out as a pre-processing step for the final predictive model. It
has been observed that non-linear models are highly
significant than linear models. The optimal periods of the
growing season for efficacious estimation of sugarcane yield
are also identified.

Predictive models proposed in the study are focused on
machine learning methods to optimize the correlation of
spectral information with the available historical crop yield
records. The predictive performance of the RF method is quite
satisfactory for both the sites in the study area. The
performance of other methods such as CART, SVM and KNN
are lower as compared to the RF. Although the performance of
the proposed predictive models is significant for training and
testing sites, a more comprehensive estimation model may be
designed by incorporating the high resolution data and more
inputs from the climatic parameters.
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