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ABSTRACT
The paper deals with the line-planning problem related to urban public transport. Given the transportation 
network in a city, the origin–destination matrix of travel demands, and the fl eet of available vehicles, the goal 
is to design the routes and frequencies of lines. The proposed solution method is a combination of the exact 
mathematical programming algorithm and a trip assignment procedure. The solution process consists of three 
stages: (i) initialization, (ii) designing the line network and setting the initial frequencies of selected lines, 
(iii) solution improvement. In the fi rst stage, an initial set of feasible lines is proposed. In the second stage, an 
optimal subset of candidate lines is selected and initial frequencies of lines are computed by solving a math-
ematical programming model of the line-planning problem. The problem is formulated as a multiple criteria 
optimization problem, where the criteria refl ect travelers’ demand for a high quality service, operator’s interest 
in an effective service, and the environmental impact of the vehicles. The solution of this problem specifi es 
the number of vehicles of the given mode and type operating on the lines. The lines which are not assigned a 
vehicle will not operate. The assigned number of vehicles determines the frequency of a given line. At the same 
time, the solution specifi es optimal passengers’ routes in the line network. The third stage consists of an itera-
tive process, which computes new line frequencies with regard to in-vehicle and waiting times, transfers, and 
passengers’ behavior in a situation when they have multiple travel alternatives. The approach has been verifi ed 
using real transportation data of a middle-sized city in the Slovak Republic. The paper presents the results of 
the case study.
Keywords: discrete choice model, line-planning problem, mathematical programming, multiple criteria opti-
mization.

1 INTRODUCTION
The design of urban public transport lines should be addressed in the context of public transport 
planning process, which consists of fi ve stages [1]:

1. designing the line routes,
2. setting the frequencies,
3. timetable development,
4. vehicle scheduling,
5. scheduling the drivers

The fi rst two steps have a decisive infl uence on the quality of the whole transportation system. 
Line routes and frequencies determine how much the transportation demand is met because they 
have a direct impact on the spatial and time accessibility of the transportation service. The fre-
quency of a line indicates the basic timetable period and controls the transportation capacity of the 
line. The route length determines the operating costs on the line, and together with the frequency it 
indicates the number of vehicles needed to operate on the line, which further results in investment 
costs. Thus line routes and frequencies are independent variables that infl uence two main objec-
tives of the public transport design, namely the quality of the service as perceived by its users, and 
the operator’s costs.
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In several previous approaches (e.g. [2]), the fi rst two stages of the design (line routing and 
 frequency setting) were solved simultaneously and were referred to as the line-planning problem 
(LPP). In our research we have followed this line of research considering the LPP as a multiple cri-
teria optimization problem. We have proposed a new solution procedure that combines a 
mathematical programming approach with a trip assignment procedure. The solution process con-
sists of three stages: (i) initialization, (ii) designing the line network and setting the initial frequencies 
of selected lines, (iii) solution improvement. In the fi rst stage, an initial set of feasible lines is pro-
posed. In the second stage, an optimal subset of candidate lines is selected and initial frequencies of 
lines are computed by solving a mathematical programming model of the line-planning problem. 
The problem is formulated as a multiple criteria optimization problem, where the criteria refl ect 
travelers’ demand for a high quality service, operator’s interest in an effective service, and the envi-
ronmental impact of the vehicles. The solution of this problem specifi es the number of vehicles of 
the given mode and type operating on the lines. The lines that are not assigned a vehicle will not 
operate. The assigned number of vehicles determines the frequency of a given line. At the same time, 
the solution specifi es optimal passenger routes in the line network. The third stage consists of an 
iterative process, which computes new line frequencies with regard to in-vehicle and waiting times, 
transfers, and passengers’ behavior in a situation when they have multiple travel alternatives. This 
paper presents a mathematical programming formulation of the multi-criteria LPP and the solution 
procedure.

2 PROBLEM STATEMENT
The problem can be stated as follows: assume that the travel demand is given in the form of a 
 so-called origin–destination (OD) matrix. The rows and columns of the matrix correspond to public 
transport stops. An element of the OD matrix determines the value of the transportation fl ow 
expressed in the number of travelers per time unit (e.g. an hour) who want to travel from the origin 
stop corresponding to the given row to the destination stop corresponding to the given column. Sup-
pose that an initial set of all feasible lines has been pre-defi ned. The line network is not usually 
designed for an ‘empty’ city without any public transport, it is much more likely that we are sup-
posed to improve an existing transportation system, and that is why the set of feasible lines can 
include current lines, modifi ed current lines (e.g. lines avoiding overloaded roads), as well as new 
lines (e.g. corresponding to the shortest routes for the largest volumes of travelers). The task is to 
determine which lines from the candidate set will operate and to set their frequencies, so that the 
transportation service can be good and effi cient.

The optimization criteria should be stated more precisely. First, let us look at the quality of trans-
portation service from the passengers’ point of view. Two main aspects of the transportation service 
perceived by its users are time and cost. The user’s cost (fare) does not play a role in our line plan-
ning procedure because:

• Demand is treated as fi xed and independent on the service quality offered between any origin–
destination pair. It means that a modal split is supposed to be done beforehand, and we deal only 
with those people who have decided to use public transport, so only that portion of the travel 
demand which is related to public transport inputs the problem.

• Costs of all routes are supposed to be the same.

So we can omit the fare and focus on time as the only passenger’s criterion. If the travel demand 
refers to public transport stops, then travel time consists of three components: in-vehicle time, origin 
waiting time (the amount of time a passenger spends waiting for a bus at the origin stop), and 
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 transfer waiting time (the amount of time a passenger spends waiting during transfers). In-vehicle 
time depends proportionally on the line routes. Waiting times depend on line frequencies but this 
latter dependency is inverse proportional. In the mathematical model in-vehicle time is the only 
objective refl ecting passengers’ perception of quality. Waiting times are not modelled because then 
the model would be non-linear and diffi cult to solve [3]. Another reason why waiting times are not 
taken into account will be stated in the next section.

The second viewpoint regarding line planning is the effi ciency of the provided service, more pre-
cisely operating and investment costs expended by the operator. In our model, investment costs do 
not perform an objective but are rather a constraint, which allows only the available vehicle fl eet to 
be used for transportation service. As was explained in the introduction, operating costs depend 
directly on the route lengths and line frequencies, i.e. on the transportation output expressed in the 
number of kilometers ridden by all vehicles. Thus the transportation output will be the next objective 
in the mathematical model.

Another goal of the line design not mentioned so far is to minimize negative environmental impact 
of public transport, particularly electrical energy consumption, driving fuel consumption, and air 
pollution [4].

3 MATHEMATICAL MODEL
Input to the model includes a transportation network, travel demand, available vehicle fl eet, and 
candidate lines.

A transportation network is modelled by a (di)graph G = (N, A, t), where N is a set of nodes 
(stops and road junctions) and A is a set of feasible links, i.e. streets that candidate lines pass through. 
Every link a ∈ A is associated with a driving time ta. This time is in principle proportional to the 
length of the link but may also be affected by traffi c volume in the link, and traffi c organization, e.g. 
by traffi c lights. We suppose that the driving time does not depend on the transportation mode nei-
ther on vehicle type. A vector of time distances is denoted by symbol t.

The travel demand is represented by an OD matrix P = {prs}, where prs indicates the number of 
travelers who want to travel in the considered time horizon from the origin stop r to the destination 
stop s. The set of all OD pairs (r, s) is denoted by symbol Q.

Vehicles of various modes and sizes can operate in the network. Let I denote the set of available 
transportation modes (e.g. bus, trolley bus, tram). Vehicles of a given mode can be of different types, 
e.g. they can differ in the number of places, amount of engine emissions, energy consumption, etc. 
Let Ji stand for the set of possible types for transportation mode ∈i I . A vehicle of mode i and type 
j has kij places and an operator can use at most nij these vehicles. To make the model easy to under-
stand and its explanation simpler, we reduce environmental impact to the major air pollutant, carbon 
monoxide (CO). Let eijl be the amount of CO (given in grams) produced by one vehicle of mode i 
and type j per one km of line l.

Let L stand for the set of all feasible lines. Line l ∈ L is characterized by:

• its route with length dl,

• transportation mode,

• upper frequency bound max
lf , which depends on operational conditions, e.g. link or stop capaci-

ties for the given transportation mode,

• turnaround time turn
lt  that defi nes how long it takes to drive line l including stopping times at stops 

and layover time at the terminal point. The turnaround time is assumed to be independent on the 
vehicle type or loading.
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The set Li ⊂ L consists of the lines served by transportation mode i.
The goal is to decide which candidate lines from the set of feasible lines will operate, and to 

set their frequencies so that the quality of the service perceived by customers and economic effi -
ciency is as good as possible and negative environmental impact of urban public transport could be 
minimal.

Both this decisions can be modelled by integer variables xijl, which determine how many vehicles 
of mode i and type j should be assigned to line l. Line l that is not assigned a vehicle in the optimal 
solution (i.e. xijl = 0 for all ∈ ij J ) will not operate. Using optimal values of variables xijl, frequency 
fl of line l can be calculated as follows:

 ∈

= ∑1

i

l ijlturn
j Jl

f x
t

  

(1)

Most approaches reported in the literature (e.g. in [5–8]) use trip assignment as a pre-processing 
step. Assignment of vehicles to lines is calculated after the travel paths of the passengers have been 
fi xed. Trip assignment is made using a shortest path method and results in the fl ow intensities on all 
links, which input the line-planning model as a parameter. Flow intensity qa on link a ∈ A indicates 
how many passengers want to pass through link a in the given time period. The model (used e.g. in [4])
contains a set of constraints assuring that the proposed lines will cover with a suffi cient capacity all 
those links, which are used by at least one passenger (i.e. links with qa > 0).

A different approach can be found in [2]. Here optimal passenger routes are set in course of the 
solution process, it means that assignment of passenger fl ows to links is no more an input to the 
model but it becomes an output (a decision). This decision is represented by the variables

+∈ 0
rs
ay R , 

which defi ne how many passengers from r to s pass through link a. The total time that passengers 
traveling from r to s spend in a vehicle is expressed by the following term:

 

rs
a a

a A

t y
∈
∑

 
(2)

However, waiting times cannot be modelled because we do not know in advance the number of 
travelers who board or change lines at particular stops. For the same reason, even transfers of pas-
sengers are not modelled.

Using the above-mentioned variables, the mixed-integer programming model for the line- planning 
problem with multiple criteria can be formulated. In addition to the introduced notation, three other 
symbols occur in the model:

• aL  – set of lines passing through link a;

• +
vA  – set of links outgoing node v;

• −
vA  – set of links ingoing node v.

Now the model can be written as:

 minimize 
∈ ∈

∑ ∑
( , )

rs
a a

r s Q a A

t y  (3)

 minimize 
∈ ∈ ∈
∑∑ ∑

i i

l ijl
i I j J l L

d x  
(4)
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ay  for (r, s) ∈ Q, a ∈ A (12)

 +∈ 0ijlx Z  for i ∈ I, j ∈ Ji, l ∈ Li
 (13)

The optimization criteria modelled by the objective functions (3)–(5) were described in Section 2. 
The objective function (3) stands for the total in-vehicle time of all travelers. The function (4) is the 
transportation output. The objective function (5) models the total amount of emissions produced by 
vehicles. The constraints (6) ensure that the total number of passengers traveling through link a does 
not exceed the capacity of vehicles operating on that link. The constraints (7) and (8) respectively 
ensure that the travel demand will be satisfi ed. The constraints (9) are fl ow conservation equations 
in the nodes of the transportation network. The constraint set (10) limits the number of vehicles 
assigned to lines to the available amount. The constraints (11) bound the frequency of line l to a 
maximum value given by operational conditions. The remaining obligatory constraints (12) and (13) 
specify the variable domains of the defi nition.

4 SOLUTION METHODOLOGY
The solution methodology proposed in this research was inspired by the approach published in [9] 
and detailed in [10]. The method consists of three stages. The fi rst stage is an initialization, where a 
set of all feasible lines is designed. In the second stage, the multiple objective, mixed-integer pro-
gramming problem (3)–(13) is solved by using a scalarization method. In the third stage, the solution 
of the problem (3)–(13) is improved. This stage consists of an iterative process, where new trip 
assignment and line frequencies are calculated in turn. The solution process is outlined in Fig. 1 and 
detailed in the following text.
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Scalarization is a traditional approach to solving multiple objective mathematical programming 
problems. The principle is that several objective functions are combined into a single objective func-
tion by means of a scalarizing function [11], and then a single objective problem with the same 
solution space is solved. The optimal solution of this problem is a compromise solution with regard 
to all objectives. We use Tchebycheff-norm scalarization that minimizes the weighed deviations of 
the particular objective functions from their ideal values [12]. 

The values of variables xijl in the optimal solution of the problem (3)–(13) specify how many 
vehicles are assigned to the candidate lines. The lines that are not assigned a vehicle will not operate. 
The line frequencies are derived from the number of vehicles, using eqn (1).

The variables 
rs
ay specify passenger routes in the line network. Since the optimal solution of the 

problem (3)–(13) is a compromise with regard to all objectives, it is not optimal only from the 

Figure 1: Flow chart of the solution process.

Begin

Solve the model (3) - (13).
Calculate line frequencies f0 using eqn (1).

Re-assign passengers to links using a discrete choice model
(with regard to waiting times).

Solve the model (16) - (23).
Calculate line frequencies f1 using eqn (1).

abs(f1-f0) > tolerance

f0 = f1

Yes

End

No

Calculate system performance characteristics.
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 travelers’ point of view. Moreover, as it was mentioned above, neither waiting times nor transfers are 
modelled. Due to all these reasons, some travelers may be forced to take very long routes, possibly 
with a lot of transfers.

In the third stage of the solution process we try to improve the solution so that it can respect wait-
ing times, transfers, and passengers’ behavior in case there are multiple alternative paths between a 
given origin–destination pair. In this stage the line frequencies are adjusted repeatedly until the 
internal consistency of frequencies is achieved.

The stage involves an iterative process consisting of trip assignment and solution of a simplifi ed 
mathematical programming model.

First a new assignment of travel demand to the proposed line network is computed, using a dis-
crete choice model [13].

This trip assignment procedure should be described more precisely. Each origin–destination pair 
is considered separately. For a given (r, s) couple, all feasible paths in the line network from stop r 
to s are found. The feasibility of a path is determined by two conditions: fi rst, the path is a direct path 
or it contains at most a user-defi ned number of transfers; second, the travel time along this path does 
not exceed the minimum travel time by a specifi ed threshold, say 30%. The travel time consists of 
in-vehicle time, waiting time at the origin stop, and transfer waiting time. In case the line headway 
t is less than 10 minutes, the average passenger waiting time at the origin stop can be estimated using 
the half headway model [5, 9, 14]. Otherwise the waiting time can be modelled by the term 2 + 0.3 * t,
where the time units are minutes [14]. The transfer waiting time is always t/2 regardless of the head-
way. Moreover, a penalty for the transfer may be added to the travel time to model passengers’ 
preference of paths without transfers.

If travelers from r to s can choose one of more feasible paths, a utility-based choice model is 
used to predict the number of passengers who will take a particular path. A traveler chooses a 
path with certain probability, which depends on the path utility. The utility has a deterministic 
and a random portion. The deterministic portion represents an observed measure of the path, 
while the random portion represents the randomness in the traveler’s behavior, i.e. that compo-
nent of the utility which is unknown to the analyst. In the context of urban public transport we 
can suppose that all of the feasible paths with the same origin and destination have the same cost. 
So it is only the travel time that represents the deterministic part of the path utility. From the 
family of utility-based choice models, the multinomial logit model can be used to choose a path. 
Let K(r, s) denote the set of all feasible paths from r to s and path

it  stand for the travel time on 
path i. Then the number of passengers who will take the path k on their trip from r to s is defi ned 
by eqn (14):

 

( )
( )

( )

m

m
∈

=
∑

,

exp

exp

path
krs rs

k path
i

i K r s

t
p p

t
 

(14)

The coeffi cient µ in eqn. (14) is a parameter to be estimated. It has a negative sign which means 
that the path utility decreases with increasing travel time.

After the fl ows on all paths for all couples (r, s) have been computed, the link fl ow qa on the link 
a can be calculated as the sum of the fl ows on all paths that go through the link a.

The new link fl ows input a simplifi ed mathematical programming model. The simplifi ed model 
does not solve the passenger routes, it only computes the number of the vehicles to be assigned to 
the lines, i.e. line frequencies. It means that the model does not contain variables y, objective (3), and 
constraints (7)–(9) and (12). As the link fl ows are known, another objective describing the quality of 
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the transportation service perceived by passengers can be used instead of the traveling time. Such an 
objective is a comfort of a link. The comfort of a link is the ratio between supply and demand. Sup-
ply of a link is transportation capacity expressed by the number of places in vehicles that ride the 
given link per one time unit. Demand is the number of travelers of the given link per time unit, i.e. 
the link fl ow intensity. The goal is to maximize comfort of the worse link (link with the lowest ratio 
between supply and demand). For this reason we introduce a new variable u, which will denote the 
lowest comfort of a link of the transportation network. Then the constraints (6) will look as follows:

 ∈ ∈ ∈

≥∑∑ ∑ 1

i a

ijl ij aturn
i I j J l L l

x k q u
t

 

for a ∈ A

 

(15)

where qa is the total fl ow on link a.
The simplifi ed model including the comfort element is again a multiple objective mixed-integer 

programming model:

 maximize u (16)

 minimize 
∈ ∈ ∈
∑∑ ∑

i i

l ijl
i I j J l L

d x
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∑∑ ∑
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i I j J l L l
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 for a ∈ A (19)

 ∈
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ijl ij
l L

x n  for i ∈ I, j ∈ Ji
 (20)

 ∈

≤∑ max1

i

ijl lturn
j J l

x f
t

 

for i ∈ I, l ∈ Li (21)

 ≥ 0u  (22)

 
+∈ 0ijlx Z

 
for i ∈ I, j ∈ Ji, l ∈ Li 

(23)

By solving the model (16)–(23), we get the new line frequencies. These new frequencies are com-
pared with the previous ones, and if they differ by more than what a user-defi ned tolerance is, then a 
new trip assignment is performed and the whole process is repeated.

After the iterative process has fi nished, the system performance measures can be calculated. A 
decision maker is interested not only in particular criteria values but also in other characteristics, 
such as the average in-vehicle time (per a traveling person), the total and average waiting times, the 
total and average numbers of transfers, the minimum, maximum, and average line lengths expressed 
in the number of links and number of kilometers, and so on.
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5 COMPUTATIONAL RESULTS
The proposed model and solution methodology were verifi ed by using the real data of public trans-
port in the city of Žilina. Žilina is a middle-sized city situated in the northwestern part of the Slovak 
Republic. It has 85,302 inhabitants and covers the area of 80 km2.

The transportation service in the city is provided by the transportation operator Dopravný podnik 
mesta Žiliny (DPMŽ). During the day, the line network consists of 18 lines divided into 8 trolleybus 
lines and 10 bus lines. The line no. 99 is a special free bus line connecting the city center with the 
hypermarket Tesco. It operates from 9 a.m. to 10 p.m. At night, the city area is covered by 1 bus line. 
The scheme of the city line network is shown in Fig. 2.

DPMŽ has 89 vehicles at the disposal: 44 of the vehicles are Škoda-make trolleybuses produced 
in the years 1991–2001, and 45 of the vehicles are Karosa-make and Irisbus-make buses produced 
in the years 1990–2007. Tables 1 and 2 contain the basic summary of the vehicle fl eet.

The travel demand (OD matrix) was derived from the statistical data provided by DPMŽ. The data 
are collected by the stamp machines, which are placed in vehicles and used to validate the passen-
gers’ travel tickets. The data have enabled us to fi nd out how many travelers board a vehicle at each 

Figure 2: Line network in Žilina.
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stop during the investigated time horizon. It means that we know the number of trips generated in the 
origin stop r. Although we do not have the information on the destinations of the trips, they can be 
estimated from chip cards. When a passenger validates their electronic ticket at boarding, the stamp 
machine records the identifi cation number of their chip card. We can assume that if the same card is 
used twice a day, and the interval between the fi rst and the second validations is longer than an hour, 
then the origin stop of the second journey is the destination stop of the fi rst journey. So we can esti-
mate the direction distribution of the passengers boarding at stop r (elements prs of the OD matrix 
for the given origin r and all destinations s).

Using the information from chip cards, the number of transfers between every origin stop and 
destination stop can be derived as well. This can help us calibrate the passengers’ behavior model.

In the following paragraphs we present the experimental results for morning peak hours from 6:00 
a.m. to 8:00 a.m. during a working day. For this time horizon, the OD matrix has 1,333 non-zero 
elements, which is approximately 21% of all of the elements (all possible couples of stops). The 
whole number of travelers in morning peak hours is 7,530. They perform 639 transfers. The number 
of transfers was used to estimate the parameters in the logit model: a path is regarded as feasible, if 
it has one transfer at most, the transfer penalty is 5 minutes, and µ = –1.

All of the current lines were taken as feasible lines. Moreover, we have proposed a new trolleybus 
line connecting the housing estate Vl ince with the city center. This line corresponds to the shortest 
route for 3 out of 10 most intensive fl ows in morning peak hours. The network was pre-processed so 
that the memory and computational complexity of the model are reduced. Some rarely used stops 
between two neighboring stops were removed. Another condition necessary for the removal of a stop 
was that only one bus line would be stopping there, i.e. a transfer to another line was not possible 
there. The links confl icted with the removed stop were replaced by a single link connecting the 
neighboring stops. The line network with reduced stops and the new added line has 79 stops and 190 
links. The other parameters of the model and solution method were set as follows:

Table 1: Characteristics of trolleybuses.

Mark Capacity (places) Number of vehicles

Škoda 14 Tr 83 13
Škoda 15 Tr 150 17
Škoda 15 TrM 150 14

Table 2: Characteristics of buses.

Mark Capacity (places) Emission level Number of vehicles

Karosa B 732 94 EURO 1 9
Karosa B 741 150 EURO 2 1
Karosa B 932 95 EURO 2 6
Karosa B 952 100 EURO 4 17
Karosa B 961 168 EURO 4 3
Renault City Bus PS09D1 100 EURO 4 3
Irisbus Citelis PS09D1 100 EURO 4 3
Irisbus Citelis PS09D2 96 EURO 4 1
Irisbus Citelis PU09D1 157 EURO 4 2



298 L
,
. Jánošíková, et al., Int. J. Sus. Dev. Plann. Vol. 7, No. 3 (2012) 

Upper frequency bound 
max
lf  was set identically for all lines, namely eight vehicles per hour.

The tolerance in the stopping rule of the iterative process was set to zero as the experiments had 
proved that the process converged quite quickly, and after several steps the two successive frequency 
vectors were identical.

The mathematical model (3)–(13) with the described input parameters has 188,445 variables and 
70,293 constraints. The model was implemented in the general optimization software Xpress-MP. 
The solution takes about 27 minutes on a personal computer equipped with the Intel Core 2 6700 
processor with 2.66 GHz and 3 GB of RAM.

The solution results are summarized in Table 3. The performance characteristics for the cur-
rent line network (in the fi rst row denoted as March 2010) and several networks proposed by our 
mathematical programming approach are presented, namely the number of lines, number of vehi-
cles needed, transportation output in vehicle-kilometers, overall quantities for all travelers 
(in-vehicle time, waiting time, number of transfers), the lowest comfort of passengers at a link, 
and the overall volume of emissions produced by all of the buses being used. The waiting time 
includes the time that passengers spend waiting at the origin and transfer stops. In-vehicle time, 
waiting time, and the number of transfers were computed using the presented passengers’ behav-
ior model.

The particular solutions presented in the second down to the fi fth rows of the table are the following:
Opt. solution is the fi nal result of the whole solution process described in Fig. 1.
Opt. solution (max. comfort) is the fi nal solution optimized only in terms of passengers’ comfort, 

i.e. it is the optimal solution of the problem: minimize (16) subject to (19)–(23) in the last iteration 
of the process described in Fig. 1.

Opt. solution (2nd stage) is the output of the second stage of the solution process, in which the 
initial line frequencies are computed, i.e. it is the optimal solution of the model (3)–(13).

Opt. solution (2nd stage, min. time) is the optimal solution of the second stage in terms of travel 
time, i.e. it is the optimal solution of the problem: minimize (3) subject to (6)–(13).

The optimal solution does not assign vehicles to the lines no. 1, 5, 6, and 7, which means that these 
lines are not supposed to operate in morning peak hours (see Table 4). The line no. 1 is a circular line 
interconnecting the housing estates Solinky, Vlčince and the city center. The line no. 5 is a similar 
line to approach Solinky and Vlčince from the city center and the other way around. In morning peak 

Table 3: Results for morning peak hours 6:00–8:00 a.m.

Network Lines Vehicles

Output 
[vehicle-

km]

Total 
in-vehicle 
time [h]

Total 
waiting 
time [h] Transfers

Comfort 
[places per 
passenger]

Emissions 
of CO [g]

March 2010 17 37 648.94 1502 860 643 NA NA
Opt. solution 14 24 384.50 1491 1046 1077 1.83 1141.21
Opt.  solution 

(max. 
 comfort)

17 67 1250.10 1481 599 756 4.32 5752.99

Opt. solution 
(2nd stage)

12 12 232.80 1531 2204 2053 0.28 872.67

Opt. solution 
(2nd stage, 
min. time)

15 58 1049.00 1503 757 1188 1.69 2626.54



 L
,
. Jánošíková, et al., Int. J. Sus. Dev. Plann. Vol. 7, No. 3 (2012)  299

hours there is no interest in the transportation between the housing estates, and the other lines pro-
vide the transportation from the housing estates to the city center. There is a similar situation with 
the lines no. 6 (between the housing estates Hájik and Vlčince) and 7, connecting Hájik, Solinky, and 
Vl ince. The new added line (see the last row of Table 4) is intensively used: two employed vehicles 
provide almost four connections per hour.

Comparing the current line network to the optimal solution we can see that the effi ciency criterion 
is more important in the mathematical model than in practice. As it was mentioned, the operator’s 
costs are directly dependent on the transportation output, and the output depends on the number of 
vehicles used and on the line routes. The number of vehicles decreases in the optimal solution by 1/3 
(compared to the current state) and the output by 41%. Despite these facts, the total in-vehicle time 
slightly decreases. On the other hand, lower number of vehicles assigned means lower line frequen-
cies and then longer waiting time (by 22%). Fewer vehicles and operating lines result into people 
having to change buses more frequently (the number of transfers increases by 67%). Comfort and 
emissions cannot be evaluated for the present state because today vehicles are not fi xed to lines but 
various types of vehicles can serve a line. This fact is expressed by the abbreviation NA (not appli-
cable) in the corresponding cells of Table 3.

To set proper weight to the criteria, an expert to transportation planning needs to be involved in 
the planning process. In addition, another type of scalarization might be more suitable because the 
weights in Tchebycheff-norm scalarization are computed only from the coeffi cients in the objec-
tive function, and their role is to normalize particular criteria so that criteria values can be of the 
same order.

Table 4: Current and proposed frequencies for morning peak 
hours 6:00–8:00 a.m.

Line no.
Current frequency 

(March 2010) Proposed frequency

1 1 0
3 6 3.24
4 5.5 4.86
5 3 0
6 3 0
7 1.75 0
14 5 4.74
16 3.5 4.86
20 1.75 1.25
21 4 1.28
22 3.5 2.18
24 2.5 1
26 2.25 1.03
27 2 2
29 0.5 1.05
30 1 2.73
31 0.75 1.03
proposed 0 3.87
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Comparing the fi nal optimal solution (2nd row of Table 3) to the optimal solution of the complex 
model (3)–(13) in the fourth row proves the mentioned drawback of the model. The optimal solution of 
this model is a system optimum, and even more strongly than the fi nal solution it accentuates the output 
at the expense of the quality of the service from the passengers’ point of view. Therefore the third stage 
of the solution process is needed to get a solution that approaches demands of travelers more closely.

The other results of mathematical modeling are only informative, and they illustrate how the solu-
tion changes, if travelers’ point of view is preferred.

6 CONCLUSIONS
The paper deals with the problem of planning the lines for urban public transport. The notion ‘plan-
ning the lines’ stands for the design of routes and frequencies of lines in correspondence with the 
terminology used in published literature. In our opinion, the contribution concerns two areas: mod-
eling and methodology. We proposed two new multiple criteria mathematical programming models 
for the urban line network design. The exact algorithm solving the models is combined with a heu-
ristic procedure with the aim to improve the quality of the design from the passengers’ point of view.

The multiple criteria that have an impact on the fi nal solution are: (i) the effi ciency of transport, 
which is the primary requirement of an operator, (ii) the quality of the service perceived by passen-
gers, which is quantifi ed by in-vehicle time, waiting time, number of transfers, and travelling 
comfort, and (iii) the environmental impact expressed as the amount of emissions produced by 
buses. The crite   ria are in confl ict because the operator’s costs and emissions lead to minimizing the 
number of lines and vehicles, while travelers require as dense time and space schedules as possible.

The approach was verifi ed using the case study of Žilina – a middle-sized city in the Slovak 
Republic. The computational results for morning peak hours are presented in the paper. The experi-
ments show that a mathematical model can offer a high quality solution as the fi rst proposal for an 
expert in transportation planning. The expert can further experiment with the solution and change 
the weights of the criteria so that a high-quality transportation service could be provided effi ciently 
with a minimal negative environmental impact.

As far as we know, the environmental criterion has not been taken into account in previous studies 
related to line planning, though minimizing the environmental impact of the public transport is a 
necessary condition for sustainable mobility. Moreover we believe that a better public transport 
service will be more attractive for people and will cause a modal shift from cars to more ecological 
public transport.
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