
Ingénierie des systèmes d’information – n° 6/2018, 143-159

Fingertip data fusion of Kinect v2 and leap

motion in unity

Bo Li1, Chao Zhang1,*, Cheng Han1, Baoxing Bai2

1. Changchun University of Science and Technology,

No.7186, Weixing Road, Changchun, 130022 China

2. College of Optical and Electronical Information Changchun University of Science

 and Technology, No.333, Xueli Road, Changchun, 130114 China

zhangchao@cust.edu.cn

ABSTRACT. This paper describes how the data fusion and application of Kinect v2 and Leap

Motion in Unity3D are implemented. Firstly, it implements a method based on Kinect v2 to

obtain fingertips. Then, it calibrates Kinect v2 and Leap Motion in two different orientations in

two steps. The preliminary calibration uses a one-dimensional calibration rod algorithm, and

the fine calibration keeps approximating the true value through iteration, which realizes the

joint calibration of the two. Finally, this paper uses Unity3D to fuse the data of the two types

of equipment and conducts human-computer interaction with the virtual object in the virtual

space of Unity3D. Experiments show that the method proposed in this paper can extend the

hand tracking range and improve the accuracy of the collision between the human hand and

the virtual object.

RÉSUMÉ. Cet article décrit comment la fusion des données et l'application de Kinect v2 et de

Leap Motion dans Unity3D sont mises en pratique. Premièrement, il s’applique une méthode

basée sur Kinect v2 pour obtenir le bout des doigts. Ensuite, il calibre Kinect v2 et Leap Motion

dans deux orientations différentes en deux étapes. La calibration préliminaire utilise un

algorithme de tige de calibration unidimensionnelle, et la calibration fine continue à se

rapprocher de la valeur vraie par itération, ce qui réalise la calibration conjointe des deux.

Enfin, cet article utilise Unity3D pour fusionner les données des deux types d'équipement et

effectue une interaction homme-machine avec l'objet virtuel dans l'espace virtuel d'Unity3D.

Les expériences montrent que la méthode proposée dans cet article peut élargir la plage de

suivi de la main et améliorer la précision de la collision entre la main humaine et l'objet virtuel.

KEYWORDS: fingertip recognition, joint calibration, data fusion, natural human-computer

interaction, leap motion, Kinect v2.

MOTS-CLÉS: reconnaissance du bout des doigts, calibration commune, fusion de données,

interaction naturelle homme-machine, leap motion, Kinect v2.

DOI: 10.3166/ISI.23.6.143-159 © 2018 Lavoisier

144 ISI. Volume 23 – n° 6/2018

1. Introduction

Natural human-computer interaction has always been the focus of research by

experts and scholars in the field of human-computer interaction. The human hand, due

to its many joints, high degree of freedom and various forms, is the most effective

human body part in human-computer interaction and gives the most directive form of

interaction. In contrast to the inconvenient equipment like data gloves, inertial sensors

and marking points, etc., Kinect and Leap Motion can extract and track hands that are

completely unmarked or without additional sensors. This natural human-computer

interaction has important research value. For example, in the film and television field,

virtual human hands are used to complete dangerous actions; in the game field, users

interact with virtual objects in virtual space by hand; in the industrial field, robots are

controlled by human hands to conduct operations.

There are many methods based on Kinect gesture recognition, most of which use

the depth information obtained by Kinect for processing and recognition. For example,

(Yang et al., 2012) proposed recognizing gestures based on depth information and

hidden Markov model classifier; (Li, 2012) extracted hand contours,

calculated the set of convex and concave points and acquired all finger areas, and

then implemented gesture recognition; (He et al., 2011) used depth information to

estimate fingertips, and then recognize finger-level gestures; (Meng and Wang, 2013)

first used the edge contour curvature feature method to locate fingertips and then

obtained the motion vectors of the fingers to implement the function of fingertip

gesture recognition. There are also many researches on gesture recognition based on

Leap Motion. For example, (Mapari and Kharat, 2016) developed an Indian Sign

Language recognition system that uses the Leap Motion sensor to recognize both

hands. Reference (Staretu and Moldovan, 2016) used the Leap Motion equipment to

control a personified plier’s machine with five fingers. Reference (Chuan et al., 2015)

based on Leap Motion, classified the 26-letter finger language in American Sign

Language using the K-nearest algorithm and support vector machine. Reference

(Erdoğan et al., 2016) recognizes gestured based on Leap Motion and artificial neural

networks and controlled the robot through gestures. Reference (Tauchida et al., 2015)

used the Leap Motion and SVM algorithms to realize the recognition of gesture

trajectories. Reference (Chan et al., 2015) captured hand geometric data to identify

gestures and authenticate identities.

However, Kinect and Leap Motion still have their own shortcomings. For example,

Kinect does not have high recognition accuracy for fingers. When the finger points to

Kinect, the details of the hand cannot be detected; although Leap Motion has high

recognition accuracy, but its recognition space is very limited, and when the finger is

blocked by other fingers, the recognition effect is not good. Few researches have been

conducted on the combination of Kinect and Leap Motion. Reference (Craig and

Krishnan, 2016) only fused the speed value for hand tracking. Each device has an

independent trigger, which mitigates the impacts of blocking. Reference (Marin et al.,

2015) introduced a gesture recognition method based on Leap Motion and Kinect,

which acquires data through the two types of equipment and achieves gesture

recognition in combination with the SVM classifier. Reference (Sreejith et al., 2015)

Fingertip data fusion of kinect and LMC 145

used Kinect v2 and Leap Motion to implement an image navigation system, but this

method is just a simple combination of Kinect and Leap Motion, where Kinect is used

to recognize slightly distant gestures while Leap Motion to recognize close-range

gestures. Reference (Debeir, 2014) fused the position data of the hand acquired by

Leap Motion and Kinect sensors to improve the hand tracking performance.

The research content of this paper is to combine the advantages of Kinect v2 and

Leap Motion. Kinect v2 has a large recognition space whereas Leap Motion has a high

recognition precision. When the two are placed in different positions, the data

observed from different angles are complementary and can be integrated into Unity3D

to improve the accuracy of finger detection and make the interactions between human

hands and virtual objects in virtual scenes more reliable. The rest of the paper is

organized as follows: Section II describes the fingertip detection method based on

Kinect v2 depth image, which extracts the hand area, obtains the hand contour and

obtains the fingertip pixels according to the curve of the distance from the hand

contour to the centre of the hand, and converts them to fingertip coordinates. Section

III describes the calibration methods for Leap Motion and Kinect v2. The first step is

to perform a preliminary calibration using a 1-dimensional calibration object, and then

perform an accurate calibration and obtain a more accurate rotation matrix and

translation vector through iterations. Section IV is about the data fusion, i.e. the fusion

of the fingertip data of Leap Motion and Kinect v2 in Unity3D, including the temporal

registration and spatial fusion. Section V conducts experiments on the method

proposed in this paper and applies it in Unity3D. Section VI is a summary of and

outlook on the research content of this paper.

2. Acquisition of fingertip data from depth images

2.1. Hand segmentation

This paper initially uses OpenCV and OpenNi to obtain the returned palm position,

then quickly locates the hand region according to the vertical coordinate threshold of

the palm and then uses the depth binary mask algorithm to separate the hand from the

background. The algorithm can use the depth threshold to filter out the background

with a similar colour to skin. For example, if the face overlaps with the hand, the face

can be easily removed with the depth threshold. Note that this paper uses the original

depth image of Kinect v2 (hereafter referred to as Kinect) for processing instead of

the depth images obtained by OpenNi.

After the hand is detected by Kinect and OpenNi, the system will call the Nite

library to return the coordinates of the palm. Let the 𝑦 value of the palm coordinates

returned be m , and then the upper and lower thresholds splitting the hand are

respectively m+ ∆ and m− ∆ . According to the actual test, it is better if

7cm<𝛥<14cm. According to the image area cut per the upper and lower thresholds,

the hand can be accurately extracted.

After the hand region is extracted, the hand is separated from the background using

a depth binary mask method. The mask is a template for image filter. In this paper, in

146 ISI. Volume 23 – n° 6/2018

order to extract the hand and remove the background, a matrix of 𝑛 ∗ 𝑛 is used to filter

the pixels of the image so as to highlight the desired object. This matrix is called a

mask, a binary image consisting of only 0 and 1. The binary mask 𝑃𝑑 constructed in

this paper is a mask window with given width and height and with the palm as the

centre of the mask, which is defined by (1):

h h

d

Z d Z x y Z d
P x y

otherwise

−   +
= 


1

0

(,)
(,)

 (1)

After many experiments, the depth threshold 8d cm= is obtained. 𝑍ℎ is the

coordinate depth value of the palm, Z(x,y) represents the depth value at the pixel (x,y)

of the image. After binary mask, the hand image segmented is shown in Fig. 1:

Figure 1. Depth image of a hand extracted

2.2. Depth image filter

The presence of noise and black holes in the depth image acquired by the Kinect

sensor results in poor effects of target recognition and tracking (Bratoszewski and

Czyżewski, 2015; Song et al., 2017). Therefore, this paper proposes a joint bilateral

filter algorithm using the depth images and colour images acquired by the Kinect

sensor. Bilateral filtering is an improved algorithm of Gaussian filtering. Compared

with the latter, one of its most important feature is filtering while maintaining the

edges of the image. Gaussian filtering is a linear filter that can effectively eliminate

Gaussian noise, whose expression is shown in (2):

()
() ()

2 2

2
, exp

2
g

g

i x j y
w i j



 − + −
 = −
 
  (2)

where, 𝜎𝑔 is the standard deviation of the Gaussian function; 𝑤𝑔(𝑖, 𝑗) represents the

weight at the point (𝑖, 𝑗). Gaussian filtering can only take into account the changes in

the spatial distances of image pixels, but not those in the image pixel values. Bilateral

filtering, on the other hand, pays attention to not only the spatial correlation between

pixel values, but also the approximation between them. The filtering formula is as

shown in (3):

Fingertip data fusion of kinect and LMC 147

s g p
w w w= 

 (3)

where:

() ()()
2

2

,
exp

2
p

p

I i j I x y
w



 + −
 = −
 
  (4)

In the above equation, 𝑤𝑔 is the Gaussian filtering. The performance of the

bilateral filter depends on the value of σ𝑝, which limits the relative positions of the

pixels and the variation range of gray scale of the image. Compared with Gaussian

filtering, bilateral filtering can preserve the edge information of the depth image and

reduce the edge blurring caused by Gaussian filtering. The joint bilateral filter is

proposed on the basis of the bilateral filter, of which the calculation formula is shown

in (5):

() ()1
p qp q

q
p

F I f p q g I I
k 

= − −

 (5)

where, I represent the input image, p and q the coordinates of the pixel in the image,

𝐼𝑝 the pixel value at the position 𝑝 in the image, F the output, and f and 𝑔 the weight

distribution functions, which are usually Gaussian functions. Joint bilateral filtering

is to input another new image 𝐼 ̅in the weight calculation in the value domain, which

must be similar to the image to be processed. The image of the hand obtained in the

previous step is bilaterally filtered, and the binarization result is shown in Fig. 2(b):

Fig.2(a) is the binarized image without bilateral filtering. It is obvious that the

contour and the corner points of the hand are clearer in Fig. 2(b), showing the image

is enhanced. With Gaussian filtering in the joint bilateral filtering, Gaussian noise is

suppressed, and the edges of the image are also smoothed, and with the introduction

of a similar image in this filtering, the edge blur caused by Gaussian filtering is

prevented.

Figure 2. Comparison of the implementation results

148 ISI. Volume 23 – n° 6/2018

2.3. Calculation of fingertip coordinates

The Canny operator is used to extract the outline of the hand region. After the

distance between the centre of the hand and each pixel on the contour of the hand is

calculated, the distance curve is obtained, as shown in Figure 3.

Figure 3. Curve of the distance between the centre and the contour of the hand

The coordinates corresponding to most peak points of the distance curve are

located above the centre of the hand, which are regarded as fingers, like the Pink, Ring,

Middle, and Index shown in Fig. 4. The coordinates corresponding to a few peak

points are below the centre of the hand, which are subject to judgment. If the

coordinate points are closer to the y-axis of the centre of the hand, they are regarded

as fingertip coordinates, like the Thumb shown in Fig. 4, whereas those away from

the y-axis of the centre of the hand are not considered as fingertip coordinates, like

the green point shown in Figure 4.

Figure 4. Determination of fingertips

After the pixel positions of the fingertips are determined, they are converted to the

corresponding three-dimensional space coordinates using Kinect SDK, which will

then be used for data fusion of the two somatosensory devices.

Fingertip data fusion of kinect and LMC 149

3. Joint calibration of Kinect and leap motion

The coordinate systems of the two sensors are integrated into one by calibration.

In this paper, the coordinate system of Leap Motion is the main coordinate system,

and the coordinate system of Kinect should be rotated and translated to that of Leap

Motion. Let the rotation matrix and translation vector be respectively R and T and let

the coordinate of one point be Y in the Kinect coordinate system and X in the Leap

Motion coordinate system, and then,

X Y= +R T (6)

where, R is the 33 matrix, with 9 unknown numbers; and T is a 31 vector, with 3

unknown numbers.

Zhang’s calibration method is used for preliminary calibration, where three

reflective balls on one pole are used as the calibration points. The three reflective balls

are simultaneously observed by Kinect and Leap Motion, one of which is fixed, and

the other two changed in directions around this calibration point to generate 6

calibration maps and solve 12 unknowns’ numbers of R and T, and from this, the

preliminary calibration results are obtained. The specific method is detailed in (Zhang,

2004).

After preliminary calibration, accurate calibration is performed. Inspired by the

ICP algorithm (Besl and Mckay, 1992), this paper iterates on the preliminary

calibration results. The steps are as follows:

(1) The coordinates of the two types of five fingertips are taken as the initial

positions of the point set. The point set KP is the set of the coordinates of the fingertips

transformed through (5) from those in the Kinect system on the basis of the

preliminarily calibrated R and T, which is expressed as:

 3| , 1,2,... i ip p i m=  =KP R
 (7)

where, 𝑚 = 5. The point set 𝐿𝑃 consists of the coordinates of the fingertips in Leap

Motion, denoted as:

 3| , 1,2,... i iq q i n=  =LP R
 (8)

where, 𝑛 = 5

(2) Calculate the point 𝑞𝑖 corresponding to the fingertip point 𝑃𝑖 ∈ KP, to make

- mini ip q →
 (9)

(3) Recalculate R and T to make

150 ISI. Volume 23 – n° 6/2018

 - mini ip q+ → R T
 (10)

(4) Use the recalculated R and T to transform KP to obtain the new point set;

(5) If the least square error is smaller than the threshold ε, the iteration stops. In

this paper, 𝜀 = 0.0000005.

Through iterations, R and T are more accurate.

4. Data fusion

4.1. Integration of leap motion, Kinect and unity3D

The Kinect for Windows SDK cannot be directly applied to the Unity3D platform,

so a middleware called Kinect v2 with MS-SDK20.unitypackage is required, through

which, Unity 3D can obtain the data collected by Kinect in real time, so that the data

can be used together with the trigger preset by Unity3D for development of

application software.

The technical standards for Leap Motion are to use the right-hand coordinate

system and process data in millimeters (mm); whereas the technical standards for

Unity3D are to use left-handed coordinate system and process data in meters (m). This

paper uses the middleware Leap Motion Core Assets 4.3.4. unity package to convert

the technical standards for Leap Motion technical standards into those of Unity.

This paper uses Unity 5.6.4p2 (64-bit) to implement human-computer interaction

application in virtual environment. Leap Motion and Kinect are connected to the same

PC.

4.2. Temporal registration of data

Set the acquisition frequency of Leap Motion to 30fps in Unity 3D. This frequency

is consistent with the acquisition frequency of Kinect, so that every time after the same

period, the two devices output one frame of data at the same time to achieve temporal

registration.

4.3. Spatial fusion of data

The data collected by the two devices are registered in the virtual space of Unity3D.

The five fingertip coordinate data collected by Kinect (see Section II) are

(𝐾𝑋𝑖 , 𝐾𝑌𝑖 , 𝐾𝑍𝑖) , and the five-fingertip data collected by Leap Motion are

(𝐿𝑋𝑖 , 𝐿𝑌𝑖 , 𝐿𝑍𝑖). The main steps are as follows:

(1) The transformation matrix R and the translation matrix T obtained in Section

III transform (𝐾𝑋𝑖 , 𝐾𝑌𝑖 , 𝐾𝑍𝑖) into the Leap Motion coordinate system;

Fingertip data fusion of kinect and LMC 151

(2) Transform (𝐿𝑋𝑖 , 𝐿𝑌𝑖 , 𝐿𝑍𝑖) and (𝐾𝑋𝑖 , 𝐾𝑌𝑖 , 𝐾𝑍𝑖) to the Unity3D coordinate

system;

(3) There are 6 parameters (𝐿𝑋𝑖 , 𝐿𝑌𝑖 , 𝐿𝑍𝑖 , 𝐾𝑋𝑖 , 𝐾𝑌𝑖 , 𝐾𝑍𝑖) for the coordinates of

each fingertip. In this case, set the fingertip coordinates under Unity3D to:

() () ()1 2, , , , , ,i i i i i i i i iX Y Z LX LY LZ KX KY KZ = +
 (11)

where, 𝜆1 + 𝜆2 = 1. When the fingertip data obtained by Leap Motion fail or remain

the same, 𝜆2 = 1; when the fingertip data obtained by Kinect fail, 𝜆1 = 1; and when

the five-fingertip data of the two can all be detected, 𝜆1 = 0.6, 𝜆2 = 0.4.

5. Experiments and results

5.1. Experimental equipment

Hardware Environment: Computer (Intel Xeon(R), CPU E5-2650 32G memory,

Nvidia Quadro K5000 GPU, 2 monitors), Kinect v2 for Windows, Leap Motion;

Software Environment: 64-bit Windows 10, Visual Studio.net 2012, Kinect SDK 2.0,

Leap Developer Kit 3.2.1, Unity 5.6.4p2.

5.2. Fingertip detection experiment based on Kinect depth image

This paper uses Kinect to process 15 gestures, each of which is acquired 50 times.

Through the experiment, it can be seen that the Kinect-based fingertip detection

method proposed in this paper can detect the fingertips of most gestures and it is very

robust, as even under complex backgrounds, it can extract the hand region according

to the depth relationship between the hand and other parts of the body. However, when

the fingers are put together, the fingertips are difficult to detect accurately. See gesture

2, 3 and 5 in Line 3, Fig. 5. In addition, since the method detects fingertips based on

the distance between the centre of the hand and the contour of the hand, the pixel

corresponding to the peak of the distance curve is not necessarily the fingertip, like

gesture 4 in Line 2, Fig. 5, where the distance from the point to the centre of the hand

is greater than that between the fingertip and the centre of the hand, but under this

method, it is recognized as a fingertip. In the future work, further studies need to be

conducted on the fingertip detection method.

According to the fingertip pixel position obtained by the above fingertip detection

method, the three-dimensional coordinates corresponding to the pixel are then

obtained using the Kinect SDK.

152 ISI. Volume 23 – n° 6/2018

Figure 5. Effect diagram of fingertip positioning

5.3. Joint calibration experiment and analysis

Kinect and Leap Motion are placed at a distance of about 0.7 meters. The two

devices are connected to the same PC and a one-dimensional calibration rod is placed

within the detection range of the two devices, as shown in in Fig. 6(a).

(a) (b)

Figure 6. Calibration experiment

5.4. Preliminary calibration

In the preliminary calibration, a reflective ball is fixed at a great distance from

Kinect is changed in directions for 6 times, and Kinect and Leap Motion

simultaneously take the images of the calibration rod, and then find the pixel

coordinates of the ball. The resulting images are shown in Figure 7. Figure 7(a) shows

the reflective ball taken by Kinect, and Figure 7(b) shows the one taken by Leap

Motion.

Fingertip data fusion of kinect and LMC 153

Through preliminary calibration, the internal parameter calibration results of the

two devices are obtained, as shown in

(a) (b)

Figure 7. The reflective ball is photographed by the equipment

Table 1, where 𝛼 and 𝛽 represent the focal lengths of the devices, 𝑢0 and 𝜈0 the

positions of the main points of the devices and γ indicates the tilting parameter of the

coordinate axis.

Table 1. Internal parameters of the two sensors

Internal

parameter
𝛼 (mm) 𝛽 (mm) 𝛾 𝑢0 (pixel) 𝑣0 (pixel)

Kinect v2 365.33 365.67 0.3026 262.4536 208.3791

Leap Motion 108.9845 54.5032 1.9314 321.0786 125.1219

5.5. Fine calibration

The device is replaced with a hand model with a fixed gesture, as shown in Figure

6(b).

Leap Motion is able to obtain the fingertip coordinates via its SDK, whereas

Kinect obtains them using the methods in Section II. In order to increase the

robustness of fine calibration and avoid the instability of the data collected by the two

devices, the experiment uses a hand model with a fixed gesture and adopts the fine

calibration method in Section III to obtain a more accurate transformation matrix and

translation vector.

5.6. Calibration results and analysis

The registration results of the fingertips are shown in Fig. 8. Fig. 8(a) shows the

fingertip data before calibration, where the red dots are the fingertip data obtained by

154 ISI. Volume 23 – n° 6/2018

Kinect, and the blue ones are those obtained by Leap Motion. Through transformation,

the Kinect coordinate system is changed to

the Leap Motion coordinate system. Fig.8(b) shows the results after preliminary

calibration and Fig. 8(c) the results after fine calibration.

(a)

(b) (c)

Figure 8. Calibration results of fingertip data

After being transformed, the coordinates of the fingertips acquired by Kinect are

compared with those obtained by Leap Motion in terms of coordinate value errors on

the X-axis, Y-axis and Z-axis and the distance between the two types of fingertips as

shown in Figure 9.

(a) (b)

Figure 9. Error distribution map of the two types of fingertip coordinates

Fingertip data fusion of kinect and LMC 155

Figure 9(a) shows the errors of the two types of fingertip coordinates on the

coordinate axes, wherein the red, blue, and green error lines respectively indicate the

coordinate value errors on the X-axis, Y-axis, and Z-axis; and Figure 9(b) indicates

the errors in the distance between the two types of fingertips. It can be seen that the

errors of the two coordinates on the coordinate axes do not exceed 20 mm, and that

the error in the coordinate distance is at most 22 mm, indicating that the calibration

method proposed in this paper can spatially align the coordinates obtained by the two

sensors.

5.7. Human-computer interaction application test

After the calibration and data fusion are completed, the hand can interact with the

object in the virtual scene, which is a small version of castle. When a finger touches

it, the castle will change its direction, as shown in Fig. 10. Fig. 10(a) shows the state

of the virtual object observed from four angles before it is touched; (b) shows that

after it is touched; (c) shows that, when the hand is out of the detection range of Leap

Motion, per the fingertip data detected by Kinect, some fingers are incorrectly

recognized as bent ones, but that the object can change its direction; (d) shows that

when some fingers are bent, Kinect fails to detect the fingertips, but that Leap

Motion’s fingertip data alone can still be used to touch the object accurately.

(a) (b)

(c) (d)

Figure 10. Results of touching the virtual objects

156 ISI. Volume 23 – n° 6/2018

Experiments show that the data fusion of the two sensors expands the recognition

range of the hand. When one sensor fails, the other sensor can still recognize the

gesture, which reduces the impacts from hand joints blocking each other, enhances

the robustness of the method and improves the recognition rate of the gesture.

The overall scene graph of the system is shown in Figure 11.

Figure 11. Overall scene of the system

5.8. Comparison with other methods

Table 2. Recognition rate comparison (%)

Gesture
Ours Method

Only Kinect
Ours Method Paper (Marin et al., 2015)

1 94 96 96

2 96 98 94

3 96 96 86

4 98 98 -

5 100 100 97

6 92 94 90

7 10 90 -

8 94 92 91

9 80 80 -

10 90 90 -

11 88 90 86

12 60 90 -

13 62 88 -

14 10 82 -

15 8 84 -

Fingertip data fusion of kinect and LMC 157

The methods in (Marin et al., 2015; Sreejith et al., 2015; Debeir, 2014;

Bratoszewski and Czyżewski, 2015) all used 1 Kinect and 1 Leap Motion, but only

(Marin et al., 2015) recognized the gesture, and there was no touching the virtual

object in Unity3D. Here the gestures in Unity3D under this method (the results of

fusing the gestures recognized by Kinect and the Leap Motion data) are compared

with the related gestures under (Marin et al., 2015) (using Kinect v1). Each gesture is

tested for 50 times with the left hand, as shown in Table 2, 1-15 in the first column

represent the gestures in Figure 5.

As shown in the table, there are great errors with respect to gesture 7, 12, 13, 14

and 15 if Kinect is used alone. After it is combined with Leap Motion, the recognition

rate is greatly improved.

6. Conclusion and outlook

In order to meet the basic requirements of the natural human-computer interaction

system, this paper integrates Leap Motion, Kinect v2 and Unity3D together and

proposes a hybrid method consisting of multiple methods. The first is the fingertip

detection method based on Kinect v2 depth image; the second is a two-step joint

calibration method, including preliminary calibration and fine calibration, of which,

the former uses the existing one-dimensional calibration method, and the latter uses

the iterative method to obtain the transformation matrix and the translation matrix;

and the third is the fusion of data. After the data of the two somatosensory devices are

fused in space and time and also weighted, even if the joint of the hand is blocked in

front of one device and the data are invalid, the data of the other device can still be

used to recognize gestures, which improves the robustness of the system and helps

achieve good results in the experiment.

However, this method still has some shortcomings. For example, when a finger is

bent, the fingertip recognition rate of Kinect v2 decreases, causing failure of

interaction with the virtual object; in addition, when the palm is perpendicular to the

Leap Motion and points to Kinect v2, due to the blocking of fingers, the system cannot

identify the fingertip position well. In future work, it is suggested adding one more

Leap Motion or Kinect v2 so that the gestures can be observed from more angles and

the recognition rates of fingers and gestures can be improved.

Acknowledgments

The authors feel like showing the sincerest as well as grandest gratitude to the

Changchun University of Science and Technology, National and Local Joint

Engineering Research Centre of Special Film Technology and Equipment for the

support on equipment and technical support from members.

Reference

Besl P. J., Mckay N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence - Special issue on interpretation of 3-D

158 ISI. Volume 23 – n° 6/2018

scenes—part II, Vol. 14, No. 2, pp. 239-256. http://doi.org/10.1109/34.121791

Bratoszewski P., Czyżewski A. (2015). Face profile view retrieval using time of flight camera

image analysis. in Pattern Recognition and Machine Intelligence: 6th International

Conference, PReMI 2015, Warsaw, Poland, Publisher: Springer, pp. 159-168.

http://doi.org/10.1007/978-3-319-19941-2_16

Chan A., Halevi T., Memon N. (2015). Leap motion controller for authentication via hand

geometry and gestures, human aspects of information security, privacy, and trust. Springer

International Publishing, pp. 13-22. http://doi.org/10.1007/978-3-319-20376-8_2

Chuan C. H., Regina E., Guardino C. (2014). American sign language recognition using leap

motion sensor. in 2015 International Conference on Machine Learning and Applications

IEEE, Vol. 13, pp. 541-544. http://doi.org/10.1109/ICMLA.2014.110

Craig A., Krishnan S. (2016). Fusion of leap motion and kinect sensors for improved field of

view and accuracy for VR applications (course report). Stanford University, unpublished.

Erdoğan K., Durdu A., Yilmaz N. (2016). Intention recognition using leap motion controller

and artificial neural networks. International Conference on Control, Decision and

Information Technologies IEEE, pp. 689-693. http://doi.org/10.1109/CoDIT.2016.7593646

He G. F., Kang S. K., Song W. C., Jung S. T. (2011). Real-time gesture recognition using 3D

depth camera. International Conference on Software Engineering and Service Science

IEEE, pp. 187-190. http://doi.org/10.1109/ICSESS.2011.5982286

Li Y. (2012). Hand gesture recognition using Kinect. IEEE 3rd International Conference on

Software Engineering and Service Science (ICSESS), pp. 196–199.

Mapari R. B., Kharat G. (2015). Real time human pose recognition using leap motion sensor.

in 2016 IEEE International Conference on Research in Computational Intelligence and

Communication Networks IEEE, pp. 323-328.

http://doi.org/10.1109/ICRCICN.2015.7434258

Marin G., Dominio F., Zanuttigh P. (2015). Hand gesture recognition with leap motion and

kinect devices. IEEE International Conference on Image Processing IEEE, pp. 1565-1569.

http://doi.org/10.1109/ICIP.2014.7025313

Meng G., Wang M. (2013). Hand gesture recognition based on fingertip detection. Global

Congress on Intelligent Systems IEEE Computer Society pp. 107-111.

http://doi.org/10.1109/GCIS.2013.23

Penelle B., Debeir O. (2014). Multi-sensor data fusion for hand tracking using Kinect and leap

motion. in Virtual Reality International Conference ACM, Laval, France, 2014, pp. 22.

http://doi.org/10.1145/2617841.2620710

Song X., Huang H., Zhong F., Ma X., Qin X. (2017). Edge-guided depth map enhancement.

International Conference on Pattern Recognition, IEEE,

http://doi.org/10.1109/ICPR.2016.7900053

Sreejith M., Rakesh S., Gupta S., Biswas S., Das P. P. (2015). Real-time hands-free immersive

image navigation system using Microsoft Kinect 2.0 and Leap Motion Controller.

Computer Vision, Pattern Recognition, Image Processing and Graphics IEEE, pp. 1-4.

http://doi.org/ 10.1109/NCVPRIPG.2015.7489999

Staretu I., Moldovan C. (2016). Leap motion device used to control a real anthropomorphic

gripper. International Journal of Advanced Robotic Systems, Vol. 13.

Fingertip data fusion of kinect and LMC 159

Tsuchida K., Miyao H., Maruyama M. (2015). Handwritten character recognition in the air by

using leap motion controller. HCI International 2015 - Posters’ Extended Abstracts.

Springer International Publishing, pp. 534-538, 2015. http://doi.org/10.1007/978-3-319-

21380-4_91

Yang C., Jang Y., Beh J., Han D. (2012). Gesture recognition using depth-based hand tracking

for contactless controller application. IEEE International Conference on Consumer

Electronics IEEE, pp. 297-298. http://doi.org/10.1109/ICCE.2012.6161876

Zhang Z. Y. (2004). Camera calibration with one-dimensional objects. IEEE Transactions on

Pattern Analysis & Machine Intelligence, Vol. 26, No. 7, pp. 892-899,

http://doi.org/10.1109/TPAMI.2004.1304991

	空白页面

