
Ingénierie des systèmes d’information – n° 6/2018, 73-85

Opti-SW: An improved gene sequence

alignment algorithm

Leixiao Li1,2,3, Jing Gao1,*, Yanfeng Liu2,3

1. College of Computer and Information Engineering,

Inner Mongolia Agricultural University, Hohhot 010018, China

2. College of Data Science and Application,

Inner Mongolia University of Technology, Hohhot 010080, China

3. Inner Mongolia Autonomous Region Engineering & Technology Research Center

of Big Data Based Software Service, Hohhot 010080, China

gaojing@imau.edu.cn

ABSTRACT. This paper aims to improve the speed and complexity of Smith-Waterman (SW)

algorithm. For this purpose, the SW algorithm was improved by reducing the complexity and

task load of the computation of the scoring matrix without sacrificing the alignment accuracy.

Then, the optimized algorithm, denoted as the Opti-SW, was verified through experiment. The

results show that the Opti-SW boasts low time complexity, fast computing speed and light

computing load. The research findings shed new light on the database search for gene

sequences.

RÉSUMÉ. Cet article vise à améliorer la vitesse et la complexité de l'algorithme Smith-

Waterman (SW). À cet effet, l'algorithme SW a été amélioré en réduisant la complexité et la

charge de travail du calcul de la matrice de scoring sans sacrifier la précision de l'alignement.

Ensuite, l'algorithme optimisé, noté Opti-SW, a été vérifié par des expérimentations. Les

résultats montrent que l’Opti-SW se caractérise par une faible complexité temporelle, une

vitesse de calcul rapide et une charge de calcul légère. Les résultats de la recherche ont jeté

un nouvel éclairage sur la recherche dans la base de données des séquences de gènes.

KEYWORDS: gene sequence alignment, smith-waterman (SW) algorithm, optimization, opti-SW.

MOTS-CLÉS: alignement de séquences de gènes, algorithme de smith-waterman (SW),

optimisation, opti-SW.

DOI:10.3166/ISI.23.6.73-85 © 2018 Lavoisier

74 ISI. Volume 23 – n° 6/2018

1. Introduction

Sequence alignment, an important operation in bioinformatics, has been widely

used in such field as disease diagnosis, drug engineering and biomaterial engineering

(Chen, 2016). One of the most popular methods for sequence alignment is Smith-

Waterman (SW) algorithm. This pairwise sequence alignment algorithm is known for

its high accuracy (Zhang, 2015). However, the SW algorithm is not suitable for long

sequence alignment and other big data scenarios, due to its high spatiotemporal

complexity.

Many heuristic algorithms have been developed to achieve long sequence

alignment, including Fasta algorithm, Blast algorithm and Burrows-Wheeler

Transform (BWT)-SW (Gao et al., 2014). Nonetheless, none of these heuristic

approaches has sufficient alignment accuracy to overtake the dominance of the SW

algorithm. As a result, the SW algorithm has been optimized with the aid of various

techniques, such as graphic processing unit (GPU) (Wei et al., 2009; Jain and Kumar,

2014; Liu et al., 2012; Cao et al., 2015; Liu et al., 2013), message passing interface

(MPI) (Balaji et al., 2008; Xue, 2015), cluster (Feng and Gao, 2016; Feng, 2015; Li,

2011), single instruction multiple data (SIMD) (Xu et al., 2017; Daily, 2016; Zhao et

al., 2013; Farrar, 2007) and field programmable gate array (FPGA) (Benkrid et al.,

2009; Wang et al., 2015). With heavy computing load and slow computing speed,

these optimized SW algorithms still cannot satisfy the needs of largescale gene

sequence alignment.

To overcome these difficulties, this paper optimizes the SW algorithm by reducing

the complexity and task load of the computation of the scoring matrix without

sacrificing the alignment accuracy. Then, the optimized algorithm, denoted as the

Opti-SW, was verified through experiment. The results show that the Opti-SW boasts

low time complexity, fast computing speed and light computing load.

The remainder of this paper is organized as follows: Sections 2 introduces the SW

algorithm; Section 3 describes the philosophy of improving the SW algorithm into the

Opti-SW; Section 4 verifies the accuracy of the Opti-SW through experiment and

compares the performance between the Opti-SW and the SW algorithm; Section 5

wraps up this paper with meaningful conclusions.

2. SW algorithm

The SW algorithm is a dynamic programming strategy to search for the local

optimal alignment between two gene/protein sequences. Inspired by the Needleman-

Wunsch algorithm, the SW algorithm mainly supports double sequence alignment in

the local range. This is the most accurate method for double and multiple sequence

alignments. However, the high accuracy is achieved at the sake of excessively high

spatiotemporal complexity.

Let s and t be two gene sequences (Figure 1), whose lengths are m and n,

respectively. Then, the i-th character of sequence s can be denoted as si (1≤i≤m), and

Opti-SW: An improved gene sequence alignment algorithm 75

the j-th character of sequence t can be denoted as tj (1≤j≤n). Let D be the score matrix

(Figure 2) of the two sequences, and dij be the element in the i-th row and j-th column

of the score matrix.

Figure 1. Gene sequences a and t

Figure 2. Score matrix D

The workflow of SW algorithm can be described below:

Step 1: Initialization

Assign zero to the element in the first row and first column of score matrix D, that

is, d0j=0(1≤j≤n) and di0=0(1≤i≤m) (Figure 3).

Figure 3. Initialization of the elements in the first row and first column

76 ISI. Volume 23 – n° 6/2018

Step 2: Calculation of score matrix D

The score function of score matrix D can be expressed as:

{

p(a,a)=1

p(a,b)=0, (a≠b)

p(a,-)=p(-,b)=-1

 (1)

where p(a,a)=1 indicates that the score is 1 when the two characters match;

p(a,b)=0, (a≠b) indicates that the score is 0 when the two characters do not match;

p(a,-)=p(b,-)=-1 indicates that the score is -1 when one of the two characters is vacant.

The element dij in score matrix D can be calculated as:

dij = max

{

di-1,j+p(si,-)

di,j-1+p(-,tj)

di-1,j-1+p(si,tj)

0

(1≤i≤m,1≤j≤n) (2)

According to Equations 1 and 2, each element dij of the score matrix can be

calculated, and used to comprise the score matrix.

Step 3: Backtracking

Find the largest element dij in score matrix D, determine whether dij is calculated

from di,j-1, di-1,j or di-1,j-1 elements, and write down the result. Repeat this process until

reaching an element whose value is zero. In this way, a backtracking path can be

obtained (Figure 4).

Figure 4. Backtracking path

Step 4: Solving local optimal alignment

Starting with the largest element dij of scoring matrix D, search for the local

optimal alignment through reverse backtracking according to the path generated in

Opti-SW: An improved gene sequence alignment algorithm 77

Step 3 until reaching an element whose value is zero. During the backtracking process,

if dij comes from di-1,j , si should be compared with “-”; if dij comes from di,j-1 , “-”

should be compared with tj; if dijcomes from di-1,j-1, si should be compared with tj.

3. Improvement of the SW algorithm

Recent years has seen some improvements to the SW algorithm. For instance, Step

2 of the SW algorithm has been modified as: determine the value of element di-1,j-1 in

the score matrix according to the upper element di-1,j, front element di,j-1 and diagonal

element di-1,j-1 of the matrix; Step 3 has been revised into: starting with the largest

element dij of matrix D, determine whether dij is calculated from di,j-1, di-1,j or di-1,j-1

elements, and write down the result; repeat this process until reaching an element

whose value is zero. After these improvements, the SW algorithm can record the

source of element dij when its value is calculated in Step 2, eliminating the need to

compute its value in source tracking of Step 3. Thus, the improved algorithm features

much less time complexity than the original one. This train of thought is followed in

this paper to improve the SW algorithm.

3.1. Philosophy of algorithm improvement

3.1.1. Reducing computing load

(1) According to equations 1 and 2, the elements d00, d10 and d01 of the score

matrix and the score functions p(s1,-), p(−, t1) and p(s1, t1) can be obtained as:

{

d00=0

d10=0

d01=0

p(s1,-)=-1

p(-,t1)=-1

p(s1,t1)=0 or 1

The above conclusion can be used to calculate element d11 in the score matrix:

d11 = max{

d00+p(s1,t1)

d10+p(s1,-)

d01+p(-,t1)

0

=d00+p(s1,t1) =p(s1,t1)

It can be inferred from equation 𝑑11=d
00

+p(s1,t1) that element 𝑑11 of the score

matrix is calculated from d00. In other words, 𝑑11 is derived from d00. According to

equation d11=p(s1,t1), if the first elements of the two sequences do not match, then

p(s1,t1)=0 and d11=p(s1,t1)=0 ; otherwise, p(s1,t1)=1 and d11=p(s1,t1)=1 , which

correspond to the maximum value of 𝑑11. For simplicity, d11is considered as equal to

or smaller than 1 here.

78 ISI. Volume 23 – n° 6/2018

(2) According to equations 1 and 2 and the above conclusion that d11≤1, the

elements d02 and d01 of the score matrix and the score functions p(𝑠1, −), p(−, 𝑡2)
and p(s1,t2) can be obtained as:

{

d11≤1

d02=0

d01=0

p(s1,-)=-1

p(-,t2)=-1

p(s1,t2)=0 or 1

Then, element d12 in the score matrix can be calculated as:

d12 = max

{

d02+p(s1,-)

d11+p(-,t
2
)

d01+p(s1,t2)
0

=d01+p(s1,t2)=p(s1,t2)

It can be inferred from equation 𝑑12=d
01

+p(s1,t2) that element 𝑑12 of the score

matrix is calculated from d01. In other words, 𝑑12 is derived from d01. If the proper

elements of the two sequences do not match, then p(s1,t2)=0 and d12=p(s1,t2)=0 ;

otherwise, p(s1,t2)=1 and d12=p(s1,t2)=1, which correspond to the maximum value of

𝑑12. For simplicity, d12is considered as equal to or smaller than 1 here.

Similarly, it can be proved that all elements d1j(1<j≤n) in the second row of the

score matrix are calculated from d0,j-1, that is, 𝑑13 is derived from d02, 𝑑14 is derived

from d03, …, d1j is derived from d0,j-1(1 < j ≤ n). If the proper elements of the two

sequences do not match, then d13 = 0, d14 = 0, …, d1j=0(1<j≤n); otherwise, d13 = 1,

d14 = 1, …, d1j=1(1<j≤n). To sum up, for all elements d1j(1<j≤n) in the second row

of the score matrix, if p(s1,tj)=1 , then d1j=1(1<j≤n) and if p(s1,tj)=0 , then

d1j=0(1<j≤n):

d1j= {
1, p(s1,tj)=1

0, p(s1,tj)=0
 (1<j≤n) (3)

(3) According to equations 1 and 2 and the above conclusion that d11≤1, the

elements d20 and d10 of the score matrix and the score functions p(s2,-), p(−, t1) and

p(s2,𝑡1) can be obtained as:

{

d11≤1

d20=0

d10=0

p(s2,-)=1

p(-,t1)=1

p(s2,𝑡1)=0 or 1

Opti-SW: An improved gene sequence alignment algorithm 79

Then, element d21 in the score matrix can be calculated as:

d21= max{

d11+p(s2,-)

d20+p(-,t1)

d10+p(s2,t1)

0

=d10+p(s2,t1)=p(s2,t1)

It can be inferred from equation d21=d10+p(s2,t1) that element d21 of the score

matrix is calculated from d10. In other words, d21 is derived from d10. If the proper

elements of the two sequences do not match, then p(s2,t1)=0 and d21=p(s2,t1)=0 ;

otherwise, p(s2,t1)=1 and d21=p(s2,t1)=1, which correspond to the maximum value of

𝑑21. For simplicity, d21is considered as equal to or smaller than 1 here.

Similarly, it can be proved that all elements d1j(1<j≤m) in the second column of

the score matrix are calculated from di-1,0 , that is, d31 is derived from d20 , d41 is

derived from d30, …, di1 is derived from di-1,0(1<i≤m). If the proper elements of the

two sequences do not match, then d31 = 0, d41 = 0, …, di1=1(1<i≤m); otherwise,

d31 = 1, d41 = 1, …, di1= 1(1<i≤m). To sum up, for all elements di1(1<i≤m) in the

second column of the score matrix, if p(si,t1)=1, then di1= 1(1<i≤m) and if p(si,t1)=0,

then di1=0(1<i≤m):

di1= {
1, p(si,t1)=1

0, p(si,t1)=0
 (1<i≤m) (4)

To sum up, all elements d1j(1<j≤n) of the second row in the score matrix are

derived from d0,j-1(1<j≤n), all elements di1(1<i≤m) of the second column in the score

matrix are derived from di-1,0(1<i≤m) and d11 is derived from d00 . If the proper

elements of the two sequences match, it means p(si,tj)= 1 and d11=1 , and then

d1j=1(1<j≤n) and di1=1(1<i≤m) ; otherwise, it means p(si,tj)= 0 and d11=0 , then

d1j=0(1<j≤n) and di1= 0(1<i≤m) (Figure 5).

Figure 5. Source of each element

80 ISI. Volume 23 – n° 6/2018

3.1.2. Simplifying computing complexity

According to equations 1 and2, the following conclusion can be drawn:

{

 p(si,-)=-1

p(-,tj)=-1

di-1,j-1 ≥ 0

p(𝑠𝑖,tj)≤1

On this basis, the element dij in the score matrix can be calculated as:

dij = 𝑚𝑎𝑥

{

di-1,j + p(si,-)

di,j-1 + p(-,tj)

di-1,j-1 + p(si,t𝑗)

0

= 𝑚𝑎𝑥 {

di-1,j − 1

di,j-1 − 1

di-1,j-1 + p(si,t𝑗)

 Considering num = max(di-1,j, di,j-1) , the calculation formula of element dij

above can be simplified as dij=max {
num-1

di-1,j-1+ p(si,tj)
.

Since p(si,tj)≤1 , if num − 2 ≥ di-1,j-1 , we have num − 1 ≥

di-1,j-1+1≥di-1,j-1+p(si,tj) and dij=max {
num-1

di-1,j-1+ p(si,tj)
=num-1 (num-2≥di-1,j-1).

If num − 2 < di-1,j-1, then num − 1 < di-1,j-1+1. Since num is an integer, then the

maximum value of num − 1 is di-1,j-1, that is, num − 1 ≤ di-1,j-1.

Whereas p(si,tj)=0 or 1 , then di-1,j-1 ≤ di-1,j-1 + p(si,tj) and num − 1 ≤

di-1,j-1≤ di-1,j-1+p(si,tj). Therefore, if num − 2 < di-1,j-1 + p(si,tj), we have:

dij = max {
num-1

di-1,j-1+p(si,tj)
=di-1,j-1+p(si,tj) (num-2<di-1,j-1)

Thus, the following equation is valid:

dij = {
num-1, (num-2≥di-1,j-1) (num = max(di-1,j, di,j-1))

di-1,j-1+ p(si,tj), (num-2<di-1,j-1)
 (5)

3.2. Design of Opti-SW

Following the above philosophy of improvement, this paper proposes the Opti-

SW algorithm that reduces the computing load of the score matrix through

simultaneous initialization of the elements in the first row and first column and of

those in the second row and second column. In this algorithm, the computing

complexity is further reduced by optimizing the calculation formula of the score

matrix. The workflow of the Opti-SW is illustrated in Figure 6 below.

Opti-SW: An improved gene sequence alignment algorithm 81

Figure 6. Workflow of the Opti-SW

The specific process of the proposed Opti-SW is explained as follows:

Step 1: initialization of the elements in the first row and those in the first column

Initialize the elements in the first row of the score matrix d0j= 0 (1≤j≤n), and those

in the first column of the score matrix di0= 0 (1≤i≤m).

Step 2: initialization of elements in the second row and the elements in the second

column

Initialize the elements in the second row and second column in score matrix

according to equations 3 and 4, and record the source of each element. Specifically,

derive the elements in the second row from d0,j-1 (1<j≤n), and those in the second

column from di-1,0(1<i≤m). If an element comes from di-1,j , di,j-1 or di-1,j-1, it should

be denoted as 1, 2 or 3, respectively.

Step 3: Calculate score matrix

Calculate score matrix D according to equation 3-3, and record the source of each

element. If an element comes from di-1,j , di,j-1 or di-1,j-1, it should be denoted as 1, 2 or

82 ISI. Volume 23 – n° 6/2018

3, respectively.

Step 4: Solving local optimal alignment

Starting with the largest element dij of scoring matrix D, search for the local

optimal alignment through reverse backtracking according to the path generated in

Step 3 until reaching an element whose value is zero. During the backtracking process,

if dij comes from di-1,j , si should be compared with “-”; if dij comes from di,j-1 , “-”

should be compared with tj; if dijcomes from di-1,j-1, si should be compared with tj.

4. Experiment and results analysis

4.1. Accuracy test

The accuracy of the Opti-SW was tested through a contrastive experiment against

the SW algorithm on a single-node platform. Table 1 lists the results of the two

algorithms under different query sequences and database sequences. Note that

comparison ratio =(comparison score/query sequence length) * 100%.

The input data of the Opti-SW are as follows:

The query sequence (queryFile) length is 2, 4, 8, 16, 32 and 64; the database

sequence (dbFile) length is 64, 32, 16, 8, 4 and 2; the number of fragments (splitNum)

is 32; The number of tasks (taskNum) is 1; the number of outputs (topK) is 1; the

comparison rate of identity is 0.0 (i.e. any sequence of comparison ratios may be

outputted).

The input data of the SW algorithm are as follows:

The query sequence (queryFile) length is 2, 4, 8, 16, 32 and 64; the database

sequence (dbFile) length is 64, 32, 16, 8, 4 and 2; the number of fragments (splitNum)

is 32; The number of tasks (taskNum) is 1.

Table 1. Accuracy test results

Query

sequence

length

Target

sequence

length

Comparison ratio Is the optimal local

contrast of the Sw and

Opti-SW output

consistent?

Opti-SW

Accuracy SW
Opti-

SW

2 64 100% 100% √ 100%

4 32 75% 75% √ 100%

8 16 50% 50% √ 100%

16 8 37.5% 37.5% √ 100%

32 4 18.75% 18.75% √ 100%

64 2 9.375% 9.375% √ 100%

Opti-SW: An improved gene sequence alignment algorithm 83

As shown in Table 1, the comparison ratio and the local optimal alignment of the

Opti-SW algorithm and the SW algorithm are both consistent with the optimal local

alignment under different sequences and comparison ratios. Thanks to the

improvements, the Opti-SW outperformed the SW algorithm in the accuracy of

sequence alignment.

4.2. Performance comparison

Next, another experiment was conducted in the single-node environment to further

compare the performance between the Opti-SW and the SW algorithm. In the

experiment, the query sequence has 48 characters, and the database sequence files are

10MB, 20MB, 40MB, 80MB and 160MB, respectively. The experimental results are

presented in Figure 7, where T is the mean execution time of each algorithm measured

in three tests, and S is the size of the database sequence file.

It can be seen from Figure 7 that the Opti-SW consumed less time than the SW at

the database sizes of 10MB~20MB, 20MB~40MB and 40MB~80MB, and the edge

was increasingly obvious with the growth in data size.

As the data size increased, the execution time of each algorithm grew slowly rather

than exponentially. When the data size fell between 10MB and 80MB, the execution

time of the Opti-SW increased at a slower rate than that of the SW algorithm, and the

rate difference widened with the growth in data size. When the data size fell between

80MB and 160MB, the execution time of each algorithm grew at an increasing rate,

but the difference between the two algorithms remained constant.

Figure 7. Comparison between the Opti-SW and the SW algorithm

In Figure 7, the SW algorithm processed 160MB data in an execution time nearly

2.8 times that needed to process 80MB data, while the Opti-SW processed 160MB

data in an execution time almost 3.4 times that needed to process 80MB data. These

results show that the Opti-SW still have some problems in handling large-scale gene

sequence alignment.

84 ISI. Volume 23 – n° 6/2018

5. Conclusions

As a strategy pairwise sequence alignment, the SW algorithm has been widely

used in database search thanks to its high accuracy. This paper improves the SW

algorithm into the Opti-SW by reducing the computing complexity. The performance

of the proposed algorithm was contrasted with the SW algorithm through a number of

experiments. The results show that the Opti-SW realizes faster computation than the

SW algorithm without sacrificing the alignment accuracy.

Acknowledgement

The work is funded in part by the National Natural Science Foundation of China

(NSFC) under Grant No. 61462070, the Doctoral research fund project of Inner

Mongolia Agricultural University under Grant No. BJ09-44 and the Inner

Mongolia Autonomous Region Key Laboratory of big data research and application

for agriculture and animal husbandry.

References

Balaji P., Feng W., Archuleta J., Lin H. (2008). Semantics-based distributed I/O for mpiBLAST.

Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pp. 293-294. https://doi.org/10.1145/1345206.1345262

Benkrid K., Liu Y., Benkrid A. S. (2009). A highly parameterized and efficient FPGA-based

skeleton for pairwise biological sequence alignment. IEEE Transactions on Very Large

Scale Integration Systems, Vol. 17, No. 4, pp. 561-570.

http://dx.doi.org/10.1109/TVLSI.2008.2005314

Cao L., Xu Y., Deng C. (2015). Algorithm for DNA double sequence alignment problem.

Application of Computer System, Vol. 24, No. 9, pp. 112-117.

Chen M. (2016). Bioinformatics. Beijing: The Science Publishing Company, pp. 13-18.

Daily J. (2016). Parasail: SIMD C library for global, semi-global, and local pairwise sequence

alignments. BMC Bioinformatics, Vol. 17, pp. 124-129. https://doi.org/10.1186/s12859-

016-0930-z

Farrar M. (2007). Striped Smith–Waterman speeds database searches six times over other

SIMD implementations. Bioinformatics, Vol. 23, pp. 156-161.

https://doi.org/10.1093/bioinformatics/btl582

Feng B. (2015). Distributed parallel optimization of needleman-wunsch algorithm for double

sequence alignment. Hohhot: Inner Mongolia Agricultural University, pp. 38-41.

Feng B., Gao J. (2016). Distributed parallel Needleman-Wunsch algorithm on heterogeneous

cluster system. International Conference on Network and Information Systems for

Computers.IEEE, pp. 358-361. https://doi.org/10.1109/ICNISC.2015.145

Gao J., Jiao Y., Zhang W. G. (2014). Review of high throughput sequencing sequence

alignment. Life Science Research, Vol. 18, No. 5, pp. 458-464.

Opti-SW: An improved gene sequence alignment algorithm 85

Jain C., Kumar S. (2014). Fine-grained GPU parallelization of pairwise local sequence

alignment. International Conference on High Performance Computing. IEEE Computer

Society, pp. 1-10. http://dx.doi.org/10.1109/HiPC.2014.7116912

Li D. W. (2011). Research of Parallel algorithm for sequence alignment based on dynamic

programming. Journal of Jinggangshan University (Natural Science Edition), Vol. 32, No.

3, pp. 80-84.

Liu Y., Wang X., Li J., Mao Y., Zhao D. (2012). Research progress of local sequence alignment

algorithm and parallel acceleration. Military Medicine, Vol. 36, No. 7, pp. 556-560.

Http://dx.chinadoi.cn/10.3969/j.issn.1674-9960.2012.07.018

Liu Y., Wirawan A., Schmidt B. (2013). CUDASW++3.0: Accelerating Smith–Waterman

protein database search by coupling CPU and GPU SIMD instructions. BMC

Bioinformatics, Vol. 14, pp. 117. https://doi.org/10.1186/1471-2105-14-117

Wang C., Li X., Chen P., Wang A., Zhou X., Yu H. (2015). Heterogeneouscloud framework

for big data genome sequencing. IEEE/ACM Transactions on Computational Biology and

Bioinformatics, Vol. 12, pp. 166-178. https://doi.org/10.1109/TCBB.2014.2351800

Wei G., Ma C., Pei S., Wu B. (2009). The accelerating implementation of BLAST with stream

processor. IEEE, International Conference on Computer-Aided Industrial Design &

Conceptual Design, Caid & Cd. IEEE, pp. 2245-2250.

http://dx.doi.org/10.1109/CAIDCD.2009.5375228

Xu B., Li C., Zhuang H., Wang J., Wang Q., Zhou X. (2017). Efficient distributed Smith-

Waterman algorithm based on apache spark. IEEE International Conference on Cloud

Computing, pp. 608-615. http://dx.doi.org/10.1109/CLOUD.2017.83

Xue Q. F. (2015). Research and application of parallel algorithm for DNA sequence alignment.

Shanghai: Shanghai University, pp. 7-11.

Zhang D. Y. (2015). Bioinformatics. Beijing: The Science Publishing Company, pp. 28-43.

Zhao M., Lee W. P., Garrison E. P., Marth G. T. (2013). SSW library: An SIMD Smith-

Waterman C/C++ library for use in genomic applications. Plo S one, Vol. 8, pp. 2138-2142.

https://doi.org/10.1371/journal.pone.0082138

	空白页面

