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ABSTRACT. In view of the difficulty in manual monitoring of the operation state of grid servers, 

this paper develops an operation state prediction method for severs in smart grid based on 

several innovative techniques. The prediction method consists of two main steps. Firstly, the 

warning threshold was determined by Chebyshev inequality and improved Rayleigh 

distribution, and then the upper bound of warning, the value of parameter ε, as well as the 

abnormal probability of each timepoint were calculated according to the definition of small 

probability event. Secondly, the back propagation neural network (BPNN) was introduced for 

time sequence prediction and overall analysis of the previous results, thereby obtaining the 

future data of CPU utilization of grid servers. The proposed method was proved valid through 

several experiments. The warning threshold set by our method can warn about abnormalities 

without sacrificing the scientific operation of the grid, and evaluate the abnormal probability 

of each data point. The research findings shed new light on the early warning of abnormal 

server states in smart grids. 

RÉSUMÉ. Compte tenu de la difficulté de la surveillance manuelle de l'état de fonctionnement 

des serveurs de réseau électrique, cet article développe une méthode de prévision de l'état de 

fonctionnement des serveurs dans un réseau électrique intelligent reposant sur plusieurs 

techniques innovantes. La méthode de prédiction comprend deux étapes principales. Tout 

d'abord, le seuil d'alerte a été déterminé par l'inégalité de Bienaymé-Tchebychev et 

l'amélioration de la distribution de Rayleigh, puis le majorant de l'alerte, la valeur du 

paramètre ε, ainsi que la probabilité anormale de chaque mesure dans le temps ont été 

calculées en fonction de la définition d'événement à faible probabilité. Deuxièmement, le réseau 

de neurones à rétropropagation du gradient (BPNN, le sigle de « back-propagation neural 

network » en anglais) a été introduit pour la prédiction de séquence temporelle et l'analyse 

globale des résultats précédents, obtenant ainsi les futures données d'utilisation de l’unité 

centrale de traitement (UCT) par les serveurs dans un réseau électrique. La méthode proposée 

a été validée par plusieurs expérimentations. Le seuil d'alerte défini par notre méthode peut 

avertir des anomalies sans sacrifier le fonctionnement scientifique du réseau électrique et 

évaluer la probabilité anormale de chaque point de données. Les résultats de la recherche ont 
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jeté un nouvel éclairage sur l'alerte précoce de l'état anormal des serveurs dans les réseaux 

intelligents. 
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1. Introduction  

In the pursuit of sustainable development, many countries are competing to 

develop the next generation grid that can save energy, reduce emission and produce 

green power. Taking China for example, much efforts have been paid to design a 

smart grid, which is independent from and more efficient than traditional grids (Chen 

et al., 2018). The design process takes into account the latest development of green 

energy (Tan, 2017). 

Big data is ubiquitous in the smart grid system, especially in the monitoring center. 

In most Chinese grid companies, there is a huge amount of data in the monitoring 

center, making it difficult to monitor the operation status of grid servers. Once a sever 

fails, it often takes a long time to identify the failure, not to mention coming up with 

a timely solution. 

Against this backdrop, it is very meaningful to maximize the monitoring efficiency 

of grid servers by the cutting-edge automation technologies (Wang et al., 2007). An 

effective monitoring system should be able to analyze the grid data and determine the 

part of server affected by the failure, allowing operators to solve the problem in a short 

time (Liu, 2015). 

The existing monitoring systems for grid servers mainly focus on the adjustment 

of CPU, memory and hard drive. For instance, a resource control system (Padala et 

al., 2009) was designed for containing online model estimator in light of cybernetics 

and multi-input and multi-output (MIMO) resource controller; this control system 

captures the complex relationship between application performance and the amount 

of resource allocation, and supports the automatic adaptation to the dynamically 

changing application load and demand-driven adjustment of the allocation amount. A 

dynamic adjustment method (Menasce et al., 2006) was proposed for computing 

resource allocation according to CPU priority, which varies with the workloads of the 

virtual machine; considering the migration cost, this approach (Hu et al., 2006) selects 

the virtual machine to be migrated by weighing CPU utilization and memory size, and 

predicts the load trend of the server based on the load threshold, aiming to avoid the 

migration triggered by instantaneous peak loads. 

Early warning to the server is essential to the monitoring of the operation state of 

each device and the elimination of hidden hazard of the smart grid. The related 

research relies on the prediction of CPU utilization of the server. For example, 

Reference (Wen et al., 2014) combines the auto regressive integrated moving average 

(ARIMA) and back propagation neural network (BPNN) into a prediction model for 
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the CPU utilization of the server, such that the server can make timely and accurate 

response to the change of the application load. Specifically, a server time sequence 

prediction model was constructed, integrating the advantage of the ARIMA in linear 

space and that of the BPNN in nonlinear space. Meanwhile, the data structure of server 

CPU utilization time sequence was divided into the linear part and the nonlinear 

residual. Next, the general trend of the sequence was predicted by the ARIMA and 

the nonlinear residual was estimated by the BPNN. The results were combined into a 

desirable prediction outcome. 

In light of the above, this paper puts forward a method to determine adaptive 

dynamic thresholds based on the improved Chebyshev inequality for Rayleigh 

distributions, which can effectively predict the server CPU utilization and thus the 

operation state of smart grid servers. By this method, the data distribution of CPU 

utilization was analyzed skillfully in light of the probability density of Rayleigh 

distribution function. Firstly, the CPU utilization values were set according to the 

definition of small probability event, and the probability of each data point was 

calculated. Next, the CPU utilization value in future was predicted by the BPNN, and 

compared against the previous threshold to figure out the time of future failure. 

The remainder of this paper is organized as follows: Section 2 analyzes the 

Chebyshev inequality, introduces and improves the Rayleigh distribution, reviews the 

BPNN, and prepares an implementation plan for our method; Section 3 carries out 

experiments on our plan and discusses the experimental results; Section 4 wraps up 

this paper with several conclusions. 

2. Theoretical analysis 

2.1. Analysis of the Chebyshev inequality 

Chebyshev inequality is an estimation of the probability of event |X-μ|<ε, where X 

is a random variable with unknown distribution that determines the event probability 

(Zhang et al., 2013). Let E(X)=μ and D(X)=σ2 be the mathematical expectation and 

the variance of X, respectively. Then, the following relationships are valid for any 

positive integer ε: 
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where X is a random variable; ε is a positive integer. The actual meaning of ε is the 

standard for threshold setting. 

Inspired by the Chebyshev inequality, the CPU utilization was introduced to detect 
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the operation abnormality in grid sever at a certain time. Although the probability 

density is unknown, the mean and variance of CPU utilization in a time period help 

to judge whether a time point is suspicious. If the value of ε is small, then the grid 

server is operating normally at the time point. The value of ε has a positive correlation 

with the difference between the current CPU utilization and the mean CPU utilization. 

According to Chebyshev inequality, this difference falls between 1-σ2/ε2 and ε. The 

higher the lower bound, the more likely for the server to operate normally at the 

corresponding time point. The above method is used to determine the abnormal data 

points in this paper. Any point above the dynamic threshold was considered as 

abnormal. 

2.2. Rayleigh distribution and improvement 

For a random 2D vector, if its two components are independently and normally 

distributed with equal variance and the mean of zero, then the modulus of this vector 

must obey the Rayleigh distribution (Liu, 2016). The probability density of Rayleigh 

distribution can be expressed as: 
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where x is the CPU utilization; σ2 is the variance. Data collation reveals that the CPU 

utilization data mainly fell between 0 and 5, but this pattern weakened with the growth 

in CPU utilization. To put it more intuitively, the CPU utilization data of host 414# 

from August 18th to September 18th in 2017 are presented in Figure 1 below. 

 

Figure 1. Distribution of CPU utilization of host 414# 

For grid servers, the probability of Rayleigh distribution must decrease 

monotonously with the growth in the CPU utilization value. Since the CPU utilization 

data mostly fell between 0 and 5, it is not desirable to implement the Rayleigh 

distribution formula directly. Thus, this formula was modified according to the actual 
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data. 

Taking the derivative of f(x), the probability density of Rayleigh distribution can 

be converted into: 
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If the derivative is 0, x equals 0. In other words, f(x) reaches the maximum value 

when x is equal to σ. This obviously goes against the face. If equation (4) is rewritten 

as 
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Then, the peak value of f(x) can be adjusted by controlling the k value according 

to the actual situation. In this way, the derivative of the new f(x) is always in line with 

the fact, and the result of integration the new f(x) over 0~+∞ equals 1. Substituting 

y=ax into equation (5) and integrating the equation over 0~+∞, we have: 
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Equation (6) can be rewritten as: 
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where A is the adaptive coefficient. If x is equal to μ, then the value of f(μ) reaches the 

maximum. In this case, the value of A can be determined. 

2.3. BPNN 

The learning of the BPNN consists of two processes, namely, the forward 

propagation of the inputs and the backward propagation of the errors. In the forward 

propagation, the inputs move from the input layer to the output layer via the hidden 

layer. If the outputs of the output layer differ from the expected outputs, then the 

output error will be calculated and transmitted back reversely. Then, the weight 

between the neurons of each layer will be modified to minimize the error (Constantin 

et al., 2016). 

Neurons are the building blocks of the BPNN (Ren, 2015), whose structure is 

shown in Figure 2. In this figure, the inputs of the BPNN are denoted as xi (i=1,2, …, 

R), the connection weight between the neurons as ωi (i=1,2, …, R), the threshold (bias 
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value) as b=ωi, and the transfer function as f. Then, the outputs of the BPNN can be 

expressed as: 

1
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Let X= (x1, x2, …, xR), W= (ω1, ω2, …, ωR)T and XW+b=n. Then, we have y=f(n). 

Y

 

Figure 2. BPNN structure 

In our case, the feedforward network becomes a nonlinear function. Let {Xn} be a 

time sequence. Then, the CPU utilization can be predicted as: 

1 2 1( , , , )n k n n nX f X X X X+ − −=
                               (9) 

where f is the analog function; n=1, 2,..., N are the time points; Xn is the CPU 

utilization at a time point (Zhu et al., 2010). The BPNN prediction can be 

implemented through the following steps. 

2.3.1. Sample extraction and training set construction 

Accurate samples are the key to the validity of the established training data set. A 

rational sampling method should cover all data points according to the features of the 

time sequence, and select a proper number of samples. Too many samples will cause 

overfitting and an increase of network complexity; otherwise, a high fitting error will 

occur in training and hinder network extension. 

2.3.2. Dataset pre-processing 

In the network, the artificial neuron is described as the processing elements, as 

they have weighted inputs, transfer functions, and an output. The input of these 

neurons should be weighted and summarized, forming an activation function 

(Harikeshava et al., 2017). BPNN has a strict requirement on the input data. Uniform 

the inputs, the more stable the prediction performance. The data with obvious 
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amplitude variation are not suitable for network inputs.  

2.3.3. Design of network structure 

To design a sound network structure, the following factors should be determined 

properly in turns: the number of network layers, the number of output layer nodes, the 

number of hidden layer nodes, the number of input layer nodes, the activation function 

in the hidden layer, the training function, the learning function and the activation 

function in the output layer. 

2.3.4. Initialization 

The above factors should be initialized and the threshold and connection weights 

should be determined randomly. 

2.3.5. Data input 

The sample data should be inputted to the hidden layer and the output layer. 

2.3.6. Recalculation  

The connection weights and thresholds should be recalculated according to the 

feedback values. 

2.3.7. Termination judgement 

If proper inputs are obtained through the recalculation, please return to Step (5). If 

the error of the output layer is below the pre-set value, the training process should be 

terminated. 

2.3.8. Prediction 

The training model can now be used to predict the future trend. 

2.4. Our implementation plan 

Our implementation plan for predicting the operation state of grid servers covers 

the following steps: setting up a rational threshold model, verifying the abnormal 

probability of each data point, predicting the CPU utilization by the BPNN, comparing 

the predicted value with the threshold, and issuing a warning about the abnormal 

points. The block diagram for the implementation plan is shown in Figure 3 below. 

As shown in Figure 3, the implementation plan contains the following six steps. 
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Figure 3. The block diagram for the implementation plan 

(1) The entire system collected the historical data on CPU utilization. 

(2) The probability distribution of CPU utilization data was calculated by the 

improved Rayleigh distribution function. The variance of CPU utilization data in one 

month was computed and then the expression of the Rayleigh distribution was 

obtained. The variance is an adaptive threshold. 

(3) The data were updated on a daily basis. In every update, the data of the first 

day of the current month were discarded, and those of the current day were included. 

Then, the variance was computed again to obtain the new Rayleigh distribution 

expression. 

(4) The threshold was calculated according to the definition of small probability 

event. 

(5) The threshold was substituted into Chebyshev inequality to calculate the 

abnormal probability of a data point. 

(6) The future CPU utilization was predicted by the BPNN according to the 

historical data and compared against the previous threshold to determine the time 

point of failure. 

3. Experiments and results discussion 

Two threshold setting plans were put forward for the operation state prediction of 

grid servers. In the first plan, the threshold is determined by Chebyshev inequality and 

the warning indices obtained from experimental adjustment; in the second plan, the 
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threshold is determined through Chebyshev inequality and improved Rayleigh 

distribution function according to the definition of small probability event. 

According to the first plan, the probability of event |𝑋 − 𝜇| < 𝜀 was estimated by 

Chebyshev inequality. The probability estimates of Chebyshev inequality are listed in 

Table 1 below. 

Table 1. Statistical table of probability estimates 

ε σ2/ε2 1-σ2/ε2 

√3/2𝜎 2/3 1/3 

√2𝜎 1/2 1/2 

√5/2𝜎 2/5 3/5 

√3𝜎 1/3 2/3 

√7/2𝜎 2/7 5/7 

2𝜎 1/4 3/4 

 

The values of the adjustment coefficients 𝜉1 and 𝜉2 must be set manually before 

determining the value of  . Here, these two coefficients and the thresholds 𝑇1and 𝑇2 

are defined as: 
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To classify CPU utilization data points, the segmented function M can be 

customized as: 
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If M=1, then the current CPU utilization is abnormal; if M=0, then the current CPU 

utilization is normal; if T2<1-σ2/ε2<T1, then the current time point is suspicious. 

Different values of ξ1 and ξ2 (0<ξ1, ξ2<1) were selected to differentiate between normal 

points, abnormal points and suspicious points, and determine the values of T1 and T2. 

The values of T1 and T2 can be derived from ξ1 and ξ2 through the following adaptive 
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threshold setting rules: 

(1) If ξ1=ξ2=0.5, then 𝑇1 = 2.0821 and 𝑇2 = 0.6678;  

(2) If ξ1=0.6 and ξ2=0.4, then  𝑇1 = −2.0821 and 𝑇2 = 0.8578. 

The results of this plan show that the CPU utilization was abnormal at most time 

points, which is obviously untrue. Some normal data must have been wrongly judged 

as suspicious. For example, misjudgment many occur if a host is suddenly visited, 

leading to an increase in CPU utilization. In addition, this plan is too subjective to 

reflect the objective situation. 

According to the second plan, the threshold was determined by the Chebyshev 

inequality and the improved Rayleigh distribution function according to the definition 

of small probability events. Considering the huge amount of data and the heavy 

presence of invalid data in our case, host 414# and host 507# were randomly selected 

after data filtering for further analysis. 

(1) For host 414#, the mathematical expectation, standard deviation and variance 

were computed as μ=1.4154, σ=1.068 and σ2=1.03362, respectively. Then, the 

A=0.5331 was obtained by equation (10). The processing results of this host are 

presented in Table 2.  

Table 2. Processing results of host 414# 

 statistic  

mean standard deviation variance 

1.415 1.033 1.068 

 

Next, the threshold can be obtained by formula (7) as 𝑃(𝑋0 > 𝑥 > 0) =

∫ 𝑓(𝑥)𝑑𝑥
𝑥0
0

=0.99. After that, the value of X0 can be determined as 4.300 on the Matlab. 

(2) For host 507#, the mathematical expectation, standard deviation and variance 

were computed as μ=1.3129, σ=0.6260 and σ2=0.392, respectively. Then, the 

A=0.5331 was obtained by equation (10). The processing results of this host are 

presented in Table 3.  

Table 3. Processing results of host 507# 

 statistic  

mean standard deviation variance 

1.312 0.626 0.392 

 

According to equation (10), this is a probability density function. The definite 

integral of equation (10) is consistent with that of Step (1), and the value of X0 was 
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determined as 3.988. 

The above operations show that the improved Rayleigh distribution model can 

approximate the actual distribution of CPU utilization. The adaptive threshold was 

calculated scientifically according to the definition of small probability event. By this 

method, it is learned that the threshold for host 414# on September 19th was 4.300. In 

other words, the system will issue a warning when the CPU utilization exceeds 4.300. 

For host 507#, the warning will be released when the CPU utilization surpasses 3.988. 

Next, the reliability of the upper bound obtained by Rayleigh distribution was 

verified by Chebyshev inequality. According to the formula 𝑃{|𝑋 − 𝜇| < 𝜀} ≥ 1 −
𝜎2

𝜀2
, the value of ε was obtained from ε-μ=X0, and then the abnormal probability of each 

point was calculated. 

(1) For host 414#, the value of ε can be determined as 5.7154 from ε-μ=X0. In this 

case, at least 96.73% of the data points in the warning were probably abnormal. 

(2) For host 507#, the value of ε can be determined as 5.3009 from ε-μ=X0. In this 

case, at least 98.60% of the data points in the warning were probably abnormal. 

The experimental data demonstrate the reliability of the predicted results. The 

predicted points can be basically viewed as abnormal. Hence, this plan can output an 

adaptive threshold for the operation state prediction of grid servers. 

After the threshold was determined, the next step is to predict the CPU utilization, 

and thus identify the operation state of grid servers and identify potential risks. Based 

on the historical data, the CPU utilization was predicted by the BPNN. Specifically, 

the CPU utilization of the sixth day was forecasted based on those of the previous five 

days, and contrasted against the measured data. Then, the data of the last five time 

points were relied on to predict those of the next time point. After that, the predicted 

data were combined with the data of the last four time points to further predict the 

new next time point. These processes were repeated until all time points had been 

predicted. Then, the CPU utilization of each host was calculated and compared with 

the predicted data (Figures 4 and 5). 

 

Figure 4. Comparison between measured and predicted CPU utilizations of host 

414# on September 19th 



390     EJEE. Volume 20 – n° 3/2018 

 

 

Figure 5. Comparison between measured and predicted CPU utilizations of host 

507# on September 19th 

The comparisons verify the accuracy of this prediction method. Next, the above 

method was adopted to predict the CPU utilization at the next 15 time points. The 

predicted results were contrasted against the threshold to find the potential abnormal 

points. 

(1) For host 414#, the CPU utilizations for the next 15 time points were predicted 

as: 0.15212, 0.45288, 0.62012, 29.340, 1.2280, 0.83339, 10.370, 13.546, 13.204, 

13.599, 1.1811, 0.76360, 0.83339, 0.83339 and 0.15186. As the threshold was 4.300, 

the abnormal values include 29.340, 10.370, 13.546, 13.204 and 13.599. 

(2) For host 507#, the CPU utilizations for the next 15 time points were predicted 

as: 0.29169, 0.4356, 2.4965, 2.6374, 0.21653, 2.9053, 1.4561, 1.7324, 5.0202, 2.8766, 

6.5453, 0.30237, 0.94157, 5.0142 and 5.1322. As the threshold was 3.988, the 

abnormal values include 6.5453, 5.0142 and 5.1322. 

Compared with the data distributions in Figures 5 and 6, the above predicted data 

were much greater than those at normal time points. The result indicates that the 

threshold setting is rational. In the future, the warning system will react in advance 

and locate the abnormalities as long as the CPU utilization trend goes in line with the 

predicted trend. 

4. Conclusions 

The traditional Chebyshev inequality faces a high computing cost, a limited 

application range, and high subjectivity in dealing with adaptive dynamic threshold. 

In this paper, the adaptive threshold is determined by the Rayleigh distribution 

function, which has been improved according to the actual situation, before the 

Chebyshev inequality is introduced to determine the abnormal probability of time 

points. 
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Coupled with the adaptive threshold, the BPNN was adopted to predict the CPU 

utilization of grid servers in the next 15 time points according to the historical data. 

This arrangement makes full use of the BPNN’s strength in predicting time sequences 

and solving nonlinear complex data problems. In this way, the author successfully 

predicted the CPU utilization of grid servers in future and realized pre-warning of 

server abnormalities. 
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