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ABSTRACT. In view of the importance of fast and accurate forward modelling in electrical 

numerical simulation, this paper derives the finite-element equation for 2D geoelectrical field 

with a point current source, and introduces the theoretical formulas under different boundary 

conditions (i.e. Dirichlet and mixed boundary conditions). On this basis, forward simulations 

were carried out at the electrical contrasts of 1:10 and 1:100 between a low resistance body in 

uniform medium and the background field, aiming to compare the simulation results of the body 

under the two boundary conditions. The comparison shows that the position and range of the 

low resistance body were well simulated under the mixed boundary condition; however, when 

the electrical contrast increased to 1:100, the position and range of the low resistance body 

simulated under the Dirichlet boundary condition deviated greatly from the actual results. 

Owing to the incomplete projection, an artefact appeared below the anomalous body. The 

artifact, lighter than the anomalous body, has much less impact on the positioning of the 

anomalous body than on the range judgement. By contrast, the position of the low-resistance 

body was imaged relatively accurately under the mixed boundary condition, and the range of 

the image body was similar to the size of the low-resistance body in the model. Considering the 

good imaging effects at high and low electrical contrasts and the variety of application 

scenarios, the finite-element simulation under the mixed boundary condition can be promoted 

to solve 2.5D and 3D problems. 

RÉSUMÉ. Compte tenu de l’importance de la modélisation directe rapide et précise dans la 

simulation numérique électrique, cet article dérive l’équation en éléments finis pour un champ 

géo-électrique 2D avec une source de courant ponctuel, et présente les formules théoriques 

sous différentes conditions aux limites (c’est-à-dire les conditions des limites de Dirichlet et les 

conditions des limites mixtes). Sur cette base, des simulations directes ont été effectuées aux 

contrastes électriques de 1:10 et 1: 100 entre un corps à faible résistance en milieu uniforme 

et le champ de fond, dans le but de comparer les résultats de simulation du corps dans les deux 

conditions de limites. La comparaison montre que la position et la portée du corps à faible 
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résistance ont été bien simulées dans des conditions des limites mixtes; toutefois, lorsque le 

contraste électrique a été augmenté à 1: 100, la position et la portée du corps à faible résistance 

simulé dans les conditions des limites de Dirichlet s'écartaient considérablement des résultats 

réels. En raison de la projection incomplète, un artefact est apparu en dessous du corps 

anormal. L'artefact, plus léger que le corps anormal, a beaucoup moins d'impact sur le 

positionnement du corps anormal que sur le jugement de distance. En revanche, dans les 

conditions des limites mixtes, la position du corps à faible résistance a été imagée de manière 

relativement précise et la portée du corps de l'image était similaire à la taille du corps à faible 

résistance du modèle. Compte tenu des bons effets d'imagerie pour les contrastes électriques 

forts et faibles et de la diversité des scénarios d'application, il est possible de promouvoir la 

simulation par éléments finis dans des conditions des limites mixtes pour résoudre les 

problèmes 2.5D et 3D. 
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1. Introduction 

Resistivity tomography (RT) has been applied successfully since the early 1980s. 

Compared with conventional resistivity exploration methods, the RT enjoys a low cost 

and high efficiency in the exploration of roadbed, minerals and hydrogeology, and 

provides an ideal solution to many real-world problems. 

In 1987, Shima and Sakayama coined the term RT and put forward an inverse 

interpretation method. Since then, the RT has been investigated both theoretically and 

practically from multiple angles. Relying on finite-difference method, Dey et al. 

realized the forward numerical simulation of the resistivity of 3D models in any shape, 

examined the surface response of low-resistance anomalous body of simple rule block 

model under dipole-dipole device, and simulated the anomalous surface response of 

low-resistance body when the current source is at a certain depth of the well. 

Mizunaga et al. used the finite difference method to complete forward numerical 

simulation of the hole-surface resistivity method under t point current source and 

vertical line source, and extended the numerical simulation to the hole-surface 

resistivity method under the current source of any shape. J.H. Coggon introduced the 

finite-element method into numerical simulation of electrical exploration. By 

improving the meshing method, William L. Rodi and Rijo preliminarily increased the 

computing speed and accuracy of the forward modeling. 

Inspired by the previous research into forward numerical simulation (Tabbagh et 

al., 2000; Kim et al., 2001; Shima & Sakayama, 1987; Sasaki, 1994; Shima, 1990; 

Binley et al., 2002; Cassiani et al., 2009; Chambers et al., 2004; Daily & Ramirez, 

1995; Daily et al., 1992; Deiana et al., 2007; Descloitres et al., 2008; Rocroi et al., 

1985; Ramazi et al., 2009; Hattula & Rekola, 2000), this paper re-introduces different 

boundary conditions by establishing a forward model, compares the forward results 
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of finite-element simulation of RT images acquired under Dirichlet boundary 

condition and mixed boundary condition, and simulates the response features 

(geometric features and burial features) at different electrical contrasts between the 

low-resistance anomalous body and the surrounding rock medium. The research 

findings lay a solid basis for the selection of proper boundary condition for forward 

numerical simulation of different geological models (Ushijima et al., 1990; Sill & 

Ward, 1978; Suparno et al., 2005; Supriyanto et al., 2005). 

To disclose the relationship between the new boundary condition and the 

numerical solution, the remainder of this paper consists of formula derivation, 

boundary condition, numerical simulation analysis of geoelectric model, and 

conclusions. The conclusions provide a theoretical basis for the further study of 

delimited boundary condition. 

2. Formula derivation 

2.1. Derivation of the finite-element equation of 2D geoelectric field with a point 

power source 

Let A(x0, y0, z0) be the coordinates of the point power source in an infinite medium 

whose resistivity is ρ(x, y, z), and I be the current intensity of the point power source. 

In the coordinate system, the x and y axes were arranged along the direction of the 

geological body while the z axis was vertically downward. Then, the potential 

function U of stable current field satisfies the following differential equation: 

( ) ( )AU I r r   = − −
                                        (1) 

where σ is the dielectric conductivity; δ is the Dirac equation; U is the potential at 

any point on the surface or in the medium; I is the supply current intensity; r is the 

field point radius vector; rA is the source point radius vector. 

Since 
𝜕

𝜕𝑦
[𝜎(𝑥, 𝑦, 𝑧)] = 0 for a 2D geoelectric profile, equation (1) can be rewritten 

as: 

( ) ( ) ( ) ( ) ( )0 0 0, , ,x z U x y z I x x y y z z     = − − − −       (2) 

Applying Fourier transform to the basic differential equation of the steady current 

field along the y axis, we have: 

( ) ( ) ( )
0

, , , , cosx k z U x y z k y dy


=                           (3) 

Transforming the potential U in space (x, y, z) to the generalized potential 𝑈 of 

space, we have: 
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( ) ( ) ( ) ( )

( ) ( )

2

0 0

, , , , , ,

1

2

y y yx z U x K z K x z U x K z

x x z z

 

 

   −
 

= − − −

            (4) 

where Ky is the spatial wavenumber; δ is the Dirac function. 

2.2. Delimited boundary condition 

(1) Dirichlet boundary condition 

The unique solution of equation (4) can be determined only under the definite 

condition of the boundary. In this paper, the Dirichlet boundary condition is selected, 

that is, the potential value φ is given on the boundary, because the boundaries must be 

far away from the field source and the non-uniform body. The Dirichlet boundary 

condition can be expressed as [21~30]: 

( ) ( ), , , ,U x y z x y z =                                            (5) 

As the value of φ(x, y, z) is difficult to be obtained by formulas, one of the 

following two conditions is often adopted: 

① The boundary potential is set to zero; ② It is assumed that 
𝜕𝜑

𝜕𝑛
= 0 on the 

boundary. 

During the y direction Fourier transform of the U in equation (4), the cosine 

transform was applied with an integration interval between 0 and ∞, for potential U(x, 

y, z) is symmetric with respect to the plane xz, i.e. U(x, y, z)=U(x, -y, z). 

( ) ( )
0

, , , , cosU x k z U x y z kydy


=                               (6) 

Considering the integral property of δ function, the δ function in equation (4) 

satisfies the following condition: 

( ) ( ) ( ) ( ) ( ) ( )
0

1 1
cos

2 2
A A A A AA x z x y z kydy     



= = 
    (7) 

Substituting equations (6) and (7) into equation (4), we have: 

( )2U U
k U I A

x x z z
   
      

+ − = −   
                        (8) 

For 
𝜕𝜑

𝜕𝑛
= 0 on the boundary, the normal lies in the plane xz and has nothing to do 

with y. Thus, we have: 
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0
U

F
n n



 

  
= = 

                                       (9) 

Equation (5) can be transformed into: 

( )0
2 20

= cos
U c

U F kydy cK kr
n r y





 
= = 

 + 


                 (10) 

where r falls within the profile passing through point U(0,0,0) and perpendicular to y; 

Γ∞ boundary is the distance from a point to U(0,0,0); K0 is the zero-order modified 

Bessel function of the second kind. The differential quotient of K0(x) is: 

( ) ( )0 1

d
K x K x

dx
= −

                                        (11) 

K1 is the is the first-order modified Bessel function of the second kind. Taking the 

derivative of equation (10) in the normal n, we have: 

( ) ( )1 cos ,
U U r

ckK kr r n
n r n

  
= = −

                          (12) 

From equations (11) and (12), we have: 

( )

( )
1

0

0
K krU

k
n K kr




+ =


                                  (13) 

Then, the generic function can be established as: 

( ) ( ) ( )
2 2

21
=

2 2
I U U k U Ix A U d






 
 + −  

 


               (14) 

where the area Ω is surrounded by the surface boundary Γs and the infinity boundary 

Γ∞. The corresponding variational problem can be expressed as: 

( ) ( )

( ) ( ) ( )

2

2

=I U U U k U U I A U

U U d U k U I A Ud

      

     



 

   + − 

 =  + −  + − 
 



 
 (15) 

Substituting equations (9) and (13) into equation (15), we have: 
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( ) ( ) ( )

( )

( )
( )

2 2
2

21

0

1
=

2 2

cos ,

F U U k U I A U d

kK kr
r n U d

kK kr


 







 
 + −  

 

+ 





               (16) 

The 𝑈 of the split node can be obtained by solving the variational problem of 

equation (16) through finite-element method. The 𝑈 corresponds to a specific wave 

number k. The potential U can be obtained via inverse Fourier transform of a group 

of 𝑈 values corresponding to different k values. 

(2) Mixed boundary condition 

Mixed boundary condition can be expressed as: 

( ), ,
U

AU x y z
n




 
+ = 

 
                                 (17) 

where A is a known positive number. 

Therefore, the boundary condition of equation (4) can be transformed into the 

following boundary value problem [31~36]: 

1

2

2

1

0

0

U U
U f

x x z z

U

n

U
AU

n

   






       + − =           

 
= 

 


  
+ =                              (18) 

where 

( )1

1

1
,

2

n

k k k

k

f I x x z z
−

= − − −
                               (19) 

( )

( )
( )1

0

= cos
k r

A r y
k r


 




                                  (20) 
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where Γ1 is the ground boundary; Γ2 is the remaining boundary; Ik is the current 

intensity of the k-th point current source; k1(λr) is the first-order modified Bessel 

function; k0(λr) is the zero-order modified Bessel function; θ is the angle between the 

radius vector r from the power point to the boundary point and the outer normal n of 

boundary. 

Since the A in equation (20) is a constant, the following can be obtained through 

the Fourier transform of the U in equation (17): 

( ) ( )0, ,x y z Ak r =
                                        (21) 

where k0(λr) is the zero-order modified Bessel function, and  

( )1 cosA k r
n


  


= −

                                      (22) 

where k1(λr) is the first-order modified Bessel function; θ is the angle between the 

radius vector r and the outer normal n. 

According to equation (21), we have: 

( )

( )0

, ,
=

x y z
A

k r




                                              (23) 

Substituting equation (23) into equation (22), we have: 

( )

( )
1

0

cos 0
k r

n k r


  




+ =

 
 or 

cos 0
n


 


+ =

      (24) 

Substituting the mixed boundary condition (24) after the variation of equation (17) 

into the condition, equation (18) can be converted into an equivalent variational 

problem [37~42]: 

( )

( ) ( )

2 2

2
2

0 0

1

2
D T

y

U U

x zW U dxdz aUds

K U I x x z z U




  

      
  + +      = +     
 

− − −  

   (25) 

where I is the current intensity; Γ is the boundary of D, the area of the 2D geoelectric 

profile; ds is the integral variable of the integrals along the boundary, that is: 
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( )
( )

1

0

cos
y

y

y

k k r
a k

k k r
=

                                         (26) 

where k0 and k1 are zero-order and first-order modified Bessel functions, respectively; 

θ is the angle between the radius vector r from the power point to the boundary point 

and the outer normal n of boundary. Then, the real potential U can be obtained through 

the following steps: discretizing the target area; solving the generalized potential 𝑈 

by the finite-element method; applying inverse Fourier transform to the generalized 

potential 𝑈. 

3. Numerical simulation and analysis of geoelectric model 

(1) Numerical simulation and analysis at the electrical contrast of 1:10 between 

the anomalous body and the background field 

As shown in Figure 1(a), the dipole sounding observation system is adopted in the 

test model. The parameters were configured as follows: the electrode spacing is 5m, 

the model thickness is 67m, the surrounding rock resistivity is 100Ω·m, the anomalous 

body ρ1 (green) resistivity is 10Ω·m, and the electrical contrast is 1:10. The model 

was used to simulate low-resistance columnar anomalies in a uniform space. The 

forward model and coordinate system are presented in Figure 1(a). 

 

(a) Forward model at the electrical contrast of 1:10 (between the low resistance 

anomalous body and the background field in a uniform space) 

 

(b) Image of anomalous body obtained by forward simulation under Dirichlet 

boundary condition 
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(c) Image of anomalous body obtained by forward simulation under mixed boundary 

condition 

 

(d) Image of anomalous body obtained by least squares inverse simulation 

Figure 1. The test model 

As shown in Figures 1(b) and 1(c), the imaging position and range of the 

anomalous body differed greatly with the selected boundary condition. The image of 

the low-resistance body fluctuated greatly under the Dirichlet boundary condition. 

Theoretical derivation shows that, after a certain distance, the imaged body is either 

smaller or larger than the anomalous body in the model. Comparing Figures 1(a) and 

1(b), it can be seen that the Dirichlet boundary condition caused a huge deviation of 

the anomalous body position in the image from that in the model, and the size of the 

imaged body was smaller than the size of the anomalous body in the model. By 

contrast, the position of the low-resistance body was imaged relatively accurately 

under the mixed boundary condition, and the range of the image body was similar to 

the size of the low-resistance body in the model. 

Next, the potential value acquired by the forward calculation under the mixed 

boundary condition in Figure 1(c) was taken as the prior information, and substituted 

into the inverse iteration of the model, that is, solving the matrix equation of the least 

squares method. In this way, the image of anomalous body was acquired by least 

squares inverse simulation (Figure 1(d)). The iterated image shows that the inverse 

iteration results closely reflected the position and size of the anomalous body in the 

model. In the image, the position of the low-resistance body was between 120m 

and150m in horizontal distance, and between 24m and 38m in depth. The position 

was basically the same as that in the model. Hence, the RT can reliably image the low 

resistance body under mixed boundary condition. 

(2) Numerical simulation and analysis at the electrical contrast of 1:100 between 

the anomalous body and the background field 

As shown in Figure 2(a), the dipole sounding observation system is adopted in the 

test model. The parameters were configured as follows: the electrode spacing is 5m, 
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the model thickness is 67m, the surrounding rock resistivity is 100 m , the 

anomalous body 
1

 (green) resistivity is 10 m , and the electrical contrast is 

1:100. The model was used to simulate low-resistance columnar anomalies in a 

uniform space. The forward model and coordinate system are presented in Figure 2(a). 

 

(a) Forward model at the electrical contrast of 1:100 (between the low resistance 

anomalous body and the background field in a uniform space) 

 

(b) Image of anomalous body obtained by forward simulation under Dirichlet 

boundary condition 

 

(c) Image of anomalous body obtained by forward simulation under mixed boundary 

condition 

 

(d) Image of anomalous body obtained by least squares inverse simulation 

Figure 2. The test model 
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As shown in Figures 2(b) and 2(c), when the electrical contrast between the low 

resistance anomalous body and the background field increased to 1:100 while other 

conditions remained the same, the imaging position and range of the anomalous body 

was still accurately simulated under the mixed boundary condition, but image of the 

low-resistance body fluctuated greatly under the Dirichlet boundary condition. This 

agrees well with the theoretical derivation that, after a certain distance, the imaged 

body is either smaller or larger than the anomalous body in the model under the 

Dirichlet boundary condition. Comparing Figures 1(a) and 1(b), it can be seen that the 

Dirichlet boundary condition caused a huge deviation of the anomalous body position 

in the image from that in the model, and the size of the imaged body was larger than 

the size of the anomalous body in the model. Owing to the incomplete projection, an 

artefact appeared below the anomalous body. The artifact, lighter than the anomalous 

body, has much less impact on the positioning of the anomalous body than on the 

range judgement. By contrast, the position of the low-resistance body was imaged 

relatively accurately under the mixed boundary condition, and the range of the image 

body was similar to the size of the low-resistance body in the model. 

Next, the potential value acquired by the forward calculation under the mixed 

boundary condition in Figure 2(c) was taken as the prior information, and substituted 

into the inverse iteration of the model, that is, solving the matrix equation of the least 

squares method. In this way, the image of anomalous body was acquired by least 

squares inverse simulation (Figure 2(d)). The iterated image shows that the inverse 

iteration results closely reflected the position and size of the anomalous body in the 

model. In the image, the position of the low-resistance body was between 120m 

and150m in horizontal distance, and between 24m and 38m in depth. The position 

was basically the same as that in the model. Hence, the RT can reliably image the low 

resistance body under mixed boundary condition, despite the nine-fold increase in the 

electrical contrast, sensitivity and impedance influence. 

4. Conclusions 

In this paper, the finite-element method is selected for non-uniform grid simulation 

of the electrical features at different electrical contrasts between low-resistance 

anomalous body in a uniform medium and background field. Through forward 

numerical simulation, it is discovered that the position and range of the low-resistance 

body were accurately simulated under the mixed boundary condition. Under the 

Dirichlet boundary condition, however, deviation appeared in the simulated range of 

the low-resistance body with the growth in the electrical contrast. After a certain 

distance, the imaged body is either smaller or larger than the anomalous body in the 

model, and its simulated position deviates from the actual position under the Dirichlet 

boundary condition. 

To sum up, the more the grids in finite-element simulation, the greater the 

electrical variation of the anomalous body, and the more obvious the difference 

between the simulated results between the Dirichlet and mixed boundary conditions. 

Considering the good imaging effects at high and low electrical contrasts under the 

mixed boundary condition, this research method can be promoted to solve 2.5D and 
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3D problems. Further studies are needed to develop suitable theoretical and practical 

methods for 3D geoelectric simulation. 
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