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ABSTRACT
To achieve the important tactical requirement of low probability of intercept (LPI) in the complex radar net-
work, dynamically controlling the emission of the radars is very necessary. A novel radar dwelling time control 
strategy based on an interacting multiple model algorithm is presented in this paper, which controls the dwell-
ing time of radar according to predicted covariance matrix during tracking, taking advantage of the relation 
model between the dwelling time and the tracking performance. First, the complex radar network is built for 
target tracking. Secondly, the influence of the dwelling time is considered in the tracking performance of the 
complex radar network. Finally, a decision will be made after the dwelling time for every radar is obtained 
by particle swarm optimization, the radar with the smallest dwelling time will be selected to track target. 
The tracking accuracy and LPI performance are demonstrated in the Monte Carlo simulations. The results are 
validated through the comparison with other methods.
Keywords: dwelling time, interacting multiple model, low probability of intercept, target tracking.

1 INTRODUCTION
As we know, the less the emitted time of the radar, the more the excellent performance of the low 
probability of intercept (LPI) [1]. To achieve the important requirement of LPI, dynamically sched-
uling and controlling the dwelling time of the radar during the sensor management is very necessary. 
The work in [2] formalizes the typical workload of a modern-phased array radar and proposes a 
rate-based approach to schedule radar dwells in a real-time manner. The paper [3] develops a gener-
alized framework for the radar task scheduling problem as an optimization model, and all radar task 
parameters are treated as variables, thereby allowing greater scheduling flexibility and the ability to 
handle more targets using a single radar. The scheduling of track dwells to minimize radar energy 
and time with an agile beam radar is considered in [4], where the trade between higher energy wave-
forms and radar time is further investigated. The algorithm in [5] introduces time windows that 
specify allowable earliness and lateness of radar tasks, and proposes a chaining process that com-
bines the dwell times and the time windows of tasks with consecutive priorities. The work of 
Severson and Paley [6] presents a distributed, consensus-based approach to optimize radar resource 
management for ballistic missile surveillance and tracking.

Almost all of those works concern the performance of the single radar, and there are few studies 
on the design of dwelling time and radars selection in the complex radar network for excellent LPI 
performance. In this paper, a novel scheduling algorithm for dwelling time in radar networks is pro-
posed. The remainder of this paper is organized as follows. Sections 2 and 3 describe the interacting 
multiple model (IMM) algorithm of target tracking and particle swarm optimization (PSO), respec-
tively. Section 4 presents the dwelling time scheduling method in sensor network in detail. 
Simulations of the proposed algorithms and comparison results with other methods are provided in 
Section 5. The conclusions are presented in Section 6.
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2 TARGET TRACKING ALGORITHM BASED ON IMM
IMM method is used for tracking maneuvering target in this paper. Many dynamic models are used 
for matching different motion states, and the switch probability of a different model is a Markov 
chain. Kalman filtering is employed for the estimation of target state and the update of model prob-
ability in the algorithm, and all dynamic models are parallel processed and the model probability 
represents model switch [7].

All the dynamic models are: M m m mr= { , ,..., }1 2 , mk
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Let X(k) and Z(k) represent the state vector and the observation vector, respectively; the state 

equation and transfer equation at time k are:

 ( 1) ( 1) ( ) ( )j jk k k k+ = + +X X wf  (1)

and

  ( ) ( ) ( )j jk k k= +Z H X v  (2)

where wj(k) and vj(k) are stationary white-noise processes with covariance matrices Qj(k) and W(k) 
of model j, fj(k) is the transition matrix and Hj is the observation matrix.

Every recurrence of the IMM algorithm contains: interacting of input, model’s filtering, update of 
model probability and interacting of output.

2.1 Interacting of input

Utilizing all the states and model probabilities from last recurrence, the computation of input state 
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2.2 Model’s filtering

In the light of step (1) and observation data Z(k), the Kalman filtering of every model is as follows:
The prediction of state and covariance for model j has the form of

  
'

0
ˆ ˆ( ) ( ) ( 1)j j jk k k= −X Xf  (7)

 
'

0( ) ( ) ( 1)( ( ))Tj j j j jk k k k= − +P P Qf f  (8)

The residual error represented by observation data and estimation of last observation is



312 Z. Zhang et al., Int. J. of Design & Nature and Ecodynamics. Vol. 10, No. 4 (2015) 

 
'ˆ( ) ( ) ( )j j jk k k= −v Z H X  (9)

The variance matrix of the residual error is obtained by the follow equation:

 '( ) ( )( ) ( )T
j j j j jk k k= +S H P H W  (10)

Computation of the filtering gain is given as

 '( ) ( )( ) ( ( ))T
j j j jk k k −=K P H S 1 (11)

Equation of updated state is
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Estimation of the covariance is
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2.3 Updating of the model probability

The model probability is recursively updated as
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Λ j k( ) is the likelihood function of model j at time k.

2.4 Interacting of output

The final estimation of state vector from all the models’ state is
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Estimated matrix of covariance is derived as
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where ˆ ˆ[ ( ) ( )]j k k= −b X X .

3 PARTICLE SWARM OPTIMIZATION (PSO)
PSO algorithm proposed by Kennedy and Eberhart [8] has been widely used in many fields. It is an 
evolutionary algorithm according to social interaction between independent particles. In PSO 
method, every potential solution for optimization problem is supposed as a point called particle in 
the space. The swarm composed by N particles moves through the problem space with the moving 
velocity of each particle. The position and velocity of the ith particle is represented as xi = (xi1, xi2, …, 
xiN) and vi = (vi1, vi2, …, viN), respectively, where N is the dimension of the space.

The ith particle tracks its personal best position (pbest) as a vector pi = (pi1, pi2, …, piN); the global 
best position (gbest) among all the particles is represented as pg = (pg1, pg2, …, pgN).
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Usually the optimization problem can be formulated as follows:

 min f(X), subject to g(x) ≥ 0 (17)

where X=(x1, x2, …, xm).

The steps of PSO method are outlined as follows:

1. Generating the original particle position and velocity.
2. Exceeding boundary control.
3. Computing the fitness function f(X) for each particle.
4. Updating the pbesti:
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5. Updating the gbesti:
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6. Updating the position and velocity:
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where i = 1,2,…n, d = 1,2…m, n and m are the number of particles and dimensions in the space, 
w represents the inertia weight factor which is between 0.4 and 0.9, c1 and c2 are acceleration 
constants usually selected as 2, r1 and r2 are uniformly distributed random numbers in (0, 1).
7. Return to step (2) and go on the iteration.

4 DWELLING TIME ALLOCATION ALGORITHM BASED ON PSO

4.1 Design for covariance matrix Wk of measurement noise

The covariance matrix Wk of measurement noise is controlled by the emitted energy. As we know, 
radar equation at time k is as follows:
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where tB
k is the single dwelling time of the beam from the normal direction at time k, Pav

k  is the average 
radiated power, GR is the receiver gain, sk is the radar cross section of the target, K is the Boltzmann 
constant, TR and L are, respectively, effective noise temperature and radar system loss, Rk is the 
detection range, GT is the transmit gain, SNR

k  represents the signal-to-noise ratio of the system at time 
k. Suppose when the target whose range is R0, the radar has to emit the power Pav0, and the radar 
equation becomes
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Combining (22) with (23), the emitted signal-to-noise ratio at time k can be written as

 
4

0 0
4

00

k
k av NR
NR

av k

k
B

B

t P S R
S

P Rt
=  (24)

where the emitted power is supposed to be a constant parameter in this paper.
The single pulse signal is radiated by the radar, and the covariance of the measurement noise can 

be denoted as
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where Tp is the pulse width, c is the wave velocity, and wc is the carrier frequency. We can see that 
different tB

k can lead to different W. However, during the tracking process, Rk is unknown before 
radar detection. Therefore, Rk in (24) is replaced by Rk

pre, which is predicted by Rk-1 and vk-1. Rk
pre is 

presented as

 1 1
pre
k k kR R v T− −= +  (26)

Rk-1 and vk-1 are the target’s range and velocity, which are estimated by the IMM tracking algorithm 
at time k-1, and T is the tracking interval.

4.2 Computation of predicted tracking covariance matrix

The prediction of covariance for model j at time k can be represented as
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Then, the variance matrix Sj(k + 1) and filtering gain Kj(k + 1) can be written, respectively,
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The covariance estimation for every model can be represented as
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At last, the predicted covariance matrix is given as
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where mj(k) is model probability at time k.
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4.3 Dwelling time allocation algorithm based on PSO

The desired tracking covariance matrix Pdes should be set for the m radars in the network first. Then, 
the dwelling time of every radar is selected as the particles in the PSO, and then the minimum and 
maximum ranges, velocities are designed according to the radars’ performance. Initial locations and 
velocities of all particles are generated randomly in whole search space.

Then, the fitness function is designed as

 f = min(trace(Ppre(k + 1) - trace(Pdes))) (32)

During the PSO optimization, every radar in the network will select the dwelling time Tdw
m

, which 
leads to the minimum fitness function. Then, a dwelling time set can be given as

 { }1 2, ..., m
dw dw dw dw=T T T T  (33)

To save most radiation time and get the best LPI ability of the radar network, the algorithm will 
choose the radar which will radiate the minimum dwelling time in the network for tracking at time k.

5 SIMULATION RESULTS
In this section, Monte Carlo simulations are performed to analyze the performance of the proposed 
dwelling time scheduling algorithm based on the PSO and predicted covariance (PSO-PC). The IMM 
filter here comprises constant velocity (CV) model and coordinated turn (CT) rate model [7].

5.1 Trajectory design

Figure 1 shows the target trajectory in 100s. There are three radars, which are labeled A, B and C in 
the radar network. The positions of the radars are (0.80), (250.10) and (-70,400), respectively.

5.2 Comparison of tracking performance

The proposed dwelling time design method (PSO-PC) of three radars is realized in the simulation, 
which is also compared with the performance of every single radar using the scheduling strategy 
of dwelling time in [6]. The root mean square error (RMSE) of time k and the average root-
mean-square error (ARMSE) of the whole tracking process can be formulated as (34) and (35), 
respectively:
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where Mc is the number of the Monte Carlo simulation, xk is the true state of the system, x̂k
m is the 

estimated vector at the mth simulation, and Nt is the total tracking time in every simulation. In the 
simulation, Mc=100 and Nt=100.

Figure 2 shows the range RMSE of the proposed method during the tracking. Figure 3(a) and (b) 
shows the RMSE of the proposed method in X and Y direction, respectively. Table 1 shows the 
ARMSE of the range, X direction, and Y direction. Compared with every radar, we can see that the 
proposed method of PSO-PC presents almost the same excellent tracking accuracy.
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Figure 1: Trajectory of the target.

Figure 2: Comparison of tracking performance.
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5.3 Comparison of dwelling time

As dwelling time of PSO-PC, Radar A, Radar B and Radar C is shown in Fig. 4, we can see that the 
proposed method not only presents excellent tracking accuracy but also reduces more radiated time. 
As Fig. 5 shows the radiation label of the radars, we can see the radars work in turn in order to obtain 
excellent tracking and LPI performance.

6 CONCLUSIONS
In this paper, we have presented a new strategy of dwelling time allocation in the radar network 
based on the PSO method and predicted covariance theory. According to the optimization results of 
every radar, the radar with the minimum dwelling time in the network will be selected to track the 

Figure 3: Comparison of tracking performance: (a) tracking performance of X direction and (b) 
tracking performance of Y direction.

Table 1: Comparison of ARMSE.

Method R-ARMSE (km) X-ARMSE (km) Y-ARMSE (km)

PSO-PC 0.0065 0.0155 0.0169
Radar A 0.0083 0.0224 0.0210
Radar B 0.0063 0.0229 0.0091
Radar C 0.0066 0.0109 0.0223

(a)

(b)
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Figure 4: Comparison of dwelling time.

Figure 5: Radiation label of the radars.
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target. The simulation results show that the proposed method can save much more dwelling time 
with excellent tracking accuracy for tracking single target in the network. As for the future work, this 
algorithm can be modified to track more targets in complex radar network.
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