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ABSTRACT
We show that a multifractal analysis offers a new and potentially promising avenue for quantifying the com-
plexity of various time series. In particular, we compare the most common techniques used for multifractal 
scaling exponents estimation. This is done from both a theoretical and phenomenological point of view. In our 
discussion we specifically focus on methods based on estimation of Rényi entropy, which provide a power-
ful tool especially in the presence of heavy-tailed data. As a testbed for the applicability of above multifractal 
methods we use various real financial datasets, including both daily and high-frequency data.
Keywords: multifractal spectrum, Rényi entropy, time series.

1  INTRODUCTION
During the past few decades, the concepts of scaling and self-similarity have become common fare in 
various scientific branches, including dynamical systems [1], biological systems [2], quantum field 
theory [3] and sociological and economical systems. Global scaling is a key concept, for example, in 
the theory of critical phenomena and renormalization group, while a global self-similarity is the cor-
nerstone of fractal geometry. Nevertheless, in real systems, such as financial markets, one typically 
observes local scaling and local self-similarity rules rather than the global ones. A theoretical handle 
that can successfully deal with such systems is provided by multifractal analysis. This paradigm is 
based on the assumption that the distribution of local scaling rules possesses also its scaling rule with 
characteristic scaling exponent called multifractal spectrum. The theory of multifractals has been 
deeply studied, for example, [4–7]. In this connection, there have been developed various methods for 
multifractal spectrum estimation of time series, such as methods based on generalized Hurst exponent 
[8] or wavelet transform [9]. Here we will focus on two most common techniques used for estimation 
of multifractal scaling exponents, namely Detrended fluctuation analysis [10, 11] and the Rényi-
entropy-based Diffusion entropy analysis [12–14]. We compare both methods from the theoretical 
point of view and discuss their applicability in time series analysis. To illustrate theoretical results, we 
apply both methods to the examples of real financial time series collected on daily and minute basis.

2  MULTIFRACTAL ANALYSIS
Let us have a time series { }x i

N
i 1=  measured on the specific time lag s, (e.g. minute basis or daily 

basis). We group all points into distinct regions Kj, and the probability of occurrence in jth region is 
given by pj = limN ∞ Nj/N, where Nj is number of points in Kj. We consider that each probability 
scales with some characteristic exponent, so pj ∝ sαj and the distribution of scaling exponents is 
considered in form ρ(α, s) ∝ s–f (α). The scaling exponent f(α) is called multifractal spectrum and is 
nothing else than fractal dimension of subset with scaling exponent α. More details can be found in 
Refs. [7,15]. Alternatively, one can obtain a related representation of characteristic scaling expo-

nents from so-called partition function Z q s p sj j
q q, .( ) = ∑ ∝ ( ) τ  Two comments are now in 

order. First, the relation between multifractal spectrum and scaling exponent of partition function is 
given by the Legendre transform τ(q) = maxα[qα − f(α)]. Second, the exponent τ(q) is closely related 
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to Rényi entropy S s
q

p sq j
q( ) =

−
∑ ∝ ( )1

1
ln j

D q . Eventually, τ(q)= D(q)/(q–1). Scaling expo-

nent D(q) is known as a generalized dimension [15]. Rényi entropy was originally formulated by 
Hungarian mathematician Alfréd Rényi [16] in mid 70’ and further developed in number of works 
(see, e.g. Ref. [17] and citations therein). It represents a one-parametric generalization of Shannon 
entropy known from information theory and thermodynamics. Because of properties such as observ-
ability [18] or relation to multifractals, it has found numerous applications in thermodynamics [17], 
econophysics [19] and quantum mechanics [20]. In the following section, we compare methods 
based on estimation of moments of probability distribution with the approach based on Rényi 
entropy.

3  ESTIMATION OF MULTIFRACTAL SCALING EXPONENTS
The first attempt to describe the scaling exponents in time series was done by Hurst et al. [21]. Impor-

tant upshot of his effort was formulation of the so-called Hurst scaling exponent. The Hurst exponent 

is calculated as | |∆ ∆x t tH( ) ∝
 
and represents a measure of long-memory and persistence. 

Nowadays, there are many techniques that estimate Hurst exponent, let us just mention the Rescaled 
range analysis [22]. Probably the most popular method called Detrended fluctuation analysis (DFA) 
was originally introduced in Refs. [10,11,23]. The key object of the method is the local fluctuation 
function f(ν, s), which sums up fluctuations from a local trend. The global fluctuation function is then 

calculated as a generalized mean of local fluctuations F q s
N
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fluctuation function scales as F(q, s) ∝ s
h(q)

. In some particular cases (e.g. stationarity, positivity), it 
can be shown that the scaling exponent h(q) is related to conventional multifractal analysis as  
τ(q)= qh(q) − 1.

An alternative approach to estimate the multifractal scaling exponents can be reached through 
estimation of Rényi entropy and its scaling exponent. This method is called Diffusion entropy 
analysis (DEA) and was introduced in Refs. [12,13] and further discussed in [14]. Unlike other 
methods based on estimation of moments, this approach can successfully deal with distributions 
with heavy-tails. As an example, let us have a distribution that is self-similar with the scaling form 

p x t
t

F
x

t
( , ) ( )=

1

δ δ

. Then the Shannon entropy (q → 1) is equal to S1(t) = A+δ ln t. In case of 

multiple scaling exponents, these can be revealed by the whole class of Rényi entropies and we 
obtain Sq(t)= Bq + δ(q) ln t. At this point, we should stress that proper estimation of Rényi entropy 
for all values of q is crucial in this method. In practice, this boils down to estimation of probability 
distribution that is constructed via the so-called Fluctuation collection algorithm [12,14]. To do 
so, it is necessary to calculate the optimal width of histogram bins so that the interpolating histo-
grams faithfully approximate the underlying distribution. There exist several approaches for such 
an estimation. We can mention, for instance, the classic rule of Sturges (estimating the optimal 
number of bins as 1 + log

2 
N), Scott’s rule [24] or Freedman–Diaconis’ rule [25] (both estimate the 

optimal bin widths as being proportional to N
−1/3

). Quite recently, a generalization of the above 
procedure to the case of Rényi entropy was presented in Ref. [14]. In particular, this provided an 
estimation of histogram powers pˆq for several time scales that is necessary to compute the corre-
sponding scaling exponents.
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By comparing the two methods, we can say that the best approach, when examining data, is to 
combine both of them and depict both spectra f(α) and δ(q). This is because the transformation of 
the exponents works, strictly speaking, only in the limit s → 0, which is often replaced by the 
assumption of exact scaling which is then implemented into the linear regression procedure. Unfor-
tunately, the exact scaling premise is not usually fulfilled in case of real time series. Thus, the 
knowledge of both spectra brings more complex picture of the multifractal nature of the series. In 
general, we can say that DFA is better, when the estimation of moments is not problematic, while 
DEA is more fruitful in case of power law distributions and heavy tails. In the next section, we com-
pare both spectra and time dependence of the Hurst exponent for various real financial series recorded 
for both daily and high-frequency ticks.

4  APPLICATIONS OF MULTIFRACTAL ANALYSIS TO FINANCIAL DATA
Here we apply the multifractal estimation procedures discussed above to the real financial time 
series. Financial markets are for this task an ideal testbed since they represent open, non-linear and 
highly structured complex systems with lots of unexpected and unpredictable phenomena (including 
sudden jumps, market sentiment, long-memory effects, etc). This, in turn, brings about a non-trivial 
multifractal structure of market prices reflected in ensuing time sequences. We test the applicability 
of the aforementioned multifractal techniques on several examples of market time series, particularly 
on stock index Nikkei 225 (index of Tokyo stock exchange), ASE Composite index (main index of 

Figure 1: � Multifractal analysis of daily data. We can observe that the multifractal exponents of the 
series VIX are different from the other series. This is caused by a volatile nature of the 
index, resulting also a discontinuity in the δ-spectrum. Note also that the Hurst exponent 
of VIX series is noticeably lower than in other series.
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Athens stock exchange), IBM stock and VIX index (implied volatility of S&P 500 options index) 
recorded on high-frequency and daily basis. Minute time series were recorded during year 2013 
and have approximately 10

5 
tick points, daily data are from the last 10–20 years (depending on 

the particular series) and have 5,000–10,000 records. Figs 1 and 2 depict results of the multifractal 
analysis of all mentioned series for both characteristic time lags. We can observe that in case of non-
liquid series or anomalous scaling, both methods exhibit certain discontinuities in the spectra. This is 
caused by the fact that estimation of any quantity based on underlying distribution with heavy tails is 
usually technically difficult and one needs to make very precise calculations. In case of daily series, 
we observe that the spectra describe mainly the general characteristic scaling exponents, usually 
close to 0.5 (white noise or Wiener process). This can be attributed to the fact that the data are liquid 
and correlations of the series decay much faster (order of minutes). On the contrary, minute data 
have much richer structure of scaling exponents, which is apparent mainly from the δ-spectrum. 
These two figures show that combination of several multifractal methods is desirable and allows we 
for a more complete theoretical picture of the observed time series.

5  CONCLUSIONS
The multifractal analysis is an important diagnostic tool that allows to revealing a rich and often 
intricate scaling structure in variety of complex dynamical systems. In this paper, we have compared 
several techniques for estimation a of multifractal scaling exponents. Notably, we have discussed 
main theoretical aspects of two currently popular methods, namely detrended fluctuation analysis 
and diffusion entropy analysis and illustrated their utility in the real-life examples of financial 

Figure 2: � Multifractal analysis of high-frequency financial data. Depicted data are highly non-
liquid and exhibit a power-law behavior. This is reflected in discontinuities in both 
spectra, mainly in the f-spectrum of NKY series.
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time series. The optimal way is to combine several methods based on different approaches for 
multifractal spectrum estimation. This can eliminate the numerical and computational artifacts in 
multifractal spectra that are usually caused by insufficient precision in estimations or by complex 
nature of underlying data. Nevertheless, such data are usually the most interesting to investigate. In 
case of financial series, we have shown that different time scales have usually different characteristic 
scaling exponents. This is because the rough coarse-graining can suppress (and often does!) some 
non-trivial intermediate dynamics alongside with their scaling exponents and hence the effective 
coarse-grained spectrum is structurally poorer.
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