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ABSTRACT
A collision warning system (CWS) facilitates timely crash-avoidance behaviours by providing real-time 
warnings to drivers about imminent collisions. Despite its potential benefits in terms of both shorter 
response times and ability to maintain longer headways, its adoption has been slow. Smartphone-based 
collision warning applications (CWAs) may assist in stimulating wider adoption of collision warning 
technology, as they are much less expensive and are accessible in many types of smartphones. How-
ever, driver behaviour with CWAs has never been studied.
Aim: This study explored the behaviour of 26 drivers in the initial 2–3 weeks of using a CWA, with 
respect to (1) their responses (speed behaviour) to the warnings they received, and (2) the number of 
warnings they received over time.
Method: Drivers were asked to install a CWA on their smartphone and share their trip data in return for 
monetary rewards. The data logged by the CWA included instantaneous speed and the time-stamped 
warnings that were received during the trips. The analysis employed several linear and non-linear 
regression models.
Results: The CWA generated safer behaviours: drivers lowered their speed when warnings were issued 
and maintained safer headway distance over time. In view of the high penetration rate of smartphones, 
it is suggested that ways to further test and use CWAs be developed.
Keywords: collision warning systems, driver behaviour.

1 INTRODUCTION
Rear-end collisions account for more than 30 percent of accidents involving another vehicle 
[1]. The main causes of rear-end collisions are inattention and close following [2]. Collision 
warning systems (CWSs) have been developed as a means to mitigating these causes. A CWS 
feeds data from sensors as radar and camera into an on-board processing unit to compute time 
to collision (TTC). An auditory, visual, tactile or any combination [3] of warning modalities 
is issued when TTC is lower than a predefined safety threshold.

A body of naturalistic and simulator studies has demonstrated the safety potential of 
CWSs. For example, Lee et al. [4] showed that warnings assisted drivers (N = 120) on the 
releasing of the accelerator and reduced kinetic energy of simulated crashes. Mohebbi et al. 
[5] reported that driver (N = 18) response time to simulated impending collisions was shorter 
with warnings than without.

In an on-road study, headway warnings not only led drivers (N = 30) to maintain safer 
headways, but also taught them to assess headway distance more correctly: compared to the 
pre-use of the warning system, they kept safer headways even when warnings were no longer 
available [6]. In another study, 18 truck drivers used a CWS for 10 months. During that time, 
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drivers responded to the warnings and kept larger headways than before [7]. Faster responses 
to leading car decelerations in an on-road study were also reported by Dingus et al. [8]. 
Finally, an actuary analysis suggested that drivers with a CWS had fewer insurance claims 
than drivers without one [9].

In view of the safety benefits of using CWSs, the National Transportation Safety Board 
recommended making them standard on all vehicles [10]. Despite this, there is limited adap-
tation of CWSs mainly due to their cost [11].

A possible solution may reside in low-cost, smartphone-based collision warning applica-
tions (CWAs). CWAs only require a smartphone and phone cradle. They use image processing 
algorithms to identify vehicles in the phone-camera’s video image and to estimate the timing 
of possible impending collisions [12]. The overwhelming market penetration of smartphones 
[13,14] along with experts’ beliefs that CWAs will both promote safety behaviours and gain 
public support [15] provide the motivation for investigating their effects on driving behav-
iours. For instance, the frequency of false warnings by any of the currently available CWAs 
is unknown and therefore, the extent to which drivers would trust their warnings is unclear 
[16,17]. Previous studies demonstrated that when warnings came from a CWS that produced 
frequent false warnings, the frequency and intensity of collision avoidance behaviours have 
been attenuated [17,18]. The level of trust in a CWA compared to a CWS may also depend on 
the perceived quality of a smartphone-based, ‘no warranty’ CWA, versus the in-vehicle man-
ufacturer version. These concerns suggest that results obtained with CWSs may not apply to 
CWAs, and driver responses to CWAs should therefore be tested.

In this study, we analysed on-road driver data to investigate (1) whether drivers reduced 
their speed in response to warnings and to what extent they reduced it in case they had; and 
(2) whether they maintained safer headways during the time they used the application.

2 METHOD
CWA: The CWA used in this study (IonRoad, Tel-Aviv, Israel) computes TTC by applying 
real-time algorithms to the smartphone’s motion sensors, camera and GPS streams. It pro-
vides graded auditory and visual warnings according to two TTC thresholds: 2.5 s and 1.5 s. 
A series of short beeps is sounded and a yellow square with the word ‘careful’ appears when 
the 2.5 s threshold is breached. Louder lower-tone beeps are sounded and a red square with 
the word ‘warning’ appears when the 1.5 s threshold is breached. Therefore, hereon, we refer 
to the 2.5 s and 1.5 s breaches as yellow warning and red warning, respectively. Finally, the 
CWA also logs the time stamp of the warnings (in minutes), and vehicle speed and accelera-
tion according to a 10 s resolution. This telematics is subsequently used to analyse drivers’ 
behaviour and their responses to CWA warnings.

Participants: Thirty participants volunteered for the experiment. None of them had previ-
ous experience with collision avoidance technology. Four of the participants dropped out due 
to technical problems (e.g. unexpected shutdowns, trip data not saved). The remaining 26 
participants (8 female; 18 male; age range 24–60 years; mean = 31.45; standard deviation = 
12.37) were all licensed drivers with two or more years of driving experience. In return for 
their participation, they received the CWA they used in the experiment (priced US $4.99) and 
monetary rewards according to the number of trips they took with the application, but no 
greater than 50 Israeli Shekels (~ US $4.99).

Data: Overall, 372 trips were recorded across the 26 participants. The number of trips per 
participant ranged between 4 and 28 with an average of 14.31 trips (SD = 7.39). These trips 
accounted for a total driving time of 131.35 hours, ranging between 0.75 and 11.17 hours per 
participant (mean = 5.05, SD = 3.10).
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Overall 399 warnings were logged. The number of warnings per participant ranged between 
0 and 36 with an average of 15.34 (SD = 9.85). Rate of warnings per minute was ~0.05. There 
were 371 (93%) yellow warnings and 28 (7%) red warnings. For the purpose of statistical 
inference, there was not enough data to provide a separate analysis for the red warnings. 
Excluding red warnings, however, would also mean excluding important information about 
driver behaviour and we therefore decided to conduct our analysis on yellow and red warn-
ings together.

Analysis: To investigate whether participants responded to warnings from a CWA, we 
studied, for all participants, the statistical linkage between the dependent variable ‘speed’ and 
two main independent variables ‘warning’ (yes or no) and ‘trip index’ (first trip, second trip, 
etc.). To study whether participants maintained safer headways during the time they used the 
CWA, we tested whether the dependent variable count of ‘warnings per trip’ (WPT) is linked 
to the independent variables ‘trip index’ and ‘trip duration,’ and speed (greater than 90 km/h 
(common posted speed for highways in Israel) and greater than 50 km/h (above common 
posted speed for urban roads).

3 RESULTS

3.1 Effect of warnings on speed

This section focuses on analysing driver speed when warnings were issued. Speed samples 
(km/h) were available every 10 seconds, while time stamps for warnings were available 
according to a one-minute resolution. Our database was therefore arranged according to a 
one-minute resolution so that the 7,881 rows in the database represented 7,881 minutes of 
driving. Database features included driver index, trip index, whether warning was present or 
not and the last speed sample recorded at the specific minute. In 7,528 (95%) minutes, there 
were no warnings at all. In 312 minutes (4%), there was one warning and in the remaining 41 
minutes (1%) there were 2 or 3 warnings. Of the six samples of speed available in every min-
ute, the last of the six was used in the analysis as an indication of the speed after warning.

According to the information provided in the introduction section, drivers typically respond 
to warnings by slowing down. Thus, speed should be low after warnings compared to before 
warnings. Yet, slowing down may also indicate that drivers have merely responded to the 
event that triggered the warning rather to the warning itself. To differentiate between the two 
cases, we tested whether drivers tended to slow down when warnings were present and also 
tested whether such tendency to slow down increased over time. We suggest that the increas-
ing tendency to slow down is related to drivers gaining more trust in the system, responding 
more intensely to its warnings.

Our investigation of whether drivers responded to warnings was based on the gap between 
the speed recorded at the end of each driving minute (recall that our data is given in a resolu-
tion of minutes) and the driving speed recorded at the end of the preceding driving minute. 
This index is denoted hereon as SG (speed gap). A negative value of SG implies slowing 
down. It is difficult in field studies to control for factors such as congestion, road quality, 
weather and lighting that may impact driving behaviour. However, as the SG index compares 
speed in sequential minutes with similar driving conditions, the impact of such factors on 
behaviour is to some extent controlled.

Figure 1 presents the mean SG with corresponding error bars (±1 standard error) against 
trip index for minutes in which warnings were issued (in black) and for minutes without 
warnings (in grey). The colour-coded lines are statistical models that will be subsequently 
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described. Several conclusions emerge. First, in the case where warnings were not issued (in 
grey), the mean SG is fairly around zero for all values of trip index. Second, when warnings 
were provided, the mean SG is, in most cases, below zero. The error bars are wider in these 
cases as there are much less minutes with than without warnings. Third, the statistical models 
suggest that mean SG indeed decreased with higher values of trip index. Thus, SG became 
more noticeable as drivers used the application more number of times. Two statistical models 
were calibrated to analyse the link between trip index and SG: a linear and a sigmoid model. 
In addition to the trip index, the SG may also depend on the speed before the warning was 
given. More specifically, the SG is potentially more pronounced (negative) when the initial 
speed before the warning is high. To control for this, we added the speed at the minute 
preceding the minute in which a warning was issued as an explanatory variable. The linear 
model is formally presented in eqn (1).

 
SG S T b et i j t i j i j j tij, , , , ,= + + + +−b b b0 1 1 2  (1)

Where SGt,I,j is the difference in speed between driving minute t and driving minute t-1, in 
trip i of driver j. SGt–1,I,j is the speed recorded at the end of minute t-1 in trip i of driver j minus 
mean speed of 62.18 km/h. This was done so the intercept value (b

0
)will reflect the speed gap 

at average speed, rather than for the less relevant case of speed = 0.Ti,j is the trip index of trip 
i of driver j. b

0 
– b

2
 are the fixed effect parameters in the linear model. To control for the 

repeated measures for each driver (multiple trips), a random effect parameter (bj) was added 
to the model. We assume that bj ~ N(0, σb). The etij is the error term.

Although a linear relationship is the simplest (and perhaps common) modelling choice, a 
more careful visual investigation of the pattern in the black points (and error bars) suggests 
that, the effect of trip index weakens and even levels for larger values of the trips index pos-
sibly pointing to a ‘limit’ on how strongly drivers respond to warnings provided to them.

Based on this idea, we considered an S shape function (sometimes referred to as sigmoid 
or logistic function) to model the relationship between SG and trip index. Thus, our sigmoid 
model combines a linear form to control for the initial speed and an S shape function to con-
trol for the trip index. The sigmoid model is formally presented in eqn (2).

Figure 1: Mean speed gap according to trip index.
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Where the S shaped part of the sigmoid model is characterized by three parameters: when 
negative, a represents the lower asymptote, the change point in the curvature of the curve 
(also called the inflection point, k) and the scale of the curve (c) that is inertly related to the 
steepness of change in behaviour.

The parameters fitted for the linear and sigmoid models are described in Table 1. In the 
fitting process, only minutes in which warnings were issued were used. It is clear from the 
data in Fig. 1 that there is no change is speed when warnings are not issued (see grey points 
and error bars). The colour coded lines in Fig. 1 describe the estimated SG where St–1,i,j = 0, 
that is, driving at the average speed.

Both models suggest a significant effect of the speed and of trip index on SG. However, 
according to the log likelihood index, the sigmoid model fits the data better. In addition, the 
smaller value of σb suggests that in the sigmoid model, drivers’ individual trends deviate less 
from the pattern described by the fixed effect part of the model. We therefore focus on the 
results obtained by the sigmoid model: the fitted intercept (b

0
) indicates that relative to the 

average driving speed, the SG is reduced by −5.25 km/h. In addition, as suggested by the speed 
coefficient (b

1
), SG is further reduced according to the driving speed. For example, for drivers 

driving at 90 km/h, the speed reduction following warnings is estimated by −5.22 − 0.57 * (90 
– 62.18) = −21.077 km/h. The results so far indicate that drivers responded either to the warn-
ings they received or to the circumstances causing the warnings by lowering their driving speed.

Pertaining to the link between trip index and SG: the lower asymptote is estimated by 
−9.06 km/h; thus, for example, a driver driving at the average speed of 62.18 km/h is expected 
to reduce his speed by −5.23 km/h for lower values (<8) of trip index and by −5.23 − 9.06 = 
−14.29 km/h for higher values of trip index (>11). This change in behaviour occurs between 
8 and 11 trips of using the system where the inflection point is estimated at trip index = of 
9.544. This means that as drivers gain experience with the CWA, they are more likely to 
respond more strongly to the warnings and reduce their driving speed more than drivers with 
less experience with the CWA.

Table 1: Models for SG by trip index and speed.

Linear model  
estimate (S.E)

Sigmoid model 
estimate (S.E)

Intercept (b0) −4.19 (3.13) −5.23 (2.68)*
Speed (b1) −0.576(0.05)*** −0.57 (0.05)***
Trip index (b2) −0.514 (0.300)+ NA
Lower asymptote (a) NA −9.06 (4.323)*
Inflection point (K) NA 9.544 (1.394)***
scale (c) NA 0.298 (0.789)
σb 7.007 0.338
Log likelihood −1559.091 −1557.679

*p value < 0.05, ***p value < 0.001
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3.2 Effect of the CWA on headway distance

This section analyses whether drivers maintained safer headways as a result of using the 
system, in other words, whether there were fewer warnings in later than in earlier trips. 
The variable of interest in this analysis was the count of WPT, and thus Poisson and negative 
binomial (NB) distributions are natural candidates to describe it.

In a Poisson distribution, the mean and variance are equal. For 21 of the 26 drivers (81%), 
variance to mean ratio was greater than 1. Median ratio was 1.35, mean ratio was 1.76 and 
standard deviation was 1.04. This analysis led us to test the NB distribution for WPT. The 
main variable tested for its effect on WPT is trip index. In addition to trip index, we also 
considered several control variables: trip duration is minutes was added as an explanatory 
variable as longer trips provide more opportunities for triggering warnings. As noted in Sec-
tion 2, we also considered the proportion of driving speeds that were greater than 90 km/h 
and the proportion of driving speeds that were greater than 50 km/h as additional explanatory 
variables for WPT. The NB model was formally defined as follows:

 
ln E WPT Ln ln D T P P bij ij ij ij ij j( ( )) ( ) ( )∼ β β β β β0 1 2 3

50 90
4

90+ + + + +− >
 (3)

Where WPTij is the count of WPT i of driver j. Dij is the duration in minutes of the i th trip 
of driver j and Tij is his or her trip index. P>90 and P50–90 are the proportion of driving speeds 
between 50 and 90 km/h and above 90 km/h, respectively. b

0
, – b

4
 are the model fixed effect 

parameters. The bj is the random effect term, representing a seperate parameter for each driver. 
In accordance with the convention in mixed-effect models, we assume that bj ~ N (0, σb).

Table 2 presents the values of the estimates of the model. Results show that b
1
 is signifi-

cantly higher, indicating that longer trips are expected to have more warnings compared to 
shorter trips. As b

1
 is also smaller than 1 (Z. test = 2.05, p value < 0.01), the contribution for 

every additional driving minute to the count of warnings in a trip diminishes as trip duration 
becomes longer. The effect of trip index (b

2
) was not significant at the .05 level. The reduction 

in WPT from one trip to the next is approximately 1 percent (1-e-0.010 = 0.99). Thus, after 10 
trips, the reduction in WPT is estimated to be around 10 percent and around 20 percent after 
20 trips. The effect of speed was far from significance.

To test the fit of the NB model to the WPT data, a graphical analysis was used. The anal-
ysis method proposed by Hauer and Bamfo [19] consists of examining the cumulative 
residuals (CURE) against the explanatory variables (e.g. trip index or duration), using the 

Table 2: NB model for WPT by trip duration and trip index.

Estimate (S.E)

Intercept (in (b
0
)) −2.093 (0.423)***

Ln (Trip Duration) (b
1
) 0.754 (0.117)***

Trip Index (b
2
) −0.010 (0.010)

Proportion of speed between 50 and 90 
km/h

0.107 (0.416)

Proportion of speed above 90 km/h −0.460 (0.314)
σb 0.78

***p value < 0.001
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Figure 2: CURE plot for trip index (left) and trip duration (right).

CURE plot. The analysis is provided in Fig. 2. To generate a CURE plot, trips are ordered 
by the explanatory variable in an ascending order. For each unique value of the explanatory 
variable, a residual (predicted minus observed number of events) is computed. The residu-
als are added up, and a CURE value (vertical axis) is plotted against the explanatory 
variable (horizontal axis). In a perfect-fit model, all residuals and hence all CURE would 
be zero. With random residuals, the cumulative line should oscillate around zero in a ran-
dom-walk manner. In addition to the CURE lines (in solid black), the red lines in Fig. 2 
depict approximate ±2 standard deviations bands, under the random-walk assumption (see 
the derivations in Hauer and Bamfo [19]). If the CURE value increases steadily in a certain 
range of trip- duration values, this means that the model predicts more warnings than the 
number observed in this range. Conversely, a decreasing CURE line indicates that more 
warnings were observed than the number predicted by the model. Frequent departure of the 
CURE line beyond the random-walk band (red lines) may be due to either outliers or an 
ill-fitting model. As can be noted in Fig. 2, the CURE line (in black) plotted against all four 
explanatory variables presents no trend but a random walk around the zero line and in most 
cases does not deviate from the red band. It is therefore assumed that the NB model fits the 
data well.

4 DISCUSSION
This study explored two main aspects of driver behaviour with CWA: driver speed when 
warnings were presented, and driver maintenance of headway distance over time.

Our analysis of driver speed with and without warnings demonstrated that they responded 
to the warnings and that their trust in the CWA increased over time. It also suggested that trust 
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may eventually be set around a certain level. This was evident from the analysis of the  sigmoid 
model eqn (2). These findings demonstrate that a smartphone CWA may generate similar 
responses to warnings as those from an in-vehicle CWS and also have larger implications for 
the study and usage of collision avoidance technology. More specifically, according to the 
sigmoid model, while controlling for driving speed before the warning is given, we estimate 
that the effect of receiving warnings is manifested in reduction of 5.23 km/h and in additional 
9.06 km/h after experience (and trust) with the CWA is gained. This reduction in driving 
speed may have meaningful effects on both the probability of accidents and their severity 
[20]. Thus, a CWA may not only generate similar responses as an in-vehicle CWS (e.g. 
 braking) – but the responses they generate seem to be strong enough to offer considerable 
contribution to driver safety.

We also tested whether drivers maintained safer headways over time [7] regardless of their 
driving speed. We found that the frequency of warnings indeed decreased as drivers used the 
application more number of times. When considering the estimates derived from the mixed- 
effect NB model, an expected reduction of 20 percent in the count of warnings after 20 trips 
may have more than just a marginal effect on safety. This effect, however, was not statistically 
significant. It is possible that due to statistical power (372 trips per 26 drivers = 14.31 trips 
per driver), the mixed-effect model did not capture a true effect of the trip index. The effect 
of trip index may mean that CWA can serve as a training tool for safer driving, rather than just 
being a warning device. In other words, drivers received fewer warnings because they kept 
safer headways on different speeds and not because they attempted to avoid warnings by 
driving slower. The effect of such training can be estimated from the statistical model we 
presented (10% reduction after 10 trips and 20% after 20 trips).

To conclude, our findings suggest that a CWA may generate similar safety benefits as a 
CWS. Specifically, we found that drivers responded to warnings from the CWA and seemed 
to maintain safer headway distance over time when using it. We suggest that CWAs have 
great potential for improving public safety due to the high penetration rate of smartphones 
[13,14], the much lower price of such applications compared to an in-vehicle CWS, and due 
to their potential for generating safer driving behaviours.
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