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ABSTRACT
A new concept for fl ood modelling of lake levels has been introduced, analysed, and tested for Lake 
Wakatipu in the South Island of New Zealand. Lake level response to signifi cant rainfall events is 
substantially different from rivers. Lakes usually have enormous storage to absorb the peak of the 
fl ood event, and their outfl ows are dependent on their level rather than the infl ows. The new concept 
is based on carrying out a lagged correlation analysis between hourly data for the cumulative rainfall 
and the total rise of the lake level in order to determine the lagged time series of total lake rise which 
will provide the best projection for its forecast onto the cumulative rainfall. The focus has been to carry 
out this analysis on hourly data during signifi cant rainfall events which resulted in signifi cant lake rise. 
In return, the time frame for such analysis is usually several hours or few days, as is the case for Lake 
Wakatipu. Thus, some variables which are usually considered for lake analysis, such as evapotranspira-
tion, can be negligible compared with the huge amount of rain causing the fl ood event. Based on the 
best lagged correlation, three models have been derived to forecast fl ood levels of Lake Wakatipu. Cor-
relation analysis of lagged correlations showed that a lag of 11 hours results in the highest correlation 
between cumulative rainfall and total rise of Lake Wakatipu level, while 14 hours produced the highest 
correlation between cumulative rainfall and total lake infl ows. All three models utilised these optimum 
lagged hours for the best projection of total lake rise/infl ow. The fi rst model is a lag-11 non-linear 
regression model, while the second model is a lag-11 linear regression model, and the third one is a 
lag-14 comprehensive hourly mass balance model. The results of model testing showed that the simple 
linear regression model produced the best forecasts, while the more sophisticated complete mass bal-
ance model, in general, was not as good, and the non-linear regression model (while having the highest 
determination coeffi cient) was the least performing.
Keywords: fl ood forecast, fl ood modelling, lagged correlations, lake level, projection theorem, rainfall-
runoff, regression analysis.

1 INTRODUCTION
Floods are one of the most destructive natural disasters causing enormous damage and loss 
of life every year. Floods can have catastrophic impact on our life, and can cause widespread 
damage over affected regions. Flood forecasting is an essential tool within fl ood warning 
systems. A proper fl ood warning could mitigate the impact of a fl ood event by giving people/
authorities enough time to evacuate, relocate stock, or move precious items away, or prepare 
a temporary fl ood protection scheme.

A proper forecast of a fl ood event with a good lead time can result in a fl ood warning and 
the issue of effective measures which can play a major role in mitigating the severe damage 
could occur due to this natural disaster.

The Environment Agency of the UK has called for a complete review of its fl ood forecast-
ing and warning system in response to the devastating impact of the Easter 1998 fl oods of 
Wales and England, while the strategic plan for the US National Weather Service urges for 
major investment to develop new forecast models for fl ood warning [1, 2].

There is a wide range of literature and research relating to fl ood forecasting of lake levels. 
However, due to the complexity and high variability of the driving factors for fl oods, many of 
these models fail to accurately forecast fl ood events. Available mathematical models in the 
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literature can be categorised into three main approaches. The fi rst approach simulates the 
associated hydrologic processes to estimate the runoff from the catchment area due to the 
rainfall event, and utilises hydraulic or hydrologic modelling/routing or a response function 
to predict input fl ow hydrograph to the lake [3–5, 6, 7]. Manual or automatic optimisation 
techniques [8] are often implemented to estimate the wide range of parameters usually incor-
porated in the development of these models. After estimating the infl ows to the lake, a mass 
balance is carried out, utilising the usually known rating for the outfl ows to forecast the rise 
of the lake levels. The second approach incorporates time series analysis to build a model 
which can be used to forecast future lake levels based on present and past observed values. 
Time series models, such as the integrated autoregressive moving average “ARIMA” models, 
don’t incorporate the main driving force in this fl ooding, which is rain [9]. A Kalman fi ltering 
technique can be utilised to include rainfall in the forecast of rising lake levels [10]. The third 
approach utilises artifi cial neural network modelling to build a non-linear relationship 
between input and output [9, 11, 12].

One of the major obstacles for distributed fl ood modelling for the forecast of lake infl ows 
is the variability of spatial and temporal distribution of rainfall across the catchment, espe-
cially for large catchments [13]. Research is advancing towards the use and utilisation of 
radar data to estimate the spatial distribution of a rainfall event over a catchment [14].

1.1 Lake Wakatipu catchment description

Lake Wakatipu is located immediately to the east of the Southern Alps, within the Queenstown 
Lakes District (Fig. 1). It is New Zealand’s third-largest lake with a surface area of 293 km2 and 
a total catchment area of 3,067 km2. The deep depression in which the lake sits was formed 
following the retreat of the Wakatipu Glacier approximately 15,000 years ago. The lake itself is 
relatively long and thin, being over 80 km in length, with a maximum width of 5 km. Average 
lake level is 310 metres above sea level (masl), and parts of the lake are very deep, its fl oor being 
as low as 100 m below sea level.

Following the retreat of the Wakatipu Glacier, a range of landforms were created from 
streams fl owing from the mountain ranges which fl ank the lake. These features form the 
underlying geology and shape the surrounding environment of Lake Wakatipu. They consist 
of alluvial fans, terraces, deltas, and lake shorelines. The main settlements adjacent to the 
lake are Queenstown, Glenorchy, and Kingston, as shown in Fig. 1. Low-lying parts of these 
townships are within the range of peak lake levels, and have historically been affected by 
fl ooding.

The largest tributaries to Lake Wakatipu are the Dart and Rees Rivers, which lie to the north 
of Glenorchy. The braided fl oodplains of these two rivers deliver large quantities of sediment 
and fl ow into the lake. Other signifi cant tributaries which fl ow directly into the lake along its 
western shoreline include the Greenstone, Caples, Von, and Lochy Rivers. Outfl ow is via the 
Kawarau River, which fl ows out from the lake’s Frankton Arm, 8 km east of Queenstown.

1.2 Flooding in Lake Wakatipu catchment

Flood hazards, in the form of river fl ooding and lake inundation, pose a threat in the Lake 
Wakatipu catchment due to the resulting impact on people, property, and infrastructure. Inun-
dation from high lake levels is a risk due to the lake remaining at high levels for prolonged 
periods, usually days to weeks. The level of Lake Wakatipu has been observed to vary through 
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a range of nearly 3.9 m with a mean level of approximately 310 masl. The fl ood of November 
1999 was the highest lake level on record at 312.77 masl [15] with the second highest level 
being recorded in September 1878 at 312.60 masl (Fig. 2). During the 1999 fl ood event, the 
business area beside the lake was completely fl ooded with devastating losses to the commu-
nity and the region. Moreover, properties in the fl ood prone area are facing problems to get 
insurance after this fl ood event.

The frequency and magnitude of fl ood events are closely related to the rainfall events from 
which they are derived. Annual rainfall in the western part of the South Island generally 

Figure 1: Lake Wakatipu catchment
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exhibited an upward trend during the 20th century, with annual rainfall at Queenstown 
increasing by approximately 160 mm between 1901 and 2003 [16]. The rate of increase 
appeared to accelerate during the latter part of the 20th century. Since the turn of the century 
however, annual rainfall totals in north-western Otago have generally declined again, and this 
trend has also been evident at gauges within the Lake Wakatipu catchment.

There is moderate confi dence that average annual rainfall in the north-west of Otago is 
projected to increase by approximately 12%, with a range of −2 to 34% [17]. Heavy rainfall 
events are also projected to become more frequent, and may become more intense. Note that 
these projections might change in the future as our understanding of climate change and its 
impact improves.

 The main cause of high lake levels in Lake Wakatipu is the natural imbalance between the 
capacity of the lake outlet (Kawarau River) and the magnitude of infl ows during heavy rain-
fall events. Due to the location of the Shotover River confl uence near the lake outlet, outfl ow 
from the lake can be further impeded by fl ood and sediment fl ows [18]. These conditions, in 
association with a succession of frontal weather systems, can provide circumstances where 
the lake may stay at high levels for prolonged periods [19].

2 MODELLING OF LAKE WAKATIPU FLOOD LEVELS

2.1 Analysis of the 1999 fl ood event

This fl ood event was the worst in recent history that Queenstown had experienced, as shown 
and mentioned above. The event lasted for about 70 hours, and resulted in a total of 341 mm 
of rain. The lake level increased by 2.25 m due to this event, and fl ooded low-lying parts of 
Queenstown, a major resort area in the South Island of New Zealand. Figure 3 presents a 
hyetograph for the 1999 rainfall event. The Figure indicates that the rainfall event is actually 
composed of two consecutive systems of rainfall storms. The cumulative rainfall for this 
event, as shown in Fig. 4, confi rms that this event is actually two events, as the linear trend 

 Figure 2:  Highest recorded levels of Lake Wakatipu during the period 1878–2007; lower 
parts of Queenstown are inundated at about 311.5 m.
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fl attens at the end of the fi rst event and then picks up again with the second event. In addition, 
the fl ood hydrograph of the Dart River which is one of the main tributaries to the lake, as 
shown in Fig. 5, strengthens the two storm systems theory.

Despite the variability of the hourly rainfall event, the cumulative rainfall shows a good 
linear trend, which is almost consistent over the two events. Again, cumulative rainfall starts 
to fl atten at the end of the second event as rainfall diminishes.

Figure 5 also indicates that the “bulk” of the infl ows to the lake due to this event occurred 
within 90 hours of the start of the event, about 20 hours after the end of the rainfall event.

Figure 3: Rainfall hyetograph for the 1999 fl ood event of Lake Wakatipu.

Figure 4: Cumulative rainfall depth for the 1999 fl ood event of Lake Wakatipu.



368 M. Mohssen & M. Goldsmith, Int. J. of Safety and Security Eng., Vol. 1, No. 4 (2011)

Total infl ows to the lake, which include surface runoff from the lake’s catchment and direct 
rainfall over the lake, were estimated by using the following simple mass balance equation:

 Input S Output= Δ +  (1)

Where ΔS is the change in the lake storage, represented by the rise in lake level which is 
monitored, and the output is the lake’s outfl ow which has been estimated from the rating 
formula for lake. The rating formula to predict Lake Wakatipu outfl ow from the lake levels 
was derived by fi tting a non-linear relationship between lake levels and gauged lake outfl ows 
as follows:

 
2 381.11( 309) 82.57( 309) 18.93 /t t tQ L L m s= − + − +  (2)

Where Qt is the lake outfl ow at time t in m3/s and Lt is the lake level at that time in m.
The total amount of rain which fell during this event over the whole catchment is not 

known, as available rainfall sites in the area are scarce, especially in the highest elevations of 
the catchment near the top of the Southern Alps. Thus, watershed models which estimate 
runoff from the catchment area have to depend on estimated rainfall values and an intensive 
calibration process to fi t the unknown models’ parameters, which would fail to produce a 
reliable fl ood forecast.

However, considering a time frame of 90 hours since the start of the event, the estimated 
total input to the lake due to this event is about 300 mm, by aid of eqn (1) and knowing the 
areas of the lake and the watershed. This is not far from the observed total rainfall of 341 mm 
observed in the upper catchment at the Dart at Hillocks site (Fig. 1). Thus, observed rainfall 
at the Hillocks rainfall site can be utilised to represent rainfall over the whole catchment of 
Lake Wakatipu. Of course, the pattern and spatial distribution of each rainfall event will have 
signifi cant impact on this representation. However, most severe rainfall events are usually 
due to rainfall storm systems which are coming from the west coast of New Zealand and 
dumping its moisture due to orographic effects.

Figure 5: Flow hydrograph for the Dart River.
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2.2 Modelling of rainfall – lake rise relationship

An hourly hydrologic balance for a lake can be expressed as follows:

 1 1

1
( )L

L

j t t
t t t t j tj t t
L L Q f R

= + −
+ − = −

= − +∑  (3)

Where Lt is the lake level at time t, with t = 0 at the time step just before the event starts, tL 
is the forecast time L hours after t, t1 is a lag time before t, Qj is the lake outfl ow at time j, Rt 
is the cumulative rainfall at time t and f(Rt) is a function of this cumulative rainfall. Of course, 
Qj and f(Rt) will have units of level (m in this case). Equation (3) can be re-written as:
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The challenge here is to fi nd the best estimates for tL, t1, and the function f(Rt). The rela-
tionship between cumulative hourly rainfall and incremental hourly increases in lake levels, 
as shown in Fig. 6, indicates the failure of any attempt to derive a good model capable of 
producing accurate forecasts, which is fed by these data.

This problem has been signifi cantly resolved when considering total lake rise since the 
start of the event instead of the incremental lake rise, as shown in Fig. 7. Thus, the best esti-
mate for t1 of eqn (1) is t, t − t1 = 0, and = L0, where L0 is the water level of the lake at the time 
step just before the start of the event. Despite the signifi cant improvement of the variability 
of the relationship, Fig. 7 suggests a non-linear relationship for the fi rst part of the event 
(which is the fi rst storm system), and then a linear model for the second storm system. The 
linear fi t shown in the fi gure is set to start from zero to be more consistent with the physical 
process (our focus here is during big events, and not the recession period). A lagged correla-
tion analysis has been carried out between total lake rise (lake rise since the start of the event) 
and cumulative rain, as shown in Fig. 8. The results of this analysis clearly recommend the 
use of a lag of 11 hours between cumulative rain and total lake rise.

The relationship between cumulative rain and lag-11 total lake rise signifi cantly improved, 
as shown in Fig. 9.

Figure 6: Cumulative rainfall vs incremental Lake Wakatipu infl ows for the 1999 fl ood event.
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2.2.1 Non-linear regression model
The fi tting of a non-linear regression model for this relationship would result in a determina-
tion coeffi cient of 0.997, which is signifi cantly higher than the linear fi t. However, one has to 
be careful with the application of such non-linear model, as it will defi nitely work perfect 
with the calibrated 1999 fl ood event from which it was derived, but its application to other 
events could be quite unsatisfactory, as will be shown later. In addition, extrapolation of non-
linear models outside the domain they were tested for can be quite risky.

The fi rst model for Lake Wakatipu forecast is a lag-11 non-linear regression model as 
 follows:

 
3 2

11 0 65.7 38.15 1.2t t t tL L R R R+ = − + +  (5)

Figure 7: Cumulative rainfall vs total lake rise since the start of the 1999 event.

Figure 8:  Lagged correlations between cumulative rain and total Lake Wakatipu rise 
(1999 event).
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Where t is time at present, Rt is cumulative rain (in meters) from the start of the event until 
present time t, and L is the lake level in meters. This model is capable of forecasting lake 
levels 11 hours later based on current cumulative rainfall at the hillock rainfall site. However, 
one can use forecasted rainfall to have longer forecast.

2.2.2 Linear regression model
The projection theorem can be applied to obtain the best forecast of the total lake rise based 
on cumulative rain [20]. Assuming that R and ΔL are two variables in Hilbert Space, denote  
ΔL
~  as the projection of ΔL on R, where ΔL

~  – αR. Thus, ΔL – αR is orthogonal to R and their 
inner product in Hilbert space is:

 , 0L R R< Δ −∝ > =  (6)

starting from equation (6), note that is ΔL with a hat above it.
Solving eqn (6) gives the following formula to estimate:

 2

[ ]
[ ]

E LR
E R

Δ
∝=

 
(7)

Equation 7 would produce the same value obtained from the fi tted regression line, as 
shown in Fig. 9. The projection theorem guarantees that the obtained projection is the best 
forecast (linear) for lake rise based on cumulative rain. Thus, our second model for the fl ood 
forecast of Lake Wakatipu is a lag-11 linear regression model with a determination coeffi -
cient of 0.96 as follows:

 11 0 6 .35t tL L R+ = +  (8)

It should be noted that eqn (8), implicitly, incorporates lake outfl ows, as the total lake rise 
(Lt+11 − L0) is the result of the net gain to the lake (infl ows – outfl ows). The weak point for 
this approach is that this implicit incorporation of the outfl ows is based on the outfl ows dur-
ing the 1999 event, which is dependent on the lake levels during that event. Lake levels during 
other events could be different, and in turn, lake outfl ows would be different. However, the 
signifi cance of this will be investigated during the model’s validation process.

Figure 9: Lag-11 relation between cumulative rain and total Lake Wakatipu rise (1999 event).
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2.2.3 Linear regression model with explicit outfl ows
So far, outfl ows of the lake have not been explicitly incorporated into the fi rst and second 
forecast models, eqns (5) and (8), respectively. Carrying out another lagged correlation anal-
ysis between total infl ows to the lake and cumulative rain indicates that the use of 14 hours 
lead lag time would produce the best projection of total lake infl ows onto cumulative rain, as 
shown in Fig. 10. This gives 3 hours more forecast time compared with the fi rst and the sec-
ond models, and the shape of the lagged correlations is not as bell shaped as that in Fig. 8. 
Moreover, the peak correlation at lag-14 is slightly higher than that of Fig. 8 at lag-11. 
 Figure 11 presents the linear relationship between the two sides of eqn (4), the total infl ows 
to the lake (left hand side), and the cumulative rainfall (right hand side), starting from t = 0.

Thus, the third forecast model for Lake Wakatipu fl ood levels is lag-14 mass balance model 
derived from eqn (3) as:

 

13
14 0 0

8 .76*( )
j t

t j tj
L L Q R

= +
+ =

= − +∑  
(9)

Figure 10:  Lagged correlations between cumulative rain and total Lake Wakatipu infl ows 
(1999 event).

Figure 11:  Lag-14 relation between cumulative rain and total Lake Wakatipu rise (1999 event).
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3 MODEL TESTING

3.1 Application to the 1999 fl ood event

The results of this simulation process were expected to be reasonably good as all the param-
eters of these models were estimated to fi t well with the observed 1999 fl ood event. Figure 12 
confi rms these speculations, and all the models performed very well in forecasting the 1999 
fl ood event, from which they were calibrated.

The fi rst model (Model-1, lag-11 non-linear regression), with the highest determination coef-
fi cient of 0.997, performed the best. Both the second model (Model-2, lag-11 linear regression) 
and the third model (Model-3, lag-14 mass balance) performed almost the same, despite the fact 
that Model-3 has higher determination coeffi cient (0.978 compared with 0.965 for Model-2).

3.2 Application to an event before the 1999 fl ood event

The application of the three derived models to an event which occurred during 15–16 May 
1999, before the 1999 fl ood event, showed that Model-2, in general, performed the best, while 
Model-3 was capable of catching up at the end, and in fact was capable of forecasting the peak 
lake level better than model-2, as shown in Fig. 13. Model-1, which had the highest determina-
tion coeffi cient for the 1999 fl ood event, performed poorly and produced unreliable forecasts.

3.3 Application to an event after the 1999 fl ood event

Another event, which occurred during the period 18–20 September 2002, was simulated by 
the three models to forecast Lake Wakatipu levels based on cumulative rainfall at the Hillocks 
rainfall station.

The results of this simulation, as shown in Fig. 14, strengthen the position of Model-2 as 
the best among the derived three models, as its capability to accurately forecast the lake levels 
for this event outperformed Model-1 and Model-3. It is worth noting that Model-2 is the 
simplest model among the three, being linear and doesn’t explicitly incorporate lake outfl ows 
in its structure. However, complexity of models does not necessarily lead to more accurate 
results as they usually require estimation of more parameters, which adds to the variability of 
its results as more uncertain parameters have to be incorporated.

Figure 12: Application of the three models to the 14–17 November 1999 fl ood event.
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4 CONCLUSIONS
This research provides a new concept for fl ood modelling of lake levels. The new concept is 
based on an extensive analysis of the rainfall and lake level data to obtain the best set of lagged 
series to be fed for the modelling process. Applications to Lake Wakatipu in the South Island 
of New Zealand indicate that using the most suitable lagged series of total lake rise since the 
start of the rainfall event produces the best projection of lake rise, based on the cumulative 
rainfall of that event. A simple linear regression model has been produced, which outper-
formed the non-linear model and the more sophisticated hourly mass balance model, which 
also used the optimum lagged series in their derivation. Another major output of this research 
is that the use of more complex models doesn’t necessarily lead to more accurate forecasts.

Figure 13: Application of the three models to the 15–16 May 1999 fl ood event.

Figure 14: Application of the 3 models to the 18–20 Sept. 2002 event.
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