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ABSTRACT
A GIS-based simulation model has been developed for military path planning of unmanned ground 
robots in a hazardous combat environment. Critical factors (such as slope of terrain, surface travel 
distance, degree of bumpiness in various land-uses, and exposure to enemies) that affect the path 
planning in a combat environment are carefully reviewed and modeled. Line-of-sight analysis and 
probabilistic decision making process are also modeled for the effective military path planning. In 
the model, the path planning is dealt with two sub-problems: (i) global path fi nding and (ii) local 
navigation. These two sub-problems are recursively processed during the simulation; a temporary 
least-cost path is calculated in the fi rst stage, and navigation of the unmanned ground robot along 
the path is then processed in the second stage. The simulation ends when the robot reaches a target 
location. The proposed model has been applied in different environments with various GIS data. The 
result shows that the model performs well for the military path planning, and can be useful for testing 
and evaluating tactical missions to be performed by the robot before its deployment in a real-world 
situation.
Keywords: decision making, distance transformation, GIS-based simulation, military path planning.

1 INTRODUCTION

1.1 Background and scope

Due to the uncertainties and higher risks of fatality in combat situations, the role of robots 
(e.g. unmanned ground robot [UGR]) has become an important part of many applications in 
real world problems. Many robotic units have been developed and are actively being devel-
oped for their usage in an outdoor environment over a wide variety of terrains to carry out 
critical military operations (such as rescuing friendly agents and searching for hostile 
 obstacles).

This study seeks to develop a military path planning method that effectively positions and 
routes UGRs in a complex battlefi eld environment. Critical factors associated with the path 
planning are reviewed and modeled for the system development. A GIS-based simulation 
platform, which tests and evaluates the proposed path planning method, is also developed. As 
such, the sensitivity of the result from the path planning method to various UGR capabilities 
and environments can be analyzed through the computer simulation before its actual fi eld 
deployment. A variety of GIS data and known/unknown information about the obstacle are 
employed in the proposed method (as an input) to fi nd the best paths of the friendly UGR as 
well as to help it safely navigate in the environment.

The proposed path planning problem is dealt with two sub-problems in this study: (i) global 
path fi nding and (ii) local navigation. These two sub-problems are recursively processed dur-
ing the path planning simulation. In the fi rst stage, a temporary least-cost path between start 
and target locations of the UGR is calculated. Navigation of the UGR in a simulation environ-
ment is then processed in the second stage based on the least-cost path found in the fi rst stage.
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1.2 Brief literature review

The robotic units in combat situations often face multiple hazards and complex decisions 
while carrying out their tactical missions through unfamiliar and hostile battlefi eld environ-
ments. In such cases, they must evaluate and change their plans and positions by processing 
all available information directly obtained from the environment as well as through the com-
munications with other units and/or the control center. Many decision support systems that 
fuse the available information and process it for the military path planning have been devel-
oped. However, identifi cation of ideal positions, paths, and rates of advance for the military 
unit is still a very challenging problem due to the complexity of the battlefi eld environment. 
Although existing path planning systems (e.g. RIUGV (Remote imagery for unmanned 
ground vehicles) and Ecognition WAFE with Pathfi nder) have proven to work well to some 
degree in providing feasible routes for robot operations (Frederick et al. [1]), data used in the 
systems largely rely on known and static information, such as slope of terrain and distance to 
target. It should be noted, however, that the information of unknown obstacles (such as enemy 
locations and dangerous areas that may be stationary or dynamically changed over time) and 
friendly robot’s response to the obstacles are not systematically analyzed and modeled in 
current path planning systems.

Many mathematical models and technologies have been proposed for intelligent robot path 
planning, uncertainty of surrounding environment, and human–robot interaction and con-
trols. Among them, the most popular, yet challenging one, is the transportation path planning. 
It is generally defi ned as the search for paths (from certain points to destinations) that satisfy 
specifi ed objectives under various conditions. To date, a variety of approaches have been 
developed to solve the problem, such as genetic algorithms [2, 3], neural networks [4], dis-
tance transformation (DT) [5–8], and analytical methods [9].

Through a careful review of the available literature, although genetic algorithms are com-
mon for many path planning applications, DT is one of the most popular, fast, and effective 
methods for searching shortest paths in outdoor environments under different circumstances. 
This approach not only incorporates complicated terrain information for the path search, but 
also can handle uncertainty about the target location and obstacles movements. In addition, 
DT can be applied for a path fi nding problem with multiple starting points and multidimen-
sional spaces. As such, this study adopts the concept of a DT algorithm to fi nd least-cost 
paths of friendly UGRs.

The remainder of this paper begins with investigating factors affecting the robot path 
planning in a hazardous environment. Mathematical formulation for fi nding the least-cost 
paths is also discussed in this section. Next, navigation of the friendly UGR is discussed in 
Section 3. Radial line-of-sight (RLOS) and probabilistic decision making process are mod-
eled in this section. Section 4 describes the input/output of the proposed model with 
discussion of the path planning simulation. In Section 5, we demonstrate the performance of 
the model with various simulation examples. Finally, we conclude with the summary of this 
study and future work.

2 PATH FINDING METHODOLOGY
Many factors (such as slope of terrain, surface friction of land covers, travel distance, expo-
sure to enemies, and dangerous choke points) affect the path planning of the friendly UGRs 
in hostile environments, and they may possess, partially known, or unknown information. 
This section discusses the characteristics of such critical factors and develops a method for 
fi nding the best paths of the UGR between any points.
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2.1 Factors affecting UGR path fi nding

2.1.1 Slope impact
Slope is generally defi ned as the maximum rate of change in z values (elevation) from one 
cell to its neighbors. The maximum change in elevation over the distance between the cell 
and its neighbors identifi es the steepest downhill descent from the cell; the lower the slope 
value, the fl atter the terrain; the higher the slope value, the steeper the terrain. Note that the 
slope value can be calculated using the average maximum technique reported in Burrough 
and McDonell [10].

The energy consumption of the UGR may vary depending on the slope of terrain on which 
it travels. If it is moving downhill, its energy consumption will decrease; if it is going uphill, 
the energy consumption will increase. To represent such slope impacts in estimating the 
travel cost of the UGR, a vertical factor is introduced in this study. The vertical factor (denoted 
as FV) is computed based on the slope between two adjacent points, and can be expressed as 
ESRI [12]
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where 

−1,
V
i iF  = Vertical factor between two adjacent points (li−1 and li)

li = ith point in an input elevation map (i.e. search space); li = (xi, yi, zi)
a1, a2 = Parameters used for calculating the vertical factor
qi−1,i = Slope between two adjacent points
qmin, qmax = Minimum and maximum slopes of terrain that UGR can climb
UGR’s hill climbing ability is considered in the proposed model, by introducing minimum 

and maximum slopes that it can overcome for moving on a hilly terrain. If a slope between two 
adjacent points falls in between qmin and qmax, the UGR can move forward with the vertical 
factor value estimated from eqn (1). It cannot travel to locations where slopes are outside qmin 
and qmax limits, and vertical factor 1 represents a fl at terrain. Slope would also be an important 
factor for fi nding suitable drop locations of the UGR (if it is air-dropped). Areas of relatively 
fl at terrain are preferred for a safe landing; on the contrary, areas beyond the limit should be 
prohibited to avoid possible risk of accidents from an unstable landing (Kang et al. [8]).

2.1.2 Surface distance
The surface distance is the actual length of a path along which the ground robot travels in a 
complex terrain to reach a target. The surface distance is the 3D length of the line segment of 
the path projected on a surface. It is either more than or equal to the planimetric distance 
because the surface distance takes into account the variation in z values. These variations 
increase the measured length of all line segments that are not fl at. An elevation map (typically 
in a raster format; e.g. DEM) may be required as a model input to calculate the surface dis-
tance. The line segments of the path are sampled for height, using bilinear interpolation, at 
their vertices plus at a distance no more than the cell size of the input raster. It should be noted 
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that the raster cell size (resolution) affects the calculated surface distance. Decreasing the 
raster cell size between sampling points allows the line segments to more closely conform to 
the actual surface.
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where

−1,
S
i iD  = Surface distance between two adjacent points.

2.1.3 Bumpiness of surface
The surface of terrain in a hostile environment may consist of various land uses, such as 
desert, forest, water, built-up area with paved and unpaved roads, or combination of those 
complexities. Different land uses have different degrees of bumpiness on their surfaces. 
More fuel consumption may be required for the UGR to travel on a rough and/or bumpy 
surface. In the proposed model, travel distance over the friction (which compensates the 
degree of bumpiness on the surface) is considered to realistically represent the fuel consump-
tion of the UGR. A GIS map, which contains various land-use features, is employed in the 
model to compute the friction factor (denoted as FF), and it is calculated with an equation 
expressed as:
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where
 Fi

F = Value of friction factor at ith point,
b1, b2 = Friction parameters
Li

U = Land-use index at ith point (0: open space with fl at terrain; 1: agricultural or farm-
land; 2: desert; 3: forest; 4: built-up; 5: water or swamp; 6: rocky mountain)

Among various land uses in the environment, there may be areas to which the UGR should 
not travel or at which its landing (if air-dropped) is prohibited. Such land use types as river 
and enemy facilities should be regarded as ‘No-Go’ areas and removed from the feasible 
areas of its operation.

2.1.4 Exposure to enemy
Many obstacles (such as mobile and stationary enemies) may also exist in a hostile environ-
ment. These obstacles signifi cantly affect the path planning of the friendly UGR, and make 
its surrounding environment more complex. The locations of some enemies may be identifi ed 
by UGR in advance; however, many of those are unknown to it. It is important to note that the 
UGR should avoid its exposure to the enemies if at all possible for a safe and effi cient mission 
completion. We thus consider the UGR exposure to the enemies in the proposed model as one 
of the important factors for fi nding the least-cost path, by evaluating enemy locations and 
their ranges of surveillance in the environment. Some assumptions made for this are:

• The friendly UGR prefers to avoid enemies rather than fi ghting against them.

 • Among a set of enemies distributed in the environment, only the information of known 
enemies is employed to generate an enemy exposure map with which friendly UGR’s 
degree of exposure to the enemies is calculated.

• The friendly UGR can detect unknown enemies during the navigation. If any unknown 
enemy is newly detected, this information is used to reconstruct the enemy exposure map.
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where
 Fi

E = Friendly UGR’s degree of exposure to all known enemies at ith point (li),ke
ip  = Friendly UGR’s exposure probability to kth enemy at li,ke
id  = Visible distance from the UGR to kth enemy at li,ke
eR  = kth enemy’s effective search limit (measured in distance),
ke
maxR  = kth enemy’s maximum search limit,

n(Eknown) = Total number of known enemies whoes locations are known.
Taking all these considerations into account, friendly UGR’s degree of exposure to the ene-

mies (called the enemy factor) at ith point can be expressed as eqn (5). It is the sum of the UGR 
exposure probabilities to all known enemies, and can be used for calculating the weighted 
travel cost with the other factors defi ned earlier.

We would also consider radar systems of enemy bases designed for the surveillance of 
friendly air-carriers (if the UGR is air-dropped). The drop location should be outside the 
surveillance limit, and the areas within the limit should be regarded as ‘No-Drop’ areas, and 
thus removed from the feasible drop locations.

2.2 Weighted travel cost

Due to the complexity of the environment, fi nding best paths of the friendly UGR based only 
on the minimum distance to the target is not suffi cient and lacks reality. The best path should 
guide the UGR to reach the target as quickly as possible and to avoid not only no-go areas but 
also highly risky regions exposed to enemies. As such, a weighted travel cost function which 
comprehensively evaluates friendly UGR’s energy consumption (with consideration of ter-
rain slope, surface distance, and friction) and degree of exposure to the enemies is developed 
here to fi nd the best path. A mathematical formulation that minimizes total travel cost of the 
UGR under specifi ed constraints can be expressed as eqn (7).
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Subject to: llow ≤ li ≤ lupper ∀ li Œ L
li œ LNG ∀ li Œ L
qmin ≤ qi−1,i ≤ qmax ∀ li Œ L

<
k ke e
e iR d  ∀ li Œ L; ∀ ek Œ Eknown
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where
CT

Path = Total travel cost of the friendly UGR from start point to target;
CT

i−1,i = Weighted travel cost between two successive points of L;
wS, wV, wF, wE = Weights for DS, FV, FF, and FE, respectively;
L = A set of successive points between the start and target locations;
li ŒL = [l0,...,li,...,lnIP+1]; L is a subset of the search space (O);
nIP = The total number of points in L;
lS, lT = Start and target locations of friendly UGR, respectively; lS = l0; lT = l nIP+1;
 lupper, llow = Upper/lower limits of the search space; lupp = (xupp, yupp, zupp), llow = (xlow, 
ylow, zlow)
LNG = No-go areas in the search space
Four types of constraints are used for the formulation, and these are (i) upper and lower 

limits of the search space, (ii) No-go areas, (iii) slope constraints, and (iv) enemies’ sensor 
search range. The path fi nding problem can now reduce to fi nding a set of successive 
points, and distance transformation (DT) algorithm is employed to fi nd the best set of 
points.

2.3 Distance transformation

DT is a simple algorithm that determines a transformed distance between a particular point 
and target point. It is very popular for solution of path planning with both initially known and 
unknown fi eld topology, and has been widely used for robot path planning in various environ-
ments [5–8]. In DT, the path is generated by following the steepest gradient of the distance 
transform values from start to target. It can provide effi cient path in the presence of obstacles, 
and the minimum cost obtained by DT is the summation of incremental distances from one 
cell to another on a grid map. The weighted travel cost function shown in eqn (7) is used to 
fi nd the least-cost path of the friendly UGR from any point to the target in the search space. 
DT propagates from the source cell (i.e. target), marking all free cells with an incrementing 
value. Once all cells that are not prohibited have been marked, a search from a selected start 
point can be made. If the start point has been marked with a DT value, a path is possible; 
otherwise a path does not exist.

Various GIS layers are employed to generate a weighted travel cost map, and it is then used 
to fi nd the least-cost path (i.e. L*) of the UGR through the DT process. Each cell of the out-
put map resulting from the DT process stores the least accumulative cost to the target. Thus, 
a least-cost path from any point to the target can be found by backtracking all least-cost cells 
from that point to the target. The input and output of the DT process is shown in Fig. 1, and 
DT process is described as follows:

DT process:

Step1: Target cell is identifi ed.
Step2: Weighted travel cost to each neighboring cell that adjoins target cell is determined.
Step3: Each of the neighboring cells is listed from least costly to most costly.
Step4: The cell with the least cost is removed from the list.
Step5:  The least accumulative cost to each of the neighboring cells removed from the list 

is decided.

The process is repeated until all cells on the output raster have been assigned an accumula-
tive weighted travel cost.
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3 NAVIGATING UNMANNED GROUND VEHICLE
Information used for fi nding the initial least-cost paths of the friendly UGR (e.g. start, target, 
and known obstacles locations) is limited and may change over time. Thus, the UGR may 
encounter new situations if it keeps traveling along the path. Navigation of the UGR in the 
proposed model is decided based on the result of (i) Radial line-of-sight (RLOS) analysis and 
(ii) Survival probability to enemies. Enemy information is periodically updated during the 
navigation with newly detected ones through the line-of-sight analysis. Accordingly, the 
least-cost path (L*) is recalculated repeatedly with response to the change of its surrounding 
environment. Note that the start point of the UGR is initially given, and any intermediate 
point in the least-cost path (li ŒL*) can be a start point of a new path during the navigation.

3.1 Radial line-of-sight

During the UGR navigation, the RLOS analysis is repeatedly processed, and through which 
not only visible areas where it can view from its current location but also distance to the 
obstacles identifi ed in the visible areas are measured. Key parameters required for the RLOS 
analysis are as follows:

• Sensor Height (h) of the optical sensor equipped on the friendly UGR, and is measured 
from the ground surface (see Fig. 2(a)).

Raster Calculation

DT Process

Start Target

Friction of Land Surface

Exposure to Enemy

Elevation

Slope

Weighted Cost

Accumulative-Weighted

Travel Cost

Figure 1: Screen capture of input and output of DT process.
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 • Maximum Search Limit (Ra
max) of the optical sensor from the observer point, for which 

the visibility is calculated; areas beyond the limit are excluded from the RLOS analysis.

 • Vertical Angle (AV
low, AV

up) defi nes the sensor search angle above and below the horizon.

• Horizontal Angle (AH
low, AH

up) defi nes the azimuth range of the sensor.

Figure 2(b) shows possible outcomes from the RLOS analysis. It shows that depending 
on terrain complexity, enemies may not be detected although it is within friendly UGR’ 
sensor limit.

3.2 Probabilistic decision making

The friendly UGR should be able to evaluate any perceived information during its navigation, 
and make a proper decision based on the evaluation result. For example, a decision whether 
to change its current position, recalculate a new path, and/or fi ght against the enemy should 
be effectively made when it encounters any enemy threats during the navigation. For this 
purpose, a probabilistic decision making process is incorporated in the model. Few assump-
tions made for this are:

• If the friendly UGR detects an enemy at its current location through the RLOS analysis, 
the following two events are evaluated, and its survival probability is calculated for each 
event:

 • Event Ai
e: defeat the enemy

 • Event Bi
e: avoid the enemy

 • Enemies are independent of each other

• If the UGR decides to avoid the enemy, the least-cost path is immediately recalculated; the 
time lag required for information update and for least-cost path calculation is negligible.

(b)(a)

Terrain blocks line-of-sights

ke
maxR

a
maxR

a
maxR

ke
maxR

ke
id

Enemy detected

: Enemy (ek)
: Enemy’s visible area
: Friendly robot
: Friendly UGR’s visible area

a
maxR

ke
maxR

Sensor height and vertical angle

h AVlow
AVup 0o

Observation point (λi)

Sensor search limit and horizontal angle
Moving Direction

Visible Areas

Ramax

AHlow

AHup

Figure 2:  (a) UGR sensor parameters and (b) Possible outcomes from radial line-of-sight 
analysis.
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Note that p(Ai
ek) and p(Bi

ek) can be expressed as a function of (i) killing success rates of 
friendly UGR and enemies, respectively, (ii) visible distance between them, and (iii) UGR’s 
maximum search limit.
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where
p(Ai

ek) = Friendly UGR’s survival probability by defeating kth enemy at li,
ma = Friendly UGR’s killing success rate,
p(Bi

ek) = Friendly UGR’s urvival probability by avoiding kth enemy at li,
= 1 – enemy’s probability of killing the friendly UGR,

me
k = kth enemy’s killing success rate.

3.2.1 Joint survival probability
If multiple enemies are detected through the RLOS analysis, friendly UGR’s path planning 
decision should be determined based on its joint survival probability to them. Assuming that 
each enemy is independent of each other, the joint probability can be expressed as eqn (10). 
Note that the total number of possible events (Ni

s) to be evaluated for the joint survival prob-
ability is 2n(Ei) where Ei is a set of enemies detected at li. For example, if two enemies are 
detected at li, Ni

s becomes 4.
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where
Pi

s* = Friendly UGR’s joint probability of survival to all enemies detected at li,
n(Ei) = Total number of enemies detected at li; e

k ŒEi.

3.2.2 Cumulative survival probability
If the friendly UGR keeps moving in a hostile environment without prior knowledge ahead, 
its chance of survival will be getting reduced. Assuming that its joint survival probability is 
independent, for all the intermediate points, of the least-cost path (∀ liŒL*), its cumulative 
survival probability can be expressed as eqn (11). The cumulative survival probability 
(Prj

cs) is used as a key measure of effectiveness (MOE) during the navigation for making a 
proper decision.

 =

= ∏ *

0
Pr

j
cs s
j i

i
P  ∀ lj Œ L* = [l0, ..., lj, ...lnIP+1]

* (11)

where
 Prj

cs = UGR’s cumulative survival probability until it reaches jth intermediate point.



 M.-W. Kang, et al., Int. J. of Safety and Security Eng., Vol. 1, No. 3 (2011) 257

4 SIMULATION MODEL STRUCTURE
Five GIS input layers are used in the proposed model to realistically represent a hostile envi-
ronment where the friendly UGR operates for its critical mission. These are (i) initial start 
points for UGR operation, (ii) targets, (iii) obstacles, (iv) ground elevation, and (v) land-use 
information. The GIS input can be classifi ed into a static and/or a dynamic entity as shown in 
Table 1 based on its mobility characteristic.

It is important to note that each GIS input layer requires its own attribute fi eld to represent 
roles and characteristics during the UGR navigation simulation. For example, the enemy 
layer (EnemyP) needs fi ve attribute fi elds (named ID, Known, Moving, MovePtn, and Alive), 
which are interactively referenced during the simulation. Moving fi eld is used to defi ne the 
mobility of elements; known and unknown enemies are distinguished with Known fi eld; 
MovePtn fi eld is for representing enemy’s moving pattern and direction; and fi nally a matter 
of enemy’s life or death is determined with Alive fi eld. Note that only the live enemy of which 
Alive fi eld value = 1 is activated during the simulation, and it is changed to 0 if destroyed by 
the friendly UGR. Details of all attribute fi elds that characterize the input GIS layers are 
presented in Table 2.

The simulation model provides a control loop driven by an external timer to handle the 
navigation of the friendly UGR and to give the other dynamic entities an opportunity in per-
forming their own processing. The mobile enemy uses this time slice to make a random patrol 
or scheduled patrol, while the friendly UGR travels from its start point to target. The land use, 
fi xed enemy, and ground elevation layers are not active entities, and therefore they do not 
require the processing time.

A simulation process for friendly UGR’s path planning in a hostile environment is 
described in Fig. 3. At the beginning of the simulation, parameters which specify the capa-
bility of the friendly UGR are initialized. Next, a database storing only known information 
about the environment is retrieved to fi nd an initial least-cost path from its start point to 
target. The UGR then begins to move from one point to another along the least-cost path 
while performing its radial line-of-sight (RLOS) analysis. If no enemy is detected or if 
enemies are detected but they do not detect the UGR, it keeps traveling along the current 
path. Otherwise, its cumulative survival probability is compared with a threshold value for 
making a right decision. If the decision is to avoid the enemy (with a higher survival 

Table 1: Property of input GIS layers.

GIS layer Classifi cation Type
Fields used for the 

attribute table Description

StartP Static/Dynamic Point ID, Known Initial start 
location of robot

TargetP Static/Dynamic Point ID, Known Initial target 
location

EnemyP Static/Dynamic Point ID, Known, 
Moving, 
MovePtn, Alive

Fixed and mobile 
enemies

SurfaceG Static Polygon ID, Known, 
Value, LandUse

Land-use of the 
environment

ElevR Static Raster Value Ground elevation
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Table 2: Attribute fi elds describing the input GIS layers.

Field name Description Data type

ID Element ID number Integer
Known 0 = Unknown; 1 = Known 

element
Boolean

Moving 0 = Fixed; 1 = Moving 
element

Boolean

MovePtn 1 = Move in x direction Integer
2 = Move in y direction
3 = Move in xy direction
4 = Random movement

Alive 0 = Dead; 1 = Live element Boolean
Value Raster value that represents Double

Ground elevation (for ElevR)
Land-use index (for SurfaceG)

Land use Land-use type Text

Figure 3: Simulation fl ow chart for military path planning.
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 probability than the threshold value), the least-cost path is recalculated. When recalculating 
the path, the current location of the friendly UGR is set to be the start point of the new path, 
and any new information obtained until this point is used for updating the UGR database. 
For instance, if the detected enemy is unknown, then its property is changed to be known, 
and thus the UGR can keep track of its movement during the navigation. If the decision is to 
defeat the enemy, the enemy operation is deactivated as if it is killed, and the UGR keeps 
traveling along the current path without path recalculation. The simulation program ends 
when it reaches the target.

5 EXAMPLES
Several case studies have been conducted to demonstrate how the proposed simulation model 
works in different environments. Real GIS data for various terrain and land-use maps 
(obtained from USGS Seamless database for several mountainous areas in Afghanistan) are 
employed to construct different examples, and some hypothetical obstacles are added to 
make the example more complex. UGR parameters used for the test are the hill climbing abil-
ity and sensor height.

5.1 Hill climbing ability

Recall that the least-cost path of the friendly UGR is determined based on the comparison 
of elevation difference between two neighboring points and its ability to move on those 
points. Thus, if the hill climbing ability (i.e. maximum slope that the UGR can overcome) 
is higher than the slope between its current and next points, it then can move to the next 
point. Figure 4(a) shows least-cost paths of the friendly UGR in a hilly terrain with different 
maximum climbing slopes. As shown in the fi gure, the UGR can cut across the hilly terrain 
with ±40° of the climbing slope to reach the target location, and thus it is the shortest among 
the alternatives described in the fi gure. However, with ±3° of the climbing slope it is 
observed that the UGR travels only through the plain area, producing the longest travel 
distance.

5.2 Least-cost paths from multiple start points

Assuming that there is no enemy in the simulation environment and that the mission of the 
friendly UGR is to reach a known target, Fig. 4(b) shows least-cost paths to the target from 
multiple starting points. Note that the maximum climbing slope that the friendly UGR can 
overcome is set to ±14° (25%) in this example. As shown in the fi gure, all the six paths com-
pletely avoid the high slope regions in mountainous areas and are relatively straight to the 
target. The result indicates that the surface distance and slope factors are simultaneously 
evaluated to fi nd the least-cost path.

5.3 Sensor capability

The sensor capability of the friendly UGR is also very important for its safe and effective 
navigation in a hazardous environment. This is because the UGR depends most likely on the 
sensor for monitoring and detecting hostile obstacles in its surrounding environment. With a 
low sensing capability, the friendly UGR would be able to detect the obstacles only close to 
it. On the contrary, with a high sensing capability it can detect the objects that are much far 
from it.
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Figure 5(a) shows points (along the initial least-cost path) where an unknown enemy is 
identifi ed for the fi rst time by the friendly UGR with different sensor heights. As shown in the 
fi gure, the UGR is able to detect the unknown enemy much earlier with a higher sensor height 
and change its route to a recalculated least-cost path. With a low sensor height, however, it 
would not be able to detect the enemy although the enemy is already within the sensor search 
limit. Such a case is encountered when a terrain blocks its line-of-sight. For example, at the 
72th intermediate point (l72) of the initial least-cost path, the friendly UGR cannot detect 
enemy’s existence with the sensor height of less than 50 meter due to the blockage of a terrain 
in between them. The UGR with 10 meter sensor height cannot detect the enemy until it 
reaches l109 where it would also be exposed to the enemy whose sensor search limit is 600 m. 
Figure 5(b) shows line-of-sight diagrams at the corresponding enemy detection points.

Start

Target

Total Path Cost Max. Climb Slope

             21,254 5% (±3o)

             18,920 25% (±14o)

             18,734 45% (±24o)

             18,615 65% (±33o)

             16,414 85% (±40o)

Target

Path1

Path2

Path3

Path4

Path5

Path6

Total Path Cost
16,062
15,793
16,646
17,859
15,066
16,670

(b)

Dimension: 
22 km wide 16 km long

Dimension: 
25 km wide 19 km long

(a)

Figure 4:  (a) Least-cost paths with different hill climbing abilities and (b) Least-cost paths 
from different start locations to the target.
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5.4 Path planning in a static environment

Suppose that a mission assigned to the friendly UGR is to reach a known target as quickly as 
possible, and the simulation environment where it operates is static (see Fig. 6(a)). At the 
beginning of the simulation since no enemy information is given, UGR’s initial least-cost 
path is relatively straight and running through low elevation and land-use friction areas. How-
ever, once the locations of known enemies ( ) are identifi ed, its initial path is recalculated 
to have a new one that guides the UGR in a much safer way without exposure to the known 
enemies. While traveling along the recalculated path, the UGR detects an unknown enemy 
( ) at a certain point through its RLOS analysis, and thus the path is recalculated again to 
avoid engaging with the enemy. If additional enemies are not further detected, the UGR keeps 
moving along the new path until it reaches the target.

5.5 Path planning in a dynamic environment

In this example the target of the friendly UGR is a moving object, and its surrounding envi-
ronment is time-varying where the elements of the environment change over time. Some 
large and small hilly mountains are located in the middle of the simulation environment, and 
three mobile enemies are initially placed in a southwest region of the friendly UGR. The mis-
sion assigned to the UGR is to chase and destroy the enemies distributed in the environment. 
Thus, calculation of least-cost paths, enemy movement, and UGR’s exploration to catch the 
enemy are iteratively processed during the simulation. Figure 6(b) shows trajectories of the 
moving objects during the simulation. When the simulation begins, the friendly UGR fi rst 
chases Enemy-M1 (i.e. target 1) because it is the closest from the UGR. After the fi rst target 

Figure 5:  (a) Location where the friendly UGR fi rst detects unknown enemy with different 
sensor heights and (b) Corresponding line-of-sight at the enemy detection point.

(b)(a)
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is destroyed (i.e. deactivated), the UGR moves for the next closest targets (Enemy-M2 and 
Enemy-M3 sequentially). The simulation runs until all the enemies are destroyed.

In most of the simulation runs, it has been observed that the friendly UGR catches all the 
enemies since the UGR is assumed to be faster than the enemies. However, if the UGR speed 
is less than or equal to that of the enemies, it may not be able to catch all the enemies unless 
it has intelligence to predict their movements in advance. The path planning method proposed 
in this study will be further improved with consideration of variable speeds and intelligent 
behaviors of moving objects in a future study.

Figure 6:  Path Planning for (a) Reaching a stationary target in a static environment and 
(b) Chasing multiple mobile enemies in a dynamic environment.
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6 CONCLUSIONS AND FUTURE STUDIES
This study developed a GIS-based path planning model that fi nds best paths of mobile robots 
(i.e. UGR) and simulates its mission under various conditions. A weighted travel cost func-
tion with distance transformation (DT) algorithm is developed to fi nd the best paths, and a 
probabilistic decision making process based on a radial line-of-sight (RLOS) analysis is 
modeled for a safe robot navigation in a hostile environment. The path fi nding and navigation 
are iteratively processed during the simulation of robot path planning. The simulation model 
has been applied in different examples. Various GIS data that describe terrain, land uses, 
targets, and obstacles of the examples are employed in the model as an input. The result 
shows that the model performs well in the transportation path planning under various condi-
tions, and that it has great potential for testing and evaluating various missions to be performed 
by the robot before its deployment in a real-world situation. Despite demonstrated capabili-
ties, the model can benefi t from many technical and methodological improvements. Some 
future works to be considered are:

• Model speeds of mobile robots based on time-varying information and mission charac-
teristics.

 • Model intelligence of mobile robots to predict obstacles movement.

 • Model cooperation between friendly robots against threats from hostile obstacles.

 • Develop an experience-based decision making process in which military units faced with 
new decisions can act on the basis of experiences gathered from previous operations.

• Develop a cognitive hierarchy model through which meaningful knowledge can be 
obtained from available information.
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