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 In this paper, the mathematical model of the electrical and thermal processes proceeding 

during the electrosurgical polypectomy is considered. During a colonoscopy, the 

endoscopist can remove abnormal growths (polyps) inside the large intestine (the colon). 

In the electrosurgical polypectomy procedure, a polypectomy snare is tightened around the 

base of the polyp. Next, the electric current flows for a short moment of time from the snare 

loop (the first electrode), through the polyp-colon tissues and the other body tissues, to the 

second electrode placed on the patient’s skin. Both electrodes are connected to the 

electrosurgical generator unit. This medical surgery allows to cut off the polyp stalk from 

the colon wall. The systems of the partial differential equations that describe the thermal 

and electrical processes with the appropriate initial-boundary conditions are proposed. The 

examples of numerical simulations related to two duty cycles of the electrosurgical 

generator unit are presented. Simulation results can be helpful for the surgeons to choose 

the optimal heating time and to set other parameters of the electric current that flows by 

tissues during the endoscopy procedure. 
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1. INTRODUCTION 

 

Colon polyps are slow-growing growths (tumors) generally 

arising in the large intestine (colon). Colorectal cancer is one 

of the most common cancers with a very high mortality rate 

and can be treated as an important medical problem. One of 

the methods of treatment is a colonoscopic polypectomy [1, 2] 

that involves the prevention of colorectal cancer. The 

polypectomy is an invasive method of treatment. The 

beginnings of this method date back to the 1969 (performed 

by Shinya and Ichikawa). Many polyps discovered in the 

colonoscopic examination can be removed directly or biopsied. 

Knowledge of the characteristics of endoscopic instruments 

and accessories, and the geometry and size of the polyp is a 

very important for the proper removal of polyps by an 

experienced surgeon.  

Most polyps can be removed using different polypectomy 

methods [3-5], but the most frequently used method of 

examination is the electrosurgical polypectomy. In this 

procedure, a polypectomy snare (wire loop) is passed over the 

base of the polyp and tightened around the polyp. The snares 

used in the colonoscopic polypectomy are made from different 

materials (the most often are made from the braided stainless-

steel wire) and are available in a variety of sizes (typically 0.3-

0.5mm in diameter) and in shapes of a continuous wire loop 

(typically 2.0-2.5cm in diameter). The snares are placed within 

a flexible sheath which is passed through the accessory 

channel of the colonoscope (a channel size is of 3-5mm and 

length is about 2.5m). The wire and sheath are connected to 

the moving plastic handle at the end of the device controlled 

by the surgeon. The handle allows the opening and closing of 

the wire loop. Additionally, the handle contains an electrical 

connector which couples the snare wire with an active cord to 

the electrosurgical unit (generator). The most popular 

approach for the considered application in this work are the 

monopolar snares. In this case, a high frequency (between 300 

kHz and 1 MHz) electrical current is delivered for a very short 

period of time from the electrosurgical generator unit to the 

wire loop (the first electrode). Next, the current flows through 

the polyp-colon tissues (being in contact with the wire loop) 

and other body tissues to a remote return electrode (the 

grounding pad) placed e.g. on the patient’s back and returns to 

the electrosurgical generator unit completing the circuit. The 

electrical current has the highest concentration in the tissue 

near the contact with the wire loop, while it travels to the large 

surface area dispersive electrode through the body tissues with 

lower concentrations. In Figure 1, one can see the scheme of 

surgical operation in polypectomy. 

The passage of an electric current through biological tissues 

generates heat (local thermal energy) which, in consequence, 

the temperature within tissues must increase (in order to occur 

a protein denaturation and next, to obtain a coagulation) [6-8]. 

It can be noted here that the electrocautery should take place, 

which causes the closing of the wound and the stopping of the 

bleeding – then the polyp is cut off from the colon wall. In the 

process of thermal coagulation, the tissue destruction occurs if 

the temperature within the tissue increases to approximately 

60℃. The thermal coagulation causes the changes in the 

structure of the biological tissues. The temperature should only 

rise within the target tissue, preferably within the base of the 
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polyp and any thermal damage of tissues (especially the 

intestinal tissue) must be avoided, because this can lead, for 

instance, to colon perforation. Also, when the electric current 

has stopped, hot tissues cause the further dissipation heating 

within the adjacent tissues. From the polypectomy treatment 

point of view, these recommendations are very important 

during polypectomy. 

 

 

 
 

Figure 1. Scheme of surgical operation in polypectomy 

 

In this paper, the authors commenced the development of 

the mathematical model and conducted the exemplary 

computational simulations related to the above-described 

problems. The main aim of this work is research that deals 

with the determination of the spatial transient-state 

temperature distribution and thermal damage of tissues in the 

polyp-colon system. The geometry of typical shape of the 

polyp with the considered part of the colon can be treated as 

an axially-symmetrical domain. Two different duty cycles of 

the electric current flow during the electrosurgical 

polypectomy in simulations are analyzed. The duty cycle 

refers to the percentage of total time in which the electrical 

current is actually delivered to the tissues. 

The mathematical models describing heat transfer 

proceedings in the vital tissues are usually based on the most 

popular Pennes equation [9-15] and this approach has been 

adopted to modeling of heat transfer processes proceeding in 

the polyp-colon system. The typical Pennes equation contains 

two terms (heat sources) associated with the blood perfusion 

and metabolism in tissues. The heat transfer model in the wire 

loop is based on the Fourier-Kirchhoff equation. The wire loop 

is the first electrode, while the second (ground) electrode is 

usually placed on the skin of the patient’s back. If such a 

system will be considered, then the geometric model becomes 

too complicated. In order to simplify the model, it is assumed 

that the ground potential on the outer surface of colon is taken 

into account, while simultaneously the smaller difference of 

electric potentials between the first electrode and the surface 

of colon is assumed. During the electric current flow through 

tissues, the stationary electric potential distribution in the 

tissue domains should be determined considered the adequate 

boundary conditions. When the electric current flows through 

tissues, electric energy is converted to heat (the Joule heating 

effect). The heat source generation rate depends on the 

gradient of the electric field potential. Next, the heat source is 

introduced into the Pennes equation as an additional term 

(causing the tissues heating and eventually, their thermal 

damage). The process of heat generation in tissues ends when 

the electric current stops flowing. It should be pointed out that 

heat is still transferred from the warmer parts of the tissues to 

the adjacent sections of tissues which may cause their further 

damage. To determine the degree of the tissue damage, the 

Arrhenius damage integral is calculated [16-19]. 

The proposed mathematical model is solved using the 

numerical methods, because the analytical solution of 

equations of the mathematical model seems to be impossible 

especially for the complex geometry of the considered polyp-

colon domain. For this purpose, the authors applied the 

Control Volume Method – CVM (known also in literature as 

the Finite Volume Method – FVM), while the Voronoi 

tessellation [20, 21] has been used in discretization of the 

considered domain. This selected numerical method is a well-

known by the authors and has been used many times to solve 

other problems – e.g. [22]. It can be noted that other 

computational methods (e.g. the Finite Element Method – 

FEM [23, 24]) can be used to solve the mathematical model. 

The remainder of this paper is structured as follows: Section 

2 presents the mathematical model containing the description 

of the domain’s geometry, the governing equations for heat 

transfer in the particular sub-domains with the boundary and 

initial conditions, the governing equations of the electric field 

in the tissue sub-domains with the boundary conditions, 

definition of the heat source related to the Joule heating effect 

and definition of the Arrhenius damage integral. In Section 3, 

the description of numerical simulations (including 

discretization of sub-domains, all thermophysical parameters 

of sub-domains and other data) is given and also many 

illustrative simulation results are presented. The conclusions 

are provided in Section 4 of this article. 

 

 

2. MATHEMATICAL MODEL 

 

The considered domain consists of the following three sub-

domains:  

1 - the colon tissue,  

2 - the polyp tissue (tumor),  

3 - the steel wire loop electrode.  

The geometrical model of this domain (as the axially 

symmetrical object) is presented in Figure 2. The outer surface 

limiting the domain (boundaries b1, b2 and b3) is in contact 

with environment (i.e. a gas inside the colon). The boundaries 

denoted by k−l, where (k−l) {(1−2), (1−3), (2−3)}, are the 

interfacial surfaces between adjacent sub-domains. The 

boundary z  is a part of the outer surface of the colon, while 

the boundary 0 denotes the ‘virtual cutting surface’ of the 

colon wall and the boundary r is on the symmetry axis.
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Figure 2. The considered domain of the polyp-colon system 

(longitudinal section as the 2D domain) 

 

2.1 Bio-heat transfer model 

 

The temperature field in the considered domain (in the 2D 

cylindrical axis-symmetrical coordinates system) is described 

by the following system of equations 
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where, sub-index m = 1,2,3 identifies the particular sub-

domains (as mentioned above), T [℃] is the temperature, (r, z) 

[m], t [s] denote two-dimensional cylindrical coordinates and 

time, c [J/(kg K)],  [kg/m3],  [W/(m K)] are the specific heat, 

the density and the thermal conductivity, respectively.  

In the system of equations (1), the terms Qm [W/m3], for m 

= 1, 2, 3, are the capacities of volumetric internal heat sources 

associated with the blood perfusion and metabolic heat in 

tissues. The tissues in 1 and 2 are fed by a large number of 

uniformly spaced capillary blood vessels, hence the Pennes 

model can be used 

 

( )

( )

, ,

, , , 1,2

0 3

m

met m blood blood blood m blood m

Q r z t

Q c G T T r z t m

m

 +  − =   = 
=

 (2) 

 

where, Gblood is the blood perfusion rate in the tissue 

[m3
(blood)/(s m3

(tissue))], cblood is the blood specific heat, blood is 

the blood density and Tblood is the average blood temperature 

in the human body. The metabolic heat source Qmet can be 

treated as a temperature-dependent function Qmet≡ Qmet(T(r,z,t)) 

or a constant value. 

Eq. (1) is supplemented by the set of initial-boundary 

conditions. For t=0, the initial condition is given as 
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Here, one can assume that the initial temperature Tinit is 

equal to the average temperature Ttissue of the human body. On 

the contact surfaces between all sub-domains, the continuity 

conditions are assumed 
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where, (k-l)  {(1-2), (1-3), (2-3)} and the operator /n 

denotes a normal derivative. The non-flux boundary condition 

on the boundary r is given  
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On the external surfaces of the sub-domains, the Dirichlet-

type (on the boundaries 0 and z) and the Robin-type (on the 

outer surfaces of the sub-domains: b1, b2 and b3) boundary 

conditions are assumed 
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where, m [W/(m2 K)], for m = 1, 2, 3, are the convective heat 

transfer coefficients and Tamb [℃] can be treated as the gas 

temperature in the large intestine (colon) or Tamb.= Ttissue. 

 

2.2 Electrical potential model 

 

The electrical current flows in the period of time theating. The 

heat generation rate per unit volume Qelect inside the tissue sub-

domains is related to the electric field (also called as the Joule 

heating effect) 
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(8) 

 

where,  [V] is the electrical potential,  [S/m] is the electrical 

conductivity and H(t) is the time-dependent function related to 

the duty cycle of the electrosurgical generator unit, and this 

function describes the current flow over time. 

The electrical potential distribution in the tissue sub-

domains results from solving the following system of 

equations [7, 25] 
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with the boundary conditions governing the electric potential 

field. On the contact surfaces of the tissue sub-domains with 

the one of the electrodes (wire), the boundary condition is 
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defined as 

 

( )   ( )1 3 2 3 1, , : , , 1,2mr z r z U m− −    = =  (10) 

 

where, U1 is the applied voltage on the wire loop electrode. As 

mentioned in the introduction, the real location of the second 

electrode is on the skin e.g. of the patient’s back. In this model, 

the direct influence of the ground electrode potential is 

simplified using the following assumption  

 

( )   ( )0 1 2, , : ,zr z r z U    =  (11) 

 

Here, the average intermediate electrical potential U2 on the 

‘virtual cutting surface’ of the colon wall is assumed. This 

should be clarified that the analysed part of the colon tissue is 

in ideal contact with other human tissues and is, in 

consequence, connected to the second electrode. The value of 

U2 = 0 also can be assumed, because the difference between 

the two electrode potentials U1 – U2 is essential in order to 

further calculate the value of the potential gradient. 

Between both tissue sub-domains (the contact surface 1-2), 

the continuity condition is assumed 
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while on the boundaries of the analyzed domain that are not in 

contact with the wire electrode (the boundaries are electrically 

insulative), the following boundary condition is given: 
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2.3 Tissue damage model 

 

The increase in the temperature of local tissue above a 

certain threshold will lead to irreversible cellular damage with 

interruption of the metabolic processes. Based on the 

knowledge of the spatio-temporal temperature distribution, 

one can determine the degree of the tissue damage. Under the 

assumption that the thermal damage of tissue (the tissue 

denaturation) is an irreversible process, the Arrhenius model 

[17-19] is applied. The Arrhenius damage integral is defined 

as: 
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The values of this integral (mainly depending on the tissue 

temperature history at the selected point (r, z) of tissue) are 

compared with threshold values. The value of  = 1 means a 

63% probability of cell death at a specific point of the tissue 

domain, while the value of  = 4.6 indicates that the thermal 

damage is almost complete (99% probability of cell death). In 

Eq. (14), P [1/s] is the pre-exponential factor, E [J/mol] is the 

activation energy and Rg [J/(mol K)] is the universal gas 

constant. Achieving the appropriate threshold for tissue 

damage is important in regards to the patient’s safety during 

polypectomy. The tissue damage should be always limited to 

minimal one, and simultaneously, it must ensure success for 

medical procedure. Hence, the threshold for tissue damage 

should be also at a minimum level that ensures tissue damage. 

Remark: The above introduced models: Biological heat 

transfer model, potential model and tissue damage model are 

coupled. At first, the electric potential field distribution 

satisfied the given boundary conditions in the considered 

domain is determined. Next, the values of the internal heat 

source in tissues related to the Joule heating are calculated on 

the basis of the gradient of the squared electric field. The 

solution of the system of heat transfer equations with the heat 

source term (the Joule heating) allows one to determine the 

spatio-temporal temperature distribution in the domain. 

Finally, the degree of the tissue damage is calculated on the 

basis of the value of the Arrhenius damage integral.  

 

 

3. EXAMPLE SIMULATION RESULTS 

 
The partial differential equations of mathematical models 

(describing the thermal and electrical processes) presented in 

Section 2 have been solved numerically using the Control 

Volume Method. The details about this method one can find 

in our earlier papers [20-22]. 

The Voronoi discretisation of the considered colon-polyp 

domain is presented in Figure 3. Every control volume has the 

shape of a ring. 

 

 
 

Figure 3. Discretisation of the considered polyp-colon 

domain into control volumes 

 

The thermophysical parameters of particular sub-domains 

are following [26, 27]:  =  = 0.55 W/(m K) (for frequency 

f = 400 kHz),  = 5 W/(m K), c1 = c2 = 1041 J/(kg K), c3 = 

500 J/(kg K), cblood = 3650 J/(kg K),  =  = 3655 kg/m3, 

 = 8000 kg/m3, blood = 1069 kg/m3, Gblood 1 = Gblood 2 = 

0.538·10-3 s-1, Qmet 1 = Qmet 2 = 684 W/m3,  =  = 0.25 

S/m,  = 1.45·106 S/m, P = 3.1·1098
 

1/s, E = 6.27·105
 

J/mol, 

Rg = 8.314 J/(mol K). One can note that for both types of tissue: 

colon and polyp, the identical values of parameters have been 

assumed. The thermophysical parameters for the polyp are 

unknown in the literature, and the authors hold the opinion that 

the both values are very close. Also, the temperature-

dependent parameters of every sub-domain can be used in the 

computations and from the numerical point of view, can be 
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easily implemented. The remaining parameters used in 

simulation are the following: Tblood = 37℃, Tinit = 37℃, Tamb = 

37℃,  =  =  =10 W/(m2 K).  

In this work, the following two functions H(t) describing the 

time-dependent electrical pulses are considered 

Case 1: 

 

( )
 

1

1 if /

0 otherwise

period pulse heatingt t t t t
H t

   
= 


 (15) 

 

Case 2: 
 

( )2

1 if 

0 otherwise

heatingt t
H t


= 


 (16) 

 

where, the time theating is the final moment of simulation time 

in which the flow of the electrical current through the wire 

electrode takes place, the time tsimul (≥ theating) is the total time 

of simulation. In Eq. (15), the time tpulse is the pulse duration 

time, while the operator {t/tperiod} returns the floating point 

remainder of dividing t by tperiod. In Figure 4, the courses of 

functions H(t) are presented schematically. 
 

 
 

Figure 4. The courses of functions H1(t) and H2(t) 

 

If the current is delivered continuously for the entire 

activation period (with no pauses in the interval [0, theating]), 

then it is defined as a 100% duty cycle. In the first case, the 

current with a duty cycle of tpulse / tperiod ·100% is taken into 

account. 

 

3.1 Results for Case 1 

 

In the first simulation, the additional parameters have been 

assumed: U1 – U2 = 120 V, tperiod = 0.025 s, tpulse = 0.005 s, 

theating = 0.5 s, tsimul = 1 s. Here, the duration of the current 

pulses corresponds to a 20% duty cycle. 

The electric potential distribution and the internal heat 

source distribution are presented in Figures 5a and 5b, 

respectively. The temperature field presented in Figure 6a 

shows the stage of heating tissues at theating = 0.5 s, while in 

Figure 6b the total tissue damage as the value of the Arrhenius 

damage integral  at tsimul = 1 s is presented. After the heating 

time theating = 0.5 s, the thermal diffusion process in the 

considered domain takes the place (heat in the selected part of 

tissues is slowly transferred to neighbouring tissues) and 

simultaneously the tissue damage process is still growing. The 

next two Figures 7 and 8 show the heating curves and the 

growth kinetics of the Arrhenius damage integral  over time, 

respectively, at the selected control volumes (marked in Figure 

3) of tissue and wire electrode sub-domains. 

   
a)                                      b) 

 

Figure 5. a) Electric potential field distribution  , b) internal 

heat source distribution 𝜎|∇𝜑|2 (Case 1) 
 

 
a)                                             b)  

 

Figure 6. Temperature distribution after theating = 0.5 s and the 

tissue damage (the values of the Arrhenius integral) after tsimul 

= 1 s (the red color of the control volumes denotes that  > 

4.6) (Case 1) 
 

 
 

Figure 7. The heating curves at selected control volumes of 

tissue and wire electrode domains (see Figure 3) for theating = 

0.5 s (Case 1) 
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Figure 8. The growth kinetics of the Arrhenius damage 

integral  at selected control volumes of tissue domain (see 

Figure 3) for theating = 0.5 s (Case 1) 

 

3.2 Results for Case 2 

 

In this simulation, the lower difference between the two 

electrode potentials U1 – U2 = 55 V has been assumed. This 

value has been determined experimentally, in order to obtain a 

similar level of temperature rise in the tissues in the same time 

theating = 0.5 s (here, the current flows constantly in the interval 

[0, theating], 100% duty cycle). The remaining parameters used 

in this simulation are identical to these in the previous one. 

Figures 9-12 present numerical results of simulation - 

corresponding to the results for Case 1 presented in Figures 5-

8. 

 

   
a)                                     b) 

 

Figure 9. a) Electric potential field distribution  ,  

b) internal heat source distribution 
2

   (Case 2) 

 

In both cases of simulations, the parameters of the electrical 

current and heating times have been determined in such a way 

that the temperature in the tissue domains did not exceed the 

level of 100℃ and the zone of the tissue destruction in the base 

of the polyp was optimal (i.e. caused the least invasive for 

colon). Otherwise, temperature increases in the tissue sub-

domains to a temperature greater than 100℃ caused the 

cellular water to boil and the cells to rupture. Modeling of such 

a process is omitted in this work (this will be the subject of 

further research). One can note that the temperature rise in 

tissues is the most intense during the current flow through 

biological tissues. The tissue damage still continues after the 

current flow through tissues is finished - it follows from the 

definition of the Arrhenius damage integral. Most of all, the 

tissue destruction depends on: the heating time, the history of 

tissue temperature over time, the assumed size and geometry 

of the polyp-tissue-wire system and the given electrical 

parameters. The shorter heating time may not cause the 

thermal damage of the base of the polyp and subsequently its 

cut off. The longer heating time can lead to the damage of 

larger tissue domain, and the perforation of the colon tissue 

may take place. Hence, it is very important to choose the 

suitable interval of the heating time. By comparing the results 

of both simulations (different the duty cycles are used), it can 

be concluded that the obtained results are similar. 

 

  
 

a)         b)  

 

Figure 10. Temperature distribution after theating = 0.5 s  

and the tissue damage (the values of the Arrhenius integral) 

after tsimul = 1 s (the red color of the control volumes denotes 

that  > 4.6) (Case 2) 

 

 
 

Figure 11. The heating curves at selected control volumes 

 of tissue and wire electrode domains (see Figure 3)  

for theating = 0.5 s (Case 2) 
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Figure 12. The growth kinetics of the Arrhenius damage 

integral  at selected control volumes of tissue domain (see: 

Figure 3) for theating = 0.5 s (Case 2) 

 

 

4. SUMMARY 

 

This paper investigated the heat transfer problem during 

electrosurgical polypectomy. From the mathematical point of 

view, three models related to the thermal processes in the 

biological tissues and the wire electrode, the electrical 

potential model in the colon-polyp system and the tissue 

damage model have been proposed and considered. These 

models are conjugated together.  

The mathematical model has been solved numerically using 

the Control Volume Method. The simplified polyp-colon 

domain has been discretized by the Voronoi tessellation (the 

2D control volumes mesh). The advantage of the Voronoi 

tessellation is the rather accurate reconstruction of the shape 

of the particular sub-domains. Furthermore, the application of 

the Control Volume Method ensures a good approximation of 

the differential equations describing the thermal energy and 

electrical potential balances. 

 

 

5. CONCLUSION 

 

1. The considered problem, from the medical practice’s 

point of view, seems to be very interesting. We are aware 

that many doctors have little knowledge of the 

mathematical modeling of the physical processes 

discussed in this work. 

2. The presented illustrative results in this work (among 

others, the distribution of temperature field in the tissues, 

the distribution of the tissue thermal damage) allow 

doctors to recognize and better understand the physical 

processes occurring during the electrosurgical 

polypectomy. 

3. The endoscopist can apply the simulation results 

(performed individually for a specific case, of course) for 

to make the decision about the execution of the 

endoscopy procedure. The detailed knowledge of 

processes proceedings in the polyp-colon domain will 

allow for the appropriate choice of the optimal heating 

time and the optimal parameters of the electric current 

generated by the electrosurgical unit, depending on the 

geometry of the given polyp. 

4. The construction of mathematical models for 

polypectomy seems to be highly needed for creating 

better and safer endoscopy procedures. Results of the 

numerical simulations may be helpful in the treatment 

strategy for clinical applications. We think that this 

scientific research will lead to a better treatment of the 

patients. 

 

 

6. FUTURE RESEARCH PLAN  

 

The latest research and opinions [14, 15, 28, 29] related to 

the bio-heat transfer problems proceedings in the living 

biological tissues prove that the bio-heat models should be 

described by the non-Fourier heat conduction models, among 

others, by the modified Pennes equation derived from the 

Cattaneo-Vernotte model or from the dual phase lag model. In 

the Cattaneo-Vernotte model, the relaxation time appears, 

while in the second model, the thermalizaton time additionally 

occurs. In the future, we would like to apply these models in 

the mathematical modelling of heat transfer in related 

problems. The main difficulty is e.g. the lack (in the literature) 

of experimental data that determine the values of phase lag 

times for the colon (the large intestine) and polyp tissues. In 

the future, we also plan to carry out simulations for other types 

of polyps, to use the more complex shapes of the tissues, and 

to investigate the influence of other current parameters on the 

course of the polypectomy. 
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NOMENCLATURE 

 

c specific heat, J kg-1 K-1 

cblood blood specific heat, J kg-1 K-1 

E activation energy, J mol-1 

Gblood blood perfusion rate in the tissues,  

m3
(blood) s-1 m-3

(tissue) 

H function describing the time-dependent 

rectangular electrical pulses 

/n normal derivative 

P pre-exponential factor, s-1 

Q capacities of volumetric internal heat sources 

associated with the blood perfusion and 

metabolic heat in tissues, W m-3 

Qelect heat generation inside tissues, W m-3 

Qmet metabolic heat source, W m-3 

Rg universal gas constant, J mol-1 K-1 

t time, s 

theating final moment of simulation time in which the 

flow of the electrical current through the wire 

electrode takes place, s 

tperiod time interval between two consecutive pulses, 

s 

tpulse pulse duration time, s 

tsimul total time of the simulations, s 

T temperature, ℃ 

Tamb temperature of the gas inside the colon, ℃  

Tblood blood temperature, ℃ 
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U1, U2 voltages on the electrodes 1 and 2, V 

r, z spatial coordinates, m  

Greek symbols 

 convective heat transfer coefficient, 

W m-2 K-1 

 boundaries limiting the sub-domains 

 thermal conductivity, W m-1 K-1 

 density, kg m-3 

blood blood density, kg m-3 

 electrical conductivity, S m-1 

 electrical potential, V 

 the Arrhenius damage integral 

m sub-domains 

Subscripts 

m particular sub-domains (1 – the colon tissue, 

2 – the polyp tissue (tumor), 3 – the steel wire 

electrode) 
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