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 This work provides a sequential approach to improve efficiency of Combustion Ignition 

engines which involves both performance and emissions by using the artificial neural 

network (ANN). In recent years continuous work is going on for improving the output 

and reducing the emissions especially for Combustion Ignition engines which are mostly 

used for transportation purposes. In view of the above, the experimental data of a four 

stroke Combustion Ignition engine is taken as reference. However, the experimental data 

is split into three categories as input data, target data and output data in neural networks. 

All these data are trained using neural network toolbar in MATLAB with ten hidden 

layers by which error deviation are calculated, in order to reduce error deviation between 

neural network and experimental values, design of inlet manifolds is varied and 

performance parameters along with emissions is calculated and compared with neural 

network values. The results showed minimum error over the emission and performance 

parameters of CI engines from the manifold designs and ANN model. These results 

provide a sequential approach to improve efficiency of Combustion Ignition engines with 

the help of neural networks. 
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1. INTRODUCTION 

 

Diesel engine is most widely used in transportation 

purposes that is operative on a vast variety of natural 

operating conditions. Despite of its merits one of the main 

concerns for diesel engines are its emissions that causes 

adverse effects to environment. The main constituents of the 

pollution are soot formation which includes unburnt hydro 

carbons, carbon monoxide and addition to its NOX plays a 

vital role [1]. The emissions are reduced by enhancing 

correct fuel and air being mixed inside the engine cylinder 

that can be achieved by providing some motion (secondary) 

to inside air of the cylinder under different designing of 

intaking a manifold which is termed as swirl.  

The swirl is produced by providing helical threads, spiral 

threads with different pitches and orientations results 

improved performance and lesser emissions [2-6]. In addition 

to previous methods design of piston is also varied to provide 

swirl by providing tangential holes in the piston with varies 

dimensions and by varying d/D ratio which results in 

optimum configuration with minimum emissions [7-8]. 

Along with swirl turbulence also has some prominent role in 

proper fuel and air mixings which leads to proper combustion 

in turns improves performance of engine by reducing 

emissions. Intake manifold is modified with throat size by 

providing frustum of cones with depth of cut on the piston 

reduces fuel consumption and emissions [9]. The inlet 

velocity of air also affects the turbulence of air to achieve this 

converging nozzle, convergent- divergent nozzle manifolds 

are replaced with normal manifolds in which better results 

are obtained at certain designs conditions [10-11]. The 

modeling and analysis of incoming air with helical threads by 

varying pitches, incoming velocity of air along with dynamic 

characteristics of intake system is analyzed in CFD got 

optimum results [12-14].   

ANN is an effective tool used to optimize the engine 

characteristics without conducting experiment on 

experimental set up. ANN is optimizing technique where war 

is won without directly involving in it. ANN along with back 

propagation algorithm predict the performance parameters 

and emissions of a 2-stroke engine with bio lubricants using a 

multilayer perception neural network with a 3-25-8 set of 

input layer, hidden layer and output layer where the results 

are within the acceptable limits [15]. The performance of 

diesel engine by varying blends is correlated using ANN 

where mean square error between output and simulated 

values is within acceptable range [16]. The performance and 

emission characteristics are predicted by using modelling 

done with the help of ANN on an engine operated using 

hydrogen as a dual fuel and diesel as primary fuel mode 

having 7 different algorithms for training to be assessed and 

also nearly 5 transfer functions in combination where the 

transfer functions of hyperbolic tangent sigmoid and 

logarithmic sigmoid for Levenberg-Marquardt having 16 

total neurons were discovered to have some best value of 

regression along with mean percentage error and minimum 

mean square error [17]. 

ANN is successfully applied as an alternative modeling 

technique type with adequate accuracy for engines ignited by 

sparks, fueled with the blends of alcohol and gasolines as 

well as bio gas [18]. ANN can be used a tool to detect the 

performance which helps in saving both time and costs for 

developing new methodologies and models for the whole 

performance of the engine [19]. ANN approach is used for 
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mapping both the emission characteristics and the 

performance accurately operated on engines using dual fuel 

along with LPG [20]. ANN models with four differential 

statistical tests namely RMSE, R2, MEP and SEE are 

successfully examined the performance and reliability of IC 

engine in which all of them delivers adequate results [21]. To 

evaluate the engine emission characteristics MSE and 

Trainlm Function in ANN model are suited best in which the 

percentage of error for every predicted value is in between 

0.01 to 0.03 [22]. ANN is applied for calibrating the spark 

ignition engines in certain areas for identification of the 

systems helping in rapid prototypes, where the multi-layer 

networks were utilized for identification of the system 

whereas in case of higher inputs single layer is used for 

characterization and identification of dynamic systems as the 

trained ANN systems could easily satisfy maximum of the 

modeling requirements for calibrating engine which deals 

with high input dimensionality by reducing calibration time 

[23]. 

Artificial Neural Network was used for predicting the 

vibration and noise characteristic of dual fueled engines with 

natural gas, where experiment is done on the diesel engines 

on five varying level of speeds with dual fuel along with 

natural gas decreases vibration and sound pressure values 

which are compared with ANN model where the results are 

in correct ranges. Further the outcomes of the Network are 

compared to the results of linear regression outputs and a 

conclusion was made that ANN helps in providing more 

accurate results [24]. The cyclic variability for engines fueled 

with diesel with blends and n-butanol are modeled using 

ANN, where engine is operated with ten different speeds 

with six blends to evaluate coefficient of variation whose best 

value is 3.04% at 1,200 rpm for Blend 15, these outcomes are 

required for training the ANN to predict coefficient of 

variation using MSE and MAPE to evaluate networks, the 

results obtained are correlated with the data from the 

experiment with overall high accuracy and R: correlation 

coefficient value in the range of 0.858 to 0.983 [25]. The 

acoustic signatures that are obtained from the engines are 

processed based on the signature characteristics and 

frequency values. 

To analyze the emission from HCCI engine and its 

performance operated at a mechanisms of reduced valve lift 

using different fuels are satisfactorily performed by 3D CFD 

simulation and ANN-GA optimization models [26]. 

Optimization of DI-CI characteristics of an engine fueled 

using bio fuel is done through Artificial Neural Network 

depending on the prediction model by using trainrp, trainscg, 

traingdx and trainlm as four different transfer functions, 

where among all these functions the transfer function trainlm 

has lowest error percentage with highest accuracy [27]. A. 

Dominguez used ANN and symbolic regression under 

transient conditions to predict emissions from a diesel engine 

working on animal fat, where both the models predicted 

emissions similarly and it became difficult for obtaining 

predictive models for the particles in nucleation mode 

because of randomness and high variability [28]. ANN model 

predicted the output variables with a high-level accuracy 

operated on a HCCI- DI engine [29]. ANN model is 

developed for hydrogen enriched compressed natural gas 

engine gave good results [30]. F. Dedola proposed an 

effective methodology on using ANN to provide a detailed 

engine date by reducing number of experimental data in 

which volumetric efficiency is taken as reference [31]. 

This experiment instantaneously makes use of varying 

strategies for achieving aims of improving its performance 

and at the same time reducing any kind of emissions from an 

engine operating on diesel. The primary strategy is using 

ANN for which experimental data collected from the engine 

is given as input values in MATLAB using ANN tool bar the 

output values, error values are obtained by training the 

networks by using hidden layers as shown in 

Figure1.Secondly for optimizing the parameters of the engine 

as well as for reducing the error deviation between ANN 

values and experimental data, the designs of inlet manifold 

are varied as threaded manifold and convergent nozzle as 

indicated in Figures 5 and 6. For both the designs the 

experiment is conducted separately on the engine as shown in 

Figure3. Specifications are listed in Table 1. By varying load 

at rated speed and all the performance parameters are 

calculated by using standard mechanical formulae along with 

exhaust emissions are also measured. 

The output values obtained by varying design of Intake 

manifold is again compared with ANN values and the 

Variation of error deviation is studied for different loads. The 

designing of manifold is often the critical task to study the 

performance parameter and emission characteristics of CI 

engine. For resolving these issues, the ANN model can be 

employed for describing a multi-dimensional and non-linear 

system. ANN predicted the output values with modified 

solution that are accepted widely among the automobile 

industries [32]. Based on the obtained data, the ANN model 

is employed to optimize the performance parameter. The 

optimized parameter is used for generating the manifold 

design which are evaluated for its performance and emission. 

Finally, the obtained outcome is compared with ANN results. 

 

 

2. METHODOLOGY 

 

Neural Network or Artificial Neural Network, is defined as 

a computational or mathematical model which is inspired 

from the function or/and structural aspects of biological 

neural network. There exists a set of artificial neurons inter-

connected to one-another in a group and this system then 

helps in processing the information with the help a of 

connectionist method for computations. Mostly Artificial 

Neural Network is defined as some adaptive type of system 

which can change its structure depending on the internal and 

external information which flows into a network at the time 

of learning. Modern ANNs are the non-linear statistically 

data modelling the ANN, normally known as the Neural 

Networks and are termed as a computational or mathematical 

model which is inspired by functional aspects or structured of 

the Biological NNs. In maximum of the cases Artificial 

Neural Networks are adaptive systems which changes their 

structure depending on the internal and external information 

which flows inside a network during or in the learning period. 

Modern NN are the non-linear statistical modeling of data. 

Both the output and input layers are normalized in a (0, 1) 

range. For achieving the best prediction in a network, much 

different architecture are trained and calculated by making 

use of an input data. For all the Artificial Neural Network 

Models in the present study only back propagation algorithm 

was used. The methodology involves a supervised technique 

for training where the biases and network weights were 

randomly initialized during the initial time of the training 

phase. Gradient descent rule is used for the process of error 
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minimization. The input variables are engine speed, time, 

temperature, and load. The results used to evaluate the 

performance of an engine is brake power, total fuel 

consumption, brake thermal efficiency, mechanical efficiency, 

volumetric efficiency along with the emissions such as CO2, 

CO, HC, O2. 

 

 
 

Figure 1. Detailed scheme of methodology 

 

Testing of different algorithms were done and ultimately 

Levenberg-Marquardt Algorithm was chosen for this 

operation. MATLAB 2014a, with toolbox of neural network 

was used for designing the artificial neural network. The 

output values obtained from the neural network is compared 

with experimental values and error is calculated based on the 

error deviation the design of inlet manifold is changed as 

shown in Figure 1. 

Total hidden layers and the number of neurons in every 

layer is designed as per the complexity level of the data set 

and the problem involved. In the present research the total 

number of hidden layers is taken as ten which gives accurate 

values. The layout of input, hidden layer, output is shown in 

Figure 2. For making sure every input variable offers and 

equal part in the functioning of ANN, the model inputs are 

processed before-hand and are scaled to a (0,1) common 

range. For hidden layers the activation functions were chosen 

to be logic. For output layers the best suitable system was 

that of a linear function. Such an arrangement of functions 

for modeling or function approximation problems are quite 

common and results in better results. 

 

 
 

Figure 2. Multi-layer feed forward network 

 

2.1 Experimentation 

 

This method was carried out on a direct-injection single-

cylinder engine fueled with diesel with a dynamometer 

coupled to it. Figure 3. shows schematic view of the test bed 

of an engine along with the measuring devices. The 

geometrical and mechanical specifications for test bed of 

engine are detailed in Table 1. 

 

 
 

Figure 3. Schematic diagram of test rig 

 

Table 1. Specifications of the used engine 

 
Parameter Specification 

Make of the engine Kirloskar AV1 

Bore diameter 88mm 

Stroke length 116mm 

Compression ratio 16:1 

Rated output 5HP 

Temperature 280c 

Number of cylinders one 

General Details 4-Stroke CI Engine 

Type of Cylinder Vertical 

Cooling Water cooled 

Rated speed 1,500rpm 

 

Experiments are carried out with no such structural 

changes required in the engine. Loading of test engine is 

done by varying load on the engine at constant speed. 

Emissions from the exhausts are estimated with the help of 

an Exhaust gas analyzer, and fuel burette method is used for 

measuring fuel consumption. Initially the data obtained from 

the experiments with normal manifold (Figure 4) is given as 

input in neural networks from which error value is calculated; 
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for reducing the error deviation the design of inlet manifold 

is modified as depicted in Figure 5 and Figure 6. 

 

2.2 New manifold design 

 

2.2.1 Normal manifold 

The diameter and length of the normal manifold is shown 

in Figure 4. The manufacturing of normal manifold was done 

using stainless steel as material. It connects air box to the 

valve of inlet of an engine as depicted in Figure 4.  

 

2.2.2 Threaded manifold 

In this current work, designing of the intake manifold of 

the Engine is slightly changes by providing helical threads 

into a manifold with pitch 3mm are used. The performance 

characteristics along with emissions are verified with the 

modified manifold design. The manifolds were casted with 

appropriate dimensions. The threading is started at the inlet 

of the intake manifold parallel to the central axis of the 

manifold. This is made to guide the airflow along the 

threaded path which facilitates for generating swirl along the 

central axis of the manifold. The width of the thread is about 

3mm and the depth of the thread is about 3mm. The manifold 

had a core diameter of 30mm, taking the thread into 

consideration, 26mm is the inner diameter and 30mm is the 

outer diameter as shown in Figure 5. 

 

2.2.3 Manifold with nozzle 

The manifold has core diameter of nearly 30mm, nozzle 

with inner diameter of 15mm and its outer diameter is about 

29mm. The material used for manufacturing the nozzle is 

stainless steel. Nozzle dimensions were considered to 

calibrate the required nozzle dimensions. Manufacturing of 

nozzle is done with convergent length of 430mm and 

constant length of 430mm as shown in Figure 6. 

 

 

 

Figure 4. Normal manifold 
 

 

 

Figure 5. Threaded manifold 

 

 

 

Figure 6. Convergent nozzle manifold 

 

3. RESULTS AND DISCUSSIONS 

 

From the above used method, the results are further 

summarized as:  

From first section 3.1 the outcomes achieved using the 

Artificial Neural Network model for a normal manifold show 

that using ANN to predict TFC, BTE, volumetric efficiency, 

Mechanical efficiency and emissions is sufficient.  

In section 3.2, outcome achieved from manifold design are 

compared to the ANN system. The error deviation for all the 

manifolds were compared to one another for best output 

manifold performances out of all of the cases. The error 

deviation is calculated as Experimental values - ANN values. 

 

3.1 Comparison between ANN values and Normal 

Manifold  

 

3.1.1 Engine performance 

The comparison among the estimated outcomes with that 

of the results from experimental for TFC, BTE, volumetric 

efficiency, and Mechanical efficiency is shown in Figure7. 

TFC is a measure of efficiency of an engine. Where the 

thermal efficiency of engine brake and TFC are inversely 

proportional, hence lower the TFC, higher the thermal 

efficiency. The variation TFC and brake thermal efficiency at 

different loads for ANN and Normal manifold is shown in 

the Figure 7(a), (b). It can be seen that fuel consumption is 

less in ANN which increases brake thermal efficiency when 

compared to that of normal manifold as shown in Figure 8. 

The error deviation is positive for TFC and negative for 

Brake thermal efficiency as shown in Figure7(b), therefore 

the error deviation can be decreased by changing the 

manifold design as shown in Figure 9(a) and (b).  

 

Brake thermal efficiency, 

 

ηbth= 
B.P

Heat input
× 100% (1) 

 

Volumetric Efficiency,  

 

ηvol = 
actual volume flow rate of air

Theoritical Volume flow rate of air
× 100% (2) 

 

Actual volume flow rate of air 

 

(Qact)= Cd×a×√2𝑔ℎ𝑎 𝑚3/𝑠 (3) 

 

where,  

Co-efficient of discharge (Cd) = 0.62;  

d = 0.02m;  

Area (a) =
𝜋𝑑2

4
𝑚2. 

 

Volumetric efficiency is stated as the breathing capacity of 

an engine which depends on the atmospheric conditions. 

Since the atmospheric temperature remains as constant for 

most of the time during experimentation and engine is 

operated at rated speed, the volumetric efficiency remains as 

constant for Normal manifold but it is less than ANN value, 

the error deviation is negative as shown in Figure 9(c), the 

volumetric efficiency is increased by changing the design of 

intake manifold as shown in Figure 10(b). 

Mechanical efficiency can be defined as a ratio brake and 

indicated power, brake power remains constant for all 
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manifold designs at a given particular load as engine is 

operated at constant speed and constant torque. Indicated 

power is the power which is available at the piston top. 

Mathematically indicated power is sum of brake power and 

friction power. Brake power is calculated from standard 

mechanical formulae and friction power is measured by 

Wilson line method, by using the mathematical formula 

indicated power is measured and finally mechanical 

efficiency is calculated at various loads which is nearer to the 

ANN values as shown in Figure 7(d), the error deviation is 

negligible as shown in Figure 10(d), Mechanical efficiency is 

almost remains constant for all manifold designs as shown in 

Figure 10(d). 
 

Atmospheric air head,  
 

(ha) = hw×
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎𝑖𝑟
 (4) 

 

Theoretical volume flow rate of air, 
 

(Qthe) = 
𝜋×𝑑2×𝐿×𝑁

4×60×2
𝑚3/𝑠 (5) 

 

where,  

d - 0.08 m; 

L - Stroke length 0.11 m;  

N - Speed in RPM 

Mechanical Efficiency, 

 

ηmech= 
B.P

I.P
× 100% (6) 

 

3.1.2 Engine emissions 

Incomplete combustion leads to emission of carbon 

monoxide. It is observed that with increasing load the 

emission of carbon monoxide also increases because of the 

high fuel injection during the delay in ignition, this results in 

incomplete combustion. It is depicted in Figure 8(b), for the 

same input data the CO emissions are less for ANN, further 

error deviation is Positive as shown in Figure 9(e). 

Emission of hydrocarbons takes place due to incomplete 

combustion, or high penetration of the injected spray of fuel, 

or flame quenching on the walls of the low-temperature 

cylinder and cylinder walls being wet during the time of 

ignition delay. Hence, hydrocarbon emission increases 

slightly with the load of the engine increases with two factors 

working against one another; higher injected fuel raises the 

incomplete combustion and on the same time, the inside 

temperature also increases inside the cylinder that also 

reduces quenching. This is depicted from Figure 8(a). HC 

emissions are more in Normal manifold and error deviation is 

Positive as shown in Figure 9(f). 

Diesel is made from hydrogen and carbon atoms. At the 

time of the combustion, the carbon is combined with the 

oxygen present in the air for producing carbon dioxide, 

where the proper mixture of fuel and air decreases the 

formation of Carbon dioxide. It can be observed from the 

Figure 8(c). CO2 emissions are more in Normal manifold and 

error deviation is positive as shown in Figure 9(g). The 

quality of oxygen indicates the effective utilization of air 

which indicates the proper fuel and air mixing, in case 

oxygen content is more in exhaust is an indication of 

reduction in CO, HC emissions. From Figure 8(d), it shows 

that the quantity of oxygen from exhaust is less for normal 

manifold and the error deviation is negative as shown in 

Figure 9(h). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 7. Comparison of performance parameters between trained data and experimental data 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 8. Comparison of Various emissions between trained values and Experimental values 
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(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure 9. Error deviation between normal manifold and trained values 
 

The error deviation is more in normal manifold in order to 

optimize the error deviation manifold designs are changed as 

shown in Figure 5. Further experimentation is done on the 

engine by varying manifold design and compared with ANN 

values. 
 

3.2 Comparison of ANN values with threaded manifold, 

manifold with nozzle 

 

Under this topic the application of proposed method was 

applied by changing the designs of intake manifolds which 

provides swirl motion to the air at inlet by enhancing the 

proper fuel and air mixing which enhances the efficiency and 

helps reduction of emissions. After experimentation manifold 

with internal threads are performing far better than manifold 

and normal manifold where convergent nozzle performance 

is poor by comparing with normal manifold, ANN values and 

Threaded manifold as shown in Figure 10, which is due to 

reduce in the area of cross section at the inlet creating 

restriction to the air passage as a result sufficient amount of 

air will not enter inside the engine which leads to 

consumption of more fuel directly results in decrease in 

efficiency as observed in Figure 10(a), (c). This also 

increases emissions due to improper combustion as shown in 

Figure 11. Due to inadequate supply of air total fuel 

consumption increases which in turn reduces brake thermal 

efficiency and also reduces volumetric efficiency as shown in 

Figure 10(b), (c). Whereas mechanical efficiency remains 

almost same in all the manifold designs as shown in Figure 

10(d). The reason for that is engine is operated at rated 

speeds and the variation of load in all the designs is same 

therefore brake power and friction power remain constant for 

a given set of conditions as a result mechanical efficiency 

remains constant, by comparing with ANN values also the 

error deviation is negligible. 

Figure 11(a) depicts Hydrocarbon emission for the tested 

engines with threaded manifold, Nozzle manifold and ANN 

values and this is noticed clearly that threaded manifold 

produces lowest emissions which is due to providing swirl 

motion to the inlet air that helps in correct fuel and air mixing 

by reducing emissions, whereas nozzle manifold has more 

emissions due to restricted flow air so that engine cannot 

obtained required quantity of air which leads to improper 

combustion. Similarly, Figure 11(b), (c), (d), shows the HC, 

CO2 and O2 emissions in these cases also threaded manifolds 

emissions are less because of proper fuel and air mixing, the 

oxygen content in the emissions is more which indicates the 

emissions of HC and CO are less whereas for emissions from 

convergent nozzle is more still it creates swirl motion at entry 

the quantity of air entered is less as shown in the Figure 6. 

The error deviation for threaded manifold is compared with 

trained values as shown in Figure 12. in which error 

deviation is optimized in threaded manifold with the help of 

ANN. For threaded manifold TFC is less so that error 

deviation is negative which indicates fuel consumption is less 

in threaded manifold, whereas error deviation is positive for 

brake thermal efficiency and volumetric efficiency which 

indicates that values obtained from threaded manifold are 

better than ANN trained values, but for mechanical efficiency 

error deviation is negative that can be neglected as error 

deviation is in minimum where as in case of convergent 

nozzle as shown in Figure 10, the performance parameters 

are far less than normal manifold so that it is not compared 

with trained values of ANN. The RMSE values and the MAE 

values for both the TM and CN over ANN is given in Table 2. 

The obtained RMSE values are very less compared to [33, 

34]. 
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Figure 10. Comparison of performance parameters between various manifolds and trained values 
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Figure 11. Comparison of emissions between various manifolds and trained values 
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Figure 12. Error deviation threaded manifold and trained values 

 

Table 2. RMSE and MAE 

 
Parameters ANN vs. TM ANN vs. CN 

Load 0.01 0.03 0.05 0.07 0.09 0.01 0.03 0.05 0.07 0.09 

ROOT MEAN SQUARE ERROR 

BP 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 

TFC 0.37% 0.42% 0.58% 1.04% 1.96% 3.92% 4.46% 4.62% 6.06% 8.82% 

BTE 0.08% 0.66% 0.78% 0.78% 1.94% 0.64% 1.59% 2.25% 3.84% 5.12% 

VE 1.10% 0.86% 0.73% 0.43% 0.24% 4.04% 4.29% 4.41% 4.72% 4.90% 

ME 0.51% 0.49% 0.42% 0.06% 0.43% 0.51% 0.49% 0.42% 0.06% 0.43% 

CO2 0.12% 0.18% 0.18% 0.12% 0.12% 0.98% 0.80% 0.80% 0.86% 0.37% 

CO 0.55% 0.73% 1.96% 2.51% 0.61% 3.12% 3.06% 3.92% 7.41% 4.29% 

HC 0.49% 0.73% 0.73% 0.67% 0.92% 4.41% 2.94% 2.94% 3.00% 3.98% 

O2 0.02% 0.12% 0.10% 0.10% 0.06% 0.26% 0.49% 0.69% 0.51% 0.55% 

Mean Absolute Error 

BP 1.00% 3.00% 5.00% 7.00% 9.00% 0.50% 1.50% 2.50% 3.50% 4.50% 

TFC 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00% 0.01% 0.00% 0.01% 

BTE 2.14% 2.44% 2.60% 3.55% 5.39% 1.96% 2.23% 2.31% 3.03% 4.41% 

VE 0.36% 1.13% 1.52% 2.31% 3.53% 0.32% 0.80% 1.13% 1.92% 2.56% 

ME 2.57% 2.57% 2.57% 2.57% 2.57% 2.02% 2.14% 2.20% 2.36% 2.45% 

CO2 0.51% 0.49% 0.42% 0.06% 0.43% 0.25% 0.24% 0.21% 0.03% 0.21% 

CO 0.55% 0.49% 0.49% 0.49% 0.24% 0.49% 0.40% 0.40% 0.43% 0.18% 

HC 1.84% 1.90% 2.94% 4.96% 2.45% 1.56% 1.53% 1.96% 3.70% 2.14% 

O2 2.45% 1.84% 1.84% 1.84% 2.45% 2.20% 1.47% 1.47% 1.50% 1.99% 

 

 

4. CONCLUSION 

 

ANN was applied for a 4-stroke diesel engine which is 

used to estimate TFC, Brake thermal Efficiency, Volumetric 

efficiency, Mechanical Efficiency, CO, HC, CO2 and O2 

emissions in this study. The input data used in the ANN is 

obtained from experimental data. The results obtained from 

ANN is compared with experimental data in which error 

deviation is more, to reduce error deviation few changes are 

done to engine inlet manifold and experimentation is done. 

By comparing the results, the summary of the results of the 

current work is presented in the following: 

(a) Threaded manifold design is tested on the engine 

which generate swirl for the incoming air, so that proper 

mixing of air and fuel takes place inside the engine which 

reduces fuel consumption thereby increasing thermal 
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efficiency and volumetric efficiency for all the loads at the 

same time reduces emissions considerably when compared 

with normal manifold design and ANN values 

(b) Convergent nozzle manifold design is also tested on 

the engine it also generates swirl for the incoming air but the 

area of cross section reduces at the inlet of the engine which 

causes restriction for air flow due to which sufficient amount 

of oxygen is not present inside the engine increases fuel 

consumption which leads to improper combustion as a result 

emission level increases reducing efficiency of engine. 

(c) The error variation among the ANN model and the 

TM and CN is very less. 

(d) The values of RMSE and MAE among the models 

of ANN and TM, CN is very less and it shows the conformity 

of the model to produce accurate prediction on process 

parameters and emission. 

(e) The emission estimated in the CI engine is observed 

to be in conformity with the emission regulation. 

(f) As a result, the use of ANN helps in improving the 

performance of engine in a sequential approach. 

(g) There is a scope for improving the performance of 

Convergent Nozzle engine by increasing the inlet pressure. 

These will be helpful for increase in efficiency and reduction 

in emissions 
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NOMENCLATURE 

CO2 Carbon Dioxide 

CO Carbon Monoxide 

HC Hydro Carbons 

O2 Oxygen 

ANN Artificial Neural Network 

NM Normal Manifold 

TM Threaded Manifold 

CN Convergent Nozzle 

CI Compression Ignition 

TKE Turbulent Kinetic Energy 

TFC Total Fuel Consumption 

BTH Brake Thermal Efficiency 

VE Volumetric Efficiency 

ME Mechanical Efficiency 
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