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Increasingly innovatory techniques are being developed for the manufacturer of coated 

sheets. Magnetite non-Newtonian fluids have been shown to exhibit stretchable wall slip, 

which arises due to non-adherence of the non-Newtonian fluid to the boundary. Motivated 

by the physical nature of the magnetic non-Newtonian fluid in manufacturing transport 

phenomena, we develop a model to analyze the collective influence of velocity and thermal 

slips, radiative heat flux effects on fluid and heat transport phenomena in magnetic non-

Newtonian fluid flow in a channel with stretchable walls. Governing equations are non-

dimensionalized and solved numerically. Grid independence test has been performed and 

then compared with existing literature in limiting cases. Results are discussed with the aid 

of graphs for the sway of several physical parameters, Casson parameter, Magnetic 

parameter, Thermal radiation parameter on fluid velocity, as well as temperature profiles 

for different cases: No-slip, only first-order slip, and first and second-order slips. 
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1. INTRODUCTION

A fluid whose viscosity varies non-linearly based on applied 

stress or force is known as non-Newtonian. The behavior of 

Newtonian fluids like water can be described exclusively by 

temperature and pressure. However, the physical behavior of 

non-Newtonian fluid depends on the forces acting on it. 

Latterly, the non-Newtonian fluid flows earned a great interest 

and give more prominence to several researchers because of 

its industrial and practical applications such as the food 

industry, pharmaceutical industries, ink-jet pointing, polymer 

processing, blood circulatory system, heat exchangers, 

electronic packaging, and so on. Its importance is also seen in 

enhanced oil recovery, hot rolling, solar collectors, the 

manufacturing process of coated sheets, plastic polymers, 

blood, gum solutions, starch suspensions, wet sand, tomato 

ketchup, and toothpaste. 

One of the essential classes of non-Newtonian fluid flows is 

a Casson fluid model. Chocolate, concentration juices, honey, 

jelly, and tomato sauce, soap are a few examples of the Casson 

fluid. Casson fluid has significant applications in food 

processing, metallurgy, drilling operations, and bio-

engineering operations. Casson [1] was the first investigator 

who introduced the Casson fluid model. Many researchers [2-

7] have deliberated the boundary layer analysis of the Casson

Fluid. Hayat et al. [8] explained the flow of mixed convection

stagnation point of Casson fluid over the stretching sheet and

studied the influence of convective boundary conditions.

Boundary layer flow of a Casson fluid over an exponentially

permeable shrinking sheet has been inspected by Nadeem et al.

[9]. Bhattacharyya et al. [10] have considered the existence of

wall mass transfer on MHD boundary layer flow of non-

Newtonian Casson fluid stretching/shrinking sheet. Nadeem et

al. [11] have considered MHD Casson fluid flow in two lateral

directions past a porous linear stretching sheet. Bhattacharyya 

[12] has examined the boundary layer stagnation-point flow of

Casson fluid and heat transfer over a shrinking/stretching sheet.

Mukhopadhyay [13] has deliberated the heat transfer analysis

of a Casson fluid over a stretching surface in the presence of

suction/injection. Parmanik [14] have studied the heat transfer

of a Casson fluid with the effect of suction/injection on the

exponential stretching surface. Makanda [15] has explained

two-dimensional Casson fluid flow in the existence of a

magnetic field in porous media over a stretching surface. Khan

et al. [16] have discussed the heat effect based on the resistive

force of the electromagnetic origin of MHD Casson fluid flow

over a stretching sheet. Das et al. [17] have considered the

velocity and thermal slip and studied the entropy generation

homogeneous–heterogeneous reaction of Casson fluid over

the stretching sheet. Nagendramma et al. [18] studied the

MHD convective flow of Casson nanofluid from a slandering

surface with Cattaneo-Christove heat flux. Hamid et al. [19]

studied the significance of a uniform magnetic field on Casson

fluid over a stretching sheet and investigated thermal radiation

effects on the dual solution of Casson fluid.

Sometimes no-slip condition at the boundary does not hold 

and hence requires it is replaced by partial slip. Especially no-

slip condition is meager for most non-Newtonian fluids. The 

fluids having the boundary slip have copious applications in 

engineering and technological problems like polishing of 

artificial valves and cavities, fluid flow and heat transfer in 

microflow devices and rarified gas studies, and so on. 

Mahantesh et al. [20] investigated numerically fluid flow over 

a stretching sheet with a second-order slip, and succinctly 

explained that the first order, as well as second-order slip, 

influence the fluid flow. Rosca and Pop [21] discussed the 

fluid flow in a shrinking or stretching sheet with a velocity slip 

of second order. Mansur and Ishak [22] under the various slip 
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boundary conditions have deliberated the MHD boundary 

layer nanofluid flow numerically on stretching/shining sheet. 

Zhu et al. [23] implemented the Homotopy analysis method to 

investigate heat transfer in water-based nanofluid under the 

influence of second-order slip. Hsiao [24] examined the mixed 

convection of heat and mass transfer over a slip boundary-

stretching surface of a nanofluid under the influence of heat 

suction/injection. Shashikumar et al. [25] numerically 

scrutinized the effect of slip velocity of second-order under the 

influence of non-linear thermal radiation. Rosca et al. [26] 

studied numerically flow through the sheet with the second-

order slip. They obtained dual solutions. Balaankireddy et al. 

[27] developed a mathematical model to study first-order slip 

double-diffusive flow of a Casson fluid past an inclined 

stretching surface. They concluded that this model could get 

multiple solutions. Recently, Vishnu Ganesh et al. [28] 

examined numerically the effect of velocity as well as a 

thermal slip of second-order on the convective flow of a 

Newtonian fluid through a stretching surface. Shahid et al. [29] 

studied first order multiple slip effects on MHD buoyant flow 

of nanofluid in a stretching sheet under chemical and thermal 

radiation effect. Hayat et al. [30] studied two dimensional non-

Darcy flow of nanofluid over a curved stretching sheet under 

partial slip effect. Daniel et al. [31] studied the combined 

influence of viscous dissipation, chemical reaction, thermal 

radiation on MHD nanofluid past a stretching sheet under slip 

effect. 

Fluid flow in a channel with stretching walls under the 

influence of heat transfer has attracted many researchers due 

to the diverse range of applications, various fields like 

petroleum supplies, separation process in chemical industries 

and etc. Misra et al. [32] examined the impact of heat transfer 

analytically in a channel with stretching walls and concluded 

that the backflow is observed near the central line of the 

channel. MHD flow and heat transfer of a non-Newtonian 

fluid in a stretching walled channel have been analyzed by 

Misra et al. [33]. They implemented a finite difference scheme 

to obtain numerical results. Ramanamurthy et al. [34] have 

examined the unsteady peristaltic flow of a viscous fluid in the 

2-dimensional curved channel and explained the volumetric 

flow rate and average velocity of fluid particles are same at the 

walls. Ghosh et al. [35] studied heat transfer numerically in a 

channel with stretching walls under the influence of viscous 

and Ohmic dissipation. Sarojamma and Vasundhara [36] 

inscribed an article on hydro-magnetic non-Newtonian fluid 

over a channel with heat and mass transfer. Syed et al. [37] 

interpreted MHD of the flow of water-based nanofluids in a 

non-parallel stretchable channel and numerically discussed the 

results under the effect of various parameters on velocity and 

temperature profiles. Rauf et al. [38] developed a numerical 

model to investigate buoyancy-driven micro nanofluid in a 

stretchable channel under the influence of the magnetic field. 

Raza et al. [39] reported a numerical solution of a nanofluid 

through a channel under the influence of velocity and thermal 

slip effects. Reza et al. [40] investigated velocity and 

temperature slip effects of first order under the influence of 

magnetic field numerically. Kezzar et al. [41] used numerical 

and semi analytical method to study the combined influence of 

radiation and Hartmann on convective flow of a Fe3O4 

nanofluid in a non-parallel stretchable wall. Zohra et al. [42] 

developed bio-nano transport model to investigate convective 

magnetohydrodynamic flow of a micropolar fluid under 

double diffusion effect with first order slip conditions.  

With the available literature as mentioned above it is keenly 

observed that researchers have not considered second order 

velocity and thermal slip effects to study the fluid 

characteristics in fully developed flow channels with 

stretchable walls even it is more prominent phenomena in 

industrial and engineering fields like heat transfer flow in 

micro flow devices, rarified gas studies, polishing of artificial 

valves and cavities and etc. To fill this gap authors aimed to 

investigate the influence of second order velocity and thermal 

slip effects on MHD flow of non-Newtonian fluid in a channel 

with stretchable walls. 

 

 

2. MODEL OF THE PROBLEM 

 

Consider steady two dimensional viscous incompressible 

laminar flow of Casson fluid, which is electrically conducted 

in a channel bounded by stretching walls. Model of the 

problem shown in Figure 1, x-axis is along the direction of 

flow, and the y-axis is perpendicular to the channel. The upper 

and lower walls of the channel are designated at y a=   and 

 

 
 

Figure 1. Physical configuration and coordinate system 

 

Governing equations for the fluid model and magnetic field 

are:  
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
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t
 

 
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 (2) 

 

Maxwell equations are: 

 

0, 0, 0B B E =  =  =  (3) 

 

Ohm's law is: 

 

( )J E V B= +   (4) 

 

where, V is the fluid velocity, ρ is fluid density, B  is the total 

magnetic field and 0B B b= + , b is the induced magnetic 

field which is negligible and f  is the body force 

 

( )( ) 2
0 0 0f J B V B B B u =  =   = −  (5) 

 

The rheological model of Casson [1] fluid is defined as 
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where, τij denotes Cauchy stress tensor, μB is dynamic viscosity 

of the Casson fluid, π=eiej is the square of components of the 

strain rate, py denotes yield stress of the fluid and πc is the 

critical value of π. 

Using (5) and (6), governing equations becomes [43, 44]: 
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Boundary conditions 
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(10) 

 

where, b is constant. For positive and negative value of b 

stands for stretching and shrinking of the channel walls and for 

b=0 stands for flat walls. This problem is restricted to 

stretching walls of the channel. 

Governing equation for energy is: 
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with associated boundary conditions 
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Here, 
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is the radiative heat flux which is used according to Rosseland 

approximation. Where σ* is the Stefen-Boltzman constant and 

k* is the mean absorption coefficient, as we are assuming the 

temperature difference is much small within the flow region, 

T4 can be written as a first degree polynomial in temperature. 

By Taylor’s series T4 can be expanded about Tr, is the 

reference temperature of the fluid and neglecting higher order 

terms, we get 

 
4 3 44 3r rT T T T −  (14) 

 

Introducing the similarity transformations  
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to non-dimensionalize the Eqns. (7) to (12), by making use of 

(13) and (14) we get 
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and conditions are: 
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where, 𝛽 = 𝜇𝐵
√2𝜋𝑐

𝑝𝑦
 is the Casson parameter, 𝑅𝑒 =

𝑎2𝑏

𝜐
 is the 

Reynolds number, 𝑅𝑑 =
16𝜎∗𝑇∞

3

3𝑘𝑘∗
is the Radiation parameter, 

𝑆𝑐 =
𝜐

𝐷
 is the Schmidt number, 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
 is the Prandtl number, 

𝑀2 =
𝜎

𝜇
𝐵0

2𝑎2  is the magnetic parameter, 𝜆 =
𝑣𝑤

𝑎𝑏
 is the 

suction or injection parameter, 𝜆1 =
𝑠1

𝑎
, 𝜆2 =

𝑠2

𝑎2
 are first and 

second order hydrodynamic slip conditions respectively along 

walls and 𝛿1 =
𝑠3

𝑎
, 𝛿2 =

𝑠4

𝑎2
 are first and second order thermal 

slip conditions respectively along walls 

The quantities of the physical interest are Skin friction and 

Nusselt number which are given by respectively  
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In non-dimensional skin friction coefficient and rate of heat 

transfer (Nusselt number) are given by  
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2.1 Numerical procedure 

 

A set of Eqns. (16) and (17) with boundary conditions (18) 

are non-linear coupled differential equations, and it isn't easy 

to solve analytically. Therefore, numerical technique, namely, 

shooting technique [45, 46], is used as follows. First rewrite 

Eqns. (16) and (17) as a system of first-order equations by 

assuming 𝑓 = 𝑓(1), 𝑓 ′ = 𝑓(2), 𝑓″ = 𝑓(3), 𝑓‴ = 𝑓(4), 𝜃 =
𝑓(5), 𝜃 ′ = 𝑓(6)

 
then 
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 (21) 

 

Eq. (21) is a boundary value problem in vector form 

[f(1),f(2),f(3),f(4),f(5),f(6)] with initial conditions at 

f(1),f(2)and f(5). Integrate eqn. (21) using Runge Kutta 4th 

order by choosing initial conditions which are not provided in 

(18) are assumed as f(3)(-1)=0.1, f(4)(-1)=0.2, and f(6)(-1)=0.3. 

The obtained results at the other end are compared with given 

results (Eq. (18)). As observed more difference, Newton 

Raphson method is used to identify and suitable initial 

conditions instead of choosing randomly and then integrated 

Eq. (21).  

 

2.2 Grid independence test 

 

To verify the numerical technique, grid independence test 

has been performed. Step size Δη is chosen as 0.1, 0.01, 0.001, 

and 0.0001 and calculated skin friction and Nusselt number at 

the lower wall, as shown in Table 1. Table 1 shows that at 

Δη=0.001 values are getting 10-10 accuracy, and therefore same 

Δη value is used throughout calculations. 

 

Table 1. Skin friction and Nusselt number at lower wall for 

different Δη values 

 

Δη f’’(-1) θ'(-1) 

0.1 -2.792767519138022 0.491380402584558 

0.01 -2.792762766914234 0.491380812889240 

0.001 -2.792762762143308 0.491380813262013 

0.0001 -2.792741225653067 0.491378771808718 

0.00001 -2.792741225653959 0.491378771808828 

 

2.3 Code validation 

 

To validate the present results compared with published 

results by Reza et al. [40] for M2=0.5, Re=2, Pr=6.2, λ1=0.1, 

λ2=0.2, λ=0.5 without radiation parameter and second order 

slips, Ashraf et al. [43] for M2=200, Re=50, Pr=2.5 without 

slip conditions, radiation, and suction parameter as shown in 

Table 2. From this Table 2 we conclude that present results are 

correlated with existing results in limiting cases. 

 

Table 2. Comparison results of skin friction and Nusselt 

number along lower wall 

 
Present results Ashraf et al. [43] Reza et al. [40] 

f″ (-1) θ' (-1) f″(-1) θ'(-1) f″(-1) θ'(-1) 

-25.0635 - 2.3717 -19.9973 -2.1652 --- --- 

-3.4412 -2.8153 --- --- -3.49188 -2.8161 

 

 

3. RESULTS AND DISCUSSIONS 

 

The present study has been conducted to analyze the 

depiction of the flow behavior of hydromagnetic Casson fluid 

in a channel with stretching walls under the influence of 

second order velocity as well as thermal slips conditions. 

Results for fluid velocity as well as temperature profiles are 

presented graphically in Figures 2 to 6 for different cases, 

Case-1: no slip (λ1=δ1=λ2=δ2=0), Case-2: only first order slip 

(λ1=δ1=0.1, λ2=δ2=0) and Case-3: both first and second order 

slips (λ1=δ1=λ2=δ2=0.1) for various physical parameters 

namely Casson fluid parameter (β), Magnetic parameter (M2) 

and thermal radiation parameter (Rd) and skin friction and 

Nusselt number results are reported in tabular form as well. 

Negative, zero, and positive values of the parameter λ 

corresponds to injection, no cross flow and suction over the 

lower wall. The sway of different sundry physical parameters 

like Casson parameter(β), Magnetic parameter (M) and 

Radiation parameter (Rd) for velocity and temperature profiles 

on sundry cases has been discussed in this section. 

 
(a) λ< 0 

 
(b) λ =0 
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(c) λ> 0 

 

Figure 2. Velocity profile for Casson parameter with Re = 1, 

Rd =1, M2 = 1, Pr = 0.6 on different cases: Case1: no slip 

(Black), Case2: only first order slips (Red) and Case3: both 

first and second order slips (Blue) 

 

Figure 2 and 3 portrayed to discuss the influence of the 

Casson parameter on velocity and temperature profiles. 

Casson parameter 𝛽 = 𝜇
√2𝜋𝑐

𝑝𝑦
 means β proportional to the 

ratio of dynamic viscosity and yield stress of the fluid. 

Increasing β values implies either an increase in dynamic 

viscosity or reduction in yield stress of the fluid. It leads to 

enhance internal fluid resistance, and therefore, the fluid 

velocity enhanced near the stretched walls in all the three cases 

and reduced in the central region of the channel. It is also 

observed from this Figure 2 that drastic changes in fluid 

velocity for first and second order slips compare to no slip. It 

is also noted that an increase in λ leads to retards the fluid 

velocity. As Casson parameter β appears in momentum 

equation, fluid velocity increases in all the cases and therefore 

transfer of heat between fluid particles in the channel is less. 

Hence fluid temperature decreases markedly. Thus for all the 

three cases, an increase in β, depreciation of temperature is 

observed in the first half of the channel, and opposite results 

have been noted that is an enhancement of fluid temperature 

in the second half of the channel. 

The impact of the magnetic parameter (M) is demonstrated 

in Figures 4 and 5. The magnetic parameter 

𝑀2 =
𝜎

𝜇
𝐵0

2𝑎2 means ratio of magnetic strength and dynamic 

viscosity of the fluid. As M augments that is the strength of the 

magnetic field dominates the dynamic viscosity of the fluid, 

therefore, velocity of fluid enhances near the walls, and 

opposite results are noticed in the mid-region of the channel 

for the cases of no slip and first order slips. For second order 

slip, different behavior is noted in fluid velocity that is too 

opposite results of the fluid velocity over the channel has been 

observed from Figure 4. The fluid velocity and temperature get 

reduced slightly in the first half of the channel and enhanced 

in the second half of the channel for larger values of body force 

like magnetic force (M) for no slip and first order slip which 

is caused by no opposing force and less opposing force along 

the walls. But for second order slip cases opposing force on 

the fluid and temperature is more along the stretchable walls. 

Therefore, throughout the channel fluid temperature increased 

enormously with increase in Magnetic parameter(M) as shown 

in Figure 5. 
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Figure 3. Temperature profile for Casson parameter with Re 

= 1, Rd =1, M2 = 1, Pr = 0.6 on different cases: Case1: no 

slip (Black), Case2: only first order slips (Red) and Case3: 

both first and second order slips (Blue) 
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Figure 4. Velocity profile for Magnetic parameter with 

Re=1, Rd=1, β=1, Pr=0.6 on different cases: Case1: no slip 

(Black), Case2: only first order slips (Red) and Case3: both 

first and second order slips (Blue) 
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Figure 5. Temperature profile for Magnetic parameter with 

Re = 1, Rd =1, β= 1, Pr = 0.6 on different cases: Case1: no 

slip (Black), Case2: only first order slips (Red) and Case3: 

both first and second order slips (Blue) 

 

Figure 6 displays the impact of the radiation parameter (Rd) 

on the temperature profiles. It is worth to mention that Rd 

enhances the heat transfer through the emission of internal 

energy, so temperature profiles also enhance the entire channel. 

As Rd improves, different behavior is observed on the 

temperature profile for λ<0, λ=0 and λ>0 for different three 

cases. An increase in Rd accelerates the fluid temperature for 

the case of second order slip for λ<0, λ=0 and λ>0 due to more 

heat transfer between fluid particles in the channel caused by 

the decrement of fluid velocity. The fluid temperature 

produces opposite results for λ<0, and λ>0 in the case of no 

slip and first order slips. That is fluid temperature is decreased 

for λ<0 and increased for λ > 0 throughout the channel. But for 

λ=0, an increase in Rd fluid temperature gets increased over 

first and decreased over the second half of the channel, as 

shown in Figure 6.  

Skin friction and rate of heat transfer (Nusselt number) over 

the walls for λ<0, λ=0 and λ>0 for different three cases have 

been reported in Tables 3 to 5. For λ<0, λ=0 and λ>0, as β 

increases the skin friction coefficient increases at the lower 

wall and decreases at the upper wall for no slip and first order 

slip cases due to influence of less viscosity. In the case of 

second order slip for λ=0 and λ>0, the skin friction coefficient 

increases for small values of β and decreases for larger values 

of β due to more opposing force and yield stress of the fluid. 

Therefore Nu increases with increment in β at the both the 

walls for first and second order slip. but for no slip effect, Nu 

increases at the lower wall and decreases at the upper wall for 

λ<0 due to increment of the amount of fluid caused by 

injecting fluid. The exactly opposite trend is noted in no slip 

case for λ>0 due to decrement of the amount of the fluid caused 

by suctioning the fluid. 

For no slip condition as M augments. skin friction 

coefficient increases at the lower wall and decreases at the 

upper wall in all the cases for λ<0, λ=0 and λ>0. In the case of 

first order slip as M increases skin friction coefficient decrease 

at both the walls, but for first and second order slip cases it 

increases at the lower wall and decreases at the upper wall due 

to less influence of magnetic field dominated by the opposing 

force. For λ<0, Nusselt number increase at both walls. For no 

slip and first order as well as second order slip, Nu decrease at 

the lower wall and increase at the upper wall. Similar behavior 

is observed for λ=0 and λ>0.  

822



 

 
(a) λ< 0 

 
(b) λ =0 

 
(c) λ> 0 

 

Figure 6. Temperature profile for Radiation parameter with 

Re = 1, M2 = 1, β= 1, Pr = 0.6 on different cases: Case1: no 

slip (Black), Case2: only first order slips (Red) and Case3: 

both first and second order slips (Blue) 

 

As Rd improves for λ<0, the heat transfer coefficient 

increases at the lower wall and decreases at the upper wall in 

the case of no slip and first order slip cases. As discussed 

earlier for second order slip that is more opposing force on 

fluid flow and temperature, Nu increases at both the walls due 

to more thermal radiation. For λ=0, Nu decrease at both the 

walls in no slip and first slip cases. But for second slip, Nu 

decreases at the lower wall and increases at the upper wall. For 

λ>0, Nu decreases at the lower wall and increases at the upper 

wall for all three cases. 

Table 3. Skin friction and Nusselt number for λ<0 

 

No Slip 

β M Rd f″ (-1) f″ (1) θ'(-1) θ'(1) 

0.1 1 1 -29.4993 29.6793 0.3298 0.8916 

0.3   -11.4990 11.6792 0.3318 0.8893 

0.9   -5.4985 5.6790 0.3353 0.8852 

0.5 1 1 -7.8988 8.0791 0.3332 0.8876 

 2  -7.3271 7.5214 0.3365 0.8938 

 3  -6.2833 6.5116 0.3430 0.9049 

0.5 1 0.5 -7.8988 8.0791 0.2840 1.0486 

  1.0 -7.8988 8.0791 0.3332 0.8876 

  2.0 -7.8988 8.0791 0.3860 0.7423 

First Order Slip 

0.1 1 1 -6.8879 6.9082 0.2414 0.6532 

0.3   -5.0306 5.0863 0.2568 0.6873 

0.9   -3.3914 3.4841 0.2724 0.7160 

0.5 1 1 -4.1859 4.2602 0.2645 0.7024 

 2  -4.0138 4.1041 0.2678 0.7072 

 3  -3.6602 3.7996 0.2758 0.7154 

0.5 1 0.5 -4.1859 4.2602 0.2162 0.7952 

  1.0 -4.1859 4.2602 0.2645 0.7024 

  2.0 -4.1859 4.2602 0.3202 0.6140 

Second order slip 

0.1 1 1 -10.1462 3.3218 0.4098 0.3844 

0.3   -6.3509 3.5977 0.4443 0.3922 

0.9   -3.8848 2.9134 0.4157 0.4701 

0.5 1 1 -5.0112 3.3242 0.4347 0.4254 

 2  -4.0502 3.4808 0.3650 0.5139 

 3  -3.8968 3.9875 0.2147 0.8102 

0.5 1 0.5 -5.0112 3.3242 0.4278 0.4157 

  1.0 -5.0112 3.3242 0.4347 0.4254 

  2.0 -5.0112 3.3242 0.4414 0.4351 

 

Table 4. Skin friction and Nusselt number for λ=0 

 

No Slip 

β M Rd f″ (-1) f″ (1) θ'(-1) θ'(1) 

0.1 1 1 -32.8852 32.8852 0.6817 0.6817 

0.3   -12.8844 12.8844 0.6822 0.6822 

0.9   -6.2164 6.2164 0.6831 0.6831 

0.5 1 1 -8.8838 8.8838 0.6825 0.6825 

 2  -8.2531 8.2531 0.6883 0.6883 

 3  -7.1052 7.1052 0.6994 0.6994 

0.5 1 0.5 -8.8838 8.8838 0.7491 0.7491 

  1.0 -8.8838 8.8838 0.6825 0.6825 

  2.0 -8.8838 8.8838 0.6186 0.6186 

First Order Slip 

0.1 1 1 -7.6646 7.6646 0.4873 0.4873 

0.3   -5.6210 5.6210 0.5168 0.5168 

0.9   -3.8209 3.8209 0.5437 0.5437 

0.5 1 1 -4.6931 4.6931 0.5305 0.5305 

 2  -4.5099 4.5099 0.5357 0.5357 

 3  -4.1420 4.1420 0.5462 0.5462 

0.5 1 0.5 -4.6931 4.6931 0.5567 0.5567 

  1.0 -4.6931 4.6931 0.5305 0.5305 

  2.0 -4.6931 4.6931 0.5047 0.5047 

Second order slip 

0.1 1 1 -11.3403 3.6983 0.8007 0.2447 

0.3   -7.1800 4.0156 0.8669 0.2475 

0.9   -4.4589 3.2435 0.8238 0.3147 

0.5 1 1 -5.7053 3.7090 0.8542 0.2750 
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 2  -4.6118 3.8804 0.7303 0.3586 

 3  -4.5135 4.4442 0.4393 0.6785 

0.5 1 0.5 -5.7053 3.7090 1.0083 0.2224 

  1.0 -5.7053 3.7090 0.8542 0.2750 

  2.0 -5.7053 3.7090 0.7078 0.3325 

 

Table 5. Skin friction and Nusselt number forλ>0 

 
No Slip 

β M Rd f″ (-1) f″ (1) θ'(-1) θ'(1) 

0.1 1 1 -36.2937 36.0727 1.2656 0.4688 

0.3   -14.2937 14.0710 1.2615 0.4722 

0.9   -6.9603 6.7348 1.2541 0.4784 

0.5 1 1 -9.8937 9.6698 1.2584 0.4748 

 2  -9.2053 8.9636 1.2671 0.4798 

 3  -7.9574 7.6722 1.2827 0.4899 

0.5 1 0.5 -9.8937 9.6698 1.6286 0.4439 

  1.0 -9.8937 9.6698 1.2584 0.4748 

  2.0 -9.8937 9.6698 0.9474 0.4946 

First Order Slip 

0.1 1 1 -8.4437 8.4187 0.8813 0.3261 

0.3   -6.2183 6.1494 0.9292 0.3484 

0.9   -4.2632 4.1472 0.9681 0.3714 

0.5 1 1 -5.2100 5.1176 0.9499 0.3597 

 2  -5.0177 4.9050 0.9562 0.3648 

 3  -4.6426 4.4666 0.9663 0.3770 

0.5 1 0.5 -5.2100 5.1176 1.1682 0.3200 

  1.0 -5.2100 5.1176 0.9499 0.3597 

  2.0 -5.2100 5.1176 0.7569 0.3962 

Second order slip 

0.1 1 1 -12.5493 4.0764 1.4976 0.1489 

0.3   -8.0414 4.4377 1.6206 0.1494 

0.9   -5.0767 3.5757 1.5653 0.2020 

0.5 1 1 -6.4381 4.0977 1.6086 0.1701 

 2  -5.2041 4.2830 1.3998 0.2405 

 3  -5.1792 4.9034 0.8711 0.5583 

0.5 1 0.5 -6.4381 4.0977 2.2691 0.1135 

  1.0 -6.4381 4.0977 1.6086 0.1701 

  2.0 -6.4381 4.0977 1.1076 0.2477 

 

 

4. CONCLUSIONS 

 

In this article, a mathematical model has been developed to 

analyze multiple slip effects on MHD Casson fluid in a 

channel with stretchable walls. The governing non-linear 

partial differential equations are transformed into ordinary 

differential equations by using suitable transformations and 

then solved numerically by the Runge-Kutta shooting method. 

Main conclusions of the present study are: 

• An improvement in β enhances the velocity of the fluid 

near the walls, but the reverse trend is noted in the central 

region of the channel for all three cases no slip, first order 

and second order slip. It is also noted that an increase in 

 , velocity of fluid decelerates in the entire channel. As 

β increases, the fluid temperature decline in the first half 

and improves in the second half of the channel for all the 

cases. 

• An improvement in M causes the reduction in velocity of 

fluid in first half and enhancement in second half of the 

channel for the second order slip effects. 

• As Rd enhances the temperature of fluid for λ<0, λ=0 and 

λ>0 improve in the case of second order slip but opposite 

trend is noted for λ<0 and λ>0 for no slip and first order 

slip cases. 

• As Rd improves for λ<0 and λ>0 Nusselt number 

increases at lower wall and decreases at upper wall in all 

three cases. For λ=0, Nu will decrease at lower wall for 

no slip and first order slip but for second slip it decreases 

at lower wall and increases at upper wall. 

• As M and β enhances, the skin friction coefficient 

increases at lower wall and decreases at upper wall in no 

slip and first slip cases but it improves at both the walls 

in second slip case for λ<0, λ=0 and λ>0. 
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NOMENCLATURE 

 

V fluid velocity 

B  total magnetic field 

b  magnetic field 

f force function 

u,v velocity component along x- and y- direction 

v kinematic viscosity 

σ electrical conductivity 

Bo magnetic field strength 

μB dynamic viscosity of the Casson fluid 

τij Cauchy stress tensor 

Py yield stress of the fluid 

πc critical value of π 

Re Reynolds number 

Rd Radiation parameter 

Sc Schmidt number 

Pr Prandtl number 

M2 magnetic parameter 

λ1 first order hydrodynamic slip condition along 

walls 

λ2 second order hydrodynamic slip condition along 

walls 

δ1 first order thermal slip condition along walls 

δ2 second order thermal slip condition along walls 

Cf skin friction coefficient 

Nu nusselt number 

T temperature 

T1 first order temperature slip condition along walls 

T2 second order temperature slip condition along 

walls 

C1 first order concentration slip condition along walls 

C2 second order concentration slip condition along 

walls 

qw heat flux 

τw skin shear stress on the wall 

C casson fluid concentration 

a,b constants 

T∞ temperature far away from the wall 

σ* Stefan-Boltzmann coefficient 

k* mean absorption coefficient 

D mass diffusivity 

Cp specific heat coefficient 

k thermal conductivity 

eij (i,j) th component of deformation rate 

 

Greek symbols 

 

μ kinematic viscosity of the fluid 

β casson fluid parameter 

θ dimensionless temperature 

φ dimensionless concentration 

η dimensionless variable 

π square of components of strain rate 

ρ fluid density 

 

826




