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 The productivity of coalbed methane (CBM) depends heavily on the heat environment, and 

directly reflects the quality of the well. Following the theories of phase space 

reconstruction and Bayesian evidence framework, this paper puts forward a Bayes-least 

squares-support vector machine (Bayes-LS-SVM) model for the prediction of energy-

efficient productivity of CBM under Bayesian evidence network based on chaotic time 

series. The energy-efficient productivity stands for the gas and water production of CBM 

wells at a low energy consumption, despite the disturbance from the heat environment. The 

proposed model avoids the local optimum trap of backpropagation neural network 

(BPNN), and overcomes the main defects of the SVM: high time consumption of parameter 

determination, and proneness to overfitting. In our model, the model parameters are 

optimized through three-layer Bayesian evidence inference, and the input vector for 

prediction is selected adaptively. In this way, the model construction is not too empirical, 

and the constructed model is highly adaptive. Then, the theory on phase space 

reconstruction was applied to investigate the chaotic property of the time series on CBM 

production, and the Bayes-LS-SVM was adopted to predict the time series after phase 

space reconstruction, in comparison with neural network prediction methods like SVM and 

BPNN. Experimental results show that the proposed model boast quick computing, 

accurate fitting, flexible structure, and strong generalization ability. 
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1. INTRODUCTION 

 

Energy-efficient productivity stands for the gas and water 

production of coalbed methane (CBM) wells at a low energy 

consumption, despite the disturbance from the heat 

environment. It is an important indicator of the quality of a 

CBM well. To develop CBM field with a high energy 

efficiency, it is an urgent issue to predict Energy-efficient 

CBM productivity accurately. The mining of CBM is an 

extremely complex system. The gas and water productions of 

a CBM well are affected by multiple factors, which are 

sometimes hard to observe or obtain. This severely limits the 

application of reservoir simulation technology. As a result, it 

is highly practical to build an effective energy-efficient CBM 

productivity prediction model that facilitates CBM exploration 

and development. 

In the field of energy-efficient CBM productivity prediction, 

one of the hot topics is to set up a mathematical prediction 

model after establishing the nonlinear functional relationship 

between input and output data through intelligent calculation 

[1, 2]. Based on modern theories of mathematical statistics, 

Yang and Qin [3] introduced grey system and time series 

analysis into energy-efficient CBM productivity prediction, 

and created a stochastic dynamic prediction model for energy-

efficient CBM productivity. Application examples proved that 

the stochastic dynamic model offers a novel and effective way 

to predict energy-efficient CBM productivity. Jiang et al. [4], 

Wu et al. [5] integrated the merits of fuzzy comprehensive 

evaluation (FCE) and backpropagation neural network 

(BPNN); the former was adopted to construct the input matrix 

of the neural network, and the latter was employed to predict 

the productivity of the gas well. Drawing on modern theories 

on artificial intelligence and mathematical statistics, Lyu et al. 

[6] established a time series BPNN model and a monthly 

production-cumulative production ratio model for fitting and 

predicting the dynamic productivity of CBM wells, and proved 

the effectiveness of these models in the fitting and prediction 

of CBM well productivity. 

Based on chaotic time series, this paper proposes an energy-

efficient CBM productivity prediction model and its algorithm, 

that is, the least squares-support vector machine (LS-SVM) 

under the Bayesian evidence framework. Compared with the 

traditional learning method of neural network, the LS-SVM 

has multiple advantages, namely, minimizing structural risk, 

approximating the global optimum of any function, and fast 

solving speed. However, the SVM model takes a long time to 

determine model parameters, and faces a high risk of over-

fitting. To optimize the parameters, improve efficiency, and 

guarantee fitting accuracy, this paper searches for the optimal 

parameters of the SVM model through the three-layer 

Bayesian evidence inference. The LS-SVM under the 

Bayesian framework (Bayes-LS-SVM) could achieve accurate 

prediction in a timely manner. Experimental results show that 

the proposed Bayes-LS-SVM model boast quick computing, 
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accurate fitting, flexible structure, and strong generalization 

ability, opening a new way to predict energy-efficient CBM 

productivity. 

 

 

2. PHASE SPACE RECONSTRUCTION OF CHAOTIC 

TIME SERIES 

 

In the 1980s, Packard, Lekscha and Donner [7], Jokar et al., 

[8] proposed the phase space reconstruction theory, which 

defines the phase space as a geometric space that determines 

the phase, i.e., the state of a system at a certain time. The main 

idea of this theory is as follows: In a dynamic system, the 

change of any component depends on its closely related 

components. Instead of being isolated, every component in the 

system contains the evolution information of other 

components. The phase space reconstruction of time series is 

grounded on the fact that, a univariate time series 

comprehensively reflects the interaction between many 

physical factors, and carries the traces of all variables. To fully 

reveal the embedded information, the time series should be 

expanded to the three-dimensional or higher-dimensional 

phase space [9, 10]. 

Let x={xi=1,2,…,N} be the time series of a component in a 

system. Then, the state vector reconstructed at a point in the 

phase space can be expressed as: 
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where, M=N-(m-1)t is the number of points in the 

reconstructed phase space; m and t are the embedding 

dimension and time delay of the system, respectively. Takens 

highlighted the importance of determining the values of m and 

t. There are two opposite views on the selection of the two 

parameters: Some scholars held that the two parameters are not 

correlated, i.e., m and t need to be selected independently; 

some believed that m is correlated with t, i.e., the selections of 

m and t are mutually dependent, and the two parameters could 

be calculated simultaneously by time window method or C-C 

method. Here, the C-C method is selected to determine the m 

and t values [11, 12]. 
 

 

3. PRINCIPLE OF BAYES-LS-SVM  

 

3.1 LS-SVM 

 

Facing large sample data, the SVM often consume a long 

time and take up a huge memory. To solve these defects, Sun 

et al. [13], Tan et al. [14], Suykens and Vandewalle [15] put 

forward an LS-SVM under equation constraints, using the sum 

of squares for error (SSE) as the loss function. The LS-SVM 

not only reduces the number of undetermined parameters in 

the SVM model, but also lowers the difficulty in parameter 

selection [16-18]. 

According to the structural risk minimization criterion, the 

LS-SVM model for solving the regression function can be 

described by: 
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where, ei is the error between the true value and predicted 

value; γ>0 is the penalty coefficient. 

In the optimization problem, the LS-SVM adopts the 

following Lagrange function: 
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where, αi is the Lagrangian multiplier. 

Finding the partial derivatives of αi, b, ei, and w in formula 

(3), the optimality conditions can be expressed as:  

 

( )
1

1

0

0 0, 1,...

0 , 1,...

0 ( ) 0, 1,...

n

i i

i

n

i

i

i i

i

T

i i i

i

L
w x

w

L
i n

b

L
e i n

e

L
w x b e y i n

 



 




=

=


= → =




= → = =



 = → = =



 = → + + − = =






 (4) 

 

Simplifying formula (4): 
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where, 𝑍 = [𝜑(𝑥1), 𝜑(𝑥2), . . . 𝜑(𝑥𝑛)]
𝑇 ; 𝑦 = [𝑦1, 𝑦2, . . . 𝑦𝑛]

𝑇 ; 

1𝑛 = [1,1. . .1]𝑇; 𝛼 = [𝛼1, 𝛼2, . . . 𝛼𝑛]
𝑇; I is an nn-order unit 

matrix. The kernel function can be defined as: 
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Formula (5) can be rewritten as: 
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The values of a and b can be found by solving formula (7). 

Thus, the prediction function of the LS-SVM can be expressed 

as: 

 

( ) ( )
1
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3.2 Bayesian evidence framework 

 

Since its proposal by MacKay, the Bayesian evidence 

framework has been widely applied in neural networks. The 

main idea of this framework is to maximize the posterior of 

parameter distribution [19, 20]. Generally, the Bayesian 
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evidence framework can be divided into three inference 

criteria. Let H be a model; λ be a regularized parameter; w be 

a k-dimensional parameter vector of the model. Then, the prior 

distribution of w can usually be expressed as [21-24]: 
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where, 

 

( ) ( )( )exp | ,

2

k

w w

T

w

Z E w H d w

E w w

 = −

=


 (10) 

 

3.2.1 Inference criterion 1 

Under this criterion, the posterior of w is inferred by the 

Bayes rule. Let D be a dataset. Then, the following can be 

derived from the Bayes formula: 
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Substituting formula (9) into formula (12), we have 

𝑃(𝑤|𝐷, 𝜆, 𝐻) = 𝑃(𝐷|𝑤,𝐻); 
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Thus, 𝑀(𝑤) = 𝜆𝐸𝑤(𝑤|𝐻) − 𝑙𝑛 𝑃 (𝐷|𝑤,𝐻) ; 𝑍𝑀(𝜆) =

∫ 𝑒𝑥𝑝(−𝑀(𝑤)) 𝑑𝑘𝑤. 

 

3.2.2 Inference criterion 2 

Based on the posterior of λ, the posterior of w is 

approximated by Gaussian distribution: 
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where, 𝐴 = 𝛻2𝑀 is a Hessian matrix. The evidence λ can be 

obtained by integrating w: 
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To obtain λMP, the partial derivative of formula (14) relative to 

λ needs to be set as zero. Then, we have: 

 

2 MP

MP WE =  (15) 

 

where, 𝛾 = 𝑘 − 𝜆𝑡𝑟𝑎𝑐𝑒𝐴−1 is the significance of a parameter. 

 

3.2.3 Inference criterion 3 

Criterion 3 derives the optimal kernel parameters by 

evaluating the pros and cons of different models based on 

posterior probability. According to the Bayes formula, 

𝑃(𝐻|𝐷)∞𝑃(𝐷|𝐻)𝑃(𝐻) . Suppose P(H) obeys a flat 

distribution. Then, P(D|H) satisfies: 
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Through Gaussian approximation of ( | , )P D H , we have: 
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4. BAYES-LS-SVM PREDICTION MODEL 

 

In this paper, the LS-SVM improved under the Bayesian 

evidence framework, that is, the Bayes-LS-SVM, is applied to 

predict energy-efficient CBM productivity, and proved 

feasible and effective in comparison with BPNN and SVM.  

 

4.1 Evaluation metrics 

 

The model accuracy in energy-efficient CBM productivity 

prediction was mainly measured by root mean square error 

(RMSE) and mean squared error (MSE): 
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where, 𝑥𝑖,𝑛  and �̂�𝑖,𝑛  are the true value and predicted value, 

respectively; σ2 is the variance; N is the length of the time 

series. 
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where, N is the total number of predictions [25-27]. 

The RMSE characterizes the degree of dispersion of 

samples. The more accurate the predicted value, the smaller 

the RMSE. The MSE adopts the absolute value of the degree 

of dispersion, so that positive and negative values no longer 

cancel each other. Hence, the MSE provides a more realistic 

depiction of prediction error than the mean error. 

 

4.2 Application verification  
 

The CBM production from December 1, 2007 to September 

21, 2008 and the water production from December 1, 2007 to 

March 14, 2008 of CBM well PZ02 in a mining area were 

taken as the basis for application verification. 
 

4.2.1 Data selection and preprocessing 

A total of 300 gas production data and 105 water production 

data were collected from well PZ02. The first 280 gas 

production data were treated as training samples, and the last 

20 as prediction samples. The first 85 water production data 

were treated as training samples, and the last 20 as prediction 

samples. The selected data carry significant nonlinearity.  

To meet the requirements of relevant functions of the 

prediction model, the extreme value method was selected to 

normalize the collected data. This method does not have any 

specific requirement on the distribution and number of data, or 

other aspect of data information. After normalization by this 

method, the input data were converted into the interval of [0, 
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1]. 

 

4.2.2 Judgment of chaotic property of time series and phase 

space reconstruction 

First, the training samples of gas production data were 

subject to phase space reconstruction and the judgement of the 

chaotic property of time series. By C-C algorithm, the 

embedding dimension m was determined as 4, and the optimal 

delay was derived as t=7 (unit: day) (Figure 1(a)). 

The chaotic property of the time series of gas production 

was judged by the Lyapunov exponent. Here, the maximum 

Lyapunov exponent is calculated by Wolf’s algorithm. To 

maximize the Lyapunov exponent, Wolf et al. identified the 

evolution point (predicted value) of the current point (the 

center point) by limiting both the distance and angle between 

the two points, such that the evolution point must fall on the 

track adjacent to the current point. When Lyapunov exponent 

is selected for prediction, the angle should be limited to ensure 

that the evolution point falls on the track adjacent to the current 

point. Through calculation, the maximum Lyapunov exponent 

was obtained as λ=0.047. Since the exponent is greater than 

zero, the historical data on gas production are chaotic. 

 

     
(a)                                                                                       (b) 

 

Figure 1. The relationship between embedding dimension and time delay in gas production (a) and water production (b) 

 

In Figure 1(a), the first minimum of S appeared at t=7, 

indicating that the optimal delay tau=7. The global minimum 

of Scor was observed at t=21, suggesting that tw=21. Since 

tw=(m-1), it could be obtained that the embedding dimension 

m=4. 

Next, the phase space reconstruction and the judgement of 

the chaotic property were performed on the water production 

training samples. By C-C algorithm, the embedding dimension 

m was determined as 6, and the optimal delay was derived as 

t=6 (Figure 1(b)). Lyapunov exponent is the key indicator of 

whether the time series of water output is chaotic. The 

maximum Lyapunov exponent was derived by Wolf’s 

algorithm as λ=0.023. Since the exponent is greater than zero, 

the historical data on water production are chaotic. 

 

4.2.3 Training and prediction 

Based on the selected initial parameters, the Bayes-LS-

SVM model was trained by the training samples of gas and 

water productions of the CBM well. The radial basis kernel 

function was chosen, owing to its better performance over 

other kennel functions. The regression model was trained in 

three steps: the optimal parameters b and w were inferred on 

the first layer of the Bayesian framework; the regularization 

parameter γ was inferred on the second layer; the optimal 

kernel parameter σ was inferred on the third layer. Through 

trial and error, the optimal parameters of the energy-efficient 

CBM productivity prediction model were obtained as the γ and 

σ making the p(D|H) value reach the maximum. 

Repeated calculations show that, for the gas production 

training samples, the optimal kernel parameter was σ=148.41, 

and the optimal regularization parameter was γ=203.78; for the 

water production training samples, the optimal kernel 

parameter was σ=185.74, and the optimal regularization 

parameter was γ=1.6456. Finally, the trained model was 

applied to predict the test samples, and de-normalize the 

predicted data. The final predicted values are compared with 

the true values in Tables 1 and 2. The prediction curves are 

recorded in Figure 2.  

 

Table 1. The true and predicted gas productions of the CBM well m3/d 

 
Serial 

number 

True 

value 

Predicted 

value 

Relative 

error % 

Serial 

number 

True 

value 

Predicted 

value 

Relative 

error % 

1 1300 1264.71 2.71462 11 913 937.16 2.646221 

2 1155 1130.82 2.09351 12 880 886.76 0.768182 

3 950 997.78 5.029474 13 750 769.59 2.612 

4 1020 997.78 2.17843 14 750 776.93 3.590667 

5 900 904.40 0.488889 15 930 919.90 1.08602 

6 800 822.28 2.785 16 1000 969.05 3.095 

7 860 895.36 4.111628 17 1000 967.94 3.206 

8 900 923.39 2.598889 18 1200 1095.89 8.67583 

9 920 930.75 1.168478 19 1065 1056.92 0.75869 

10 894 912.55 2.074944 20 1100 1078.95 1.91364 
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Table 2. The true and predicted water productions of the CBM well m3/d 

 
Serial 

number 

True 

value 

Predicted 

value 

Relative 

error % 

Serial 

number 

True 

value 

Predicted 

value 

Relative 

error % 

1 0.40 0.4150 3.75 11 0.20 0.2001 0.05 

2 0.60 0.6037 0.616667 12 0.40 0.3740 6.5 

3 0.50 0.5168 3.36 13 0.50 0.4694 6.12 

4 0.40 0.4018 0.45 14 0.30 0.3138 4.6 

5 0.60 0.5874 2.1 15 0.20 0.2069 3.45 

6 0.50 0.4999 0.02 16 0.30 0.2913 2.9 

7 0.30 0.3128 4.266667 17 0.50 0.4914 1.72 

8 0.20 0.2026 1.3 18 0.70 0.7053 0.757143 

9 0.40 0.3805 4.875 19 0.90 0.9106 1.177778 

10 0.30 0.313 4.333333 20 0.80 0.7611 4.8625 

 

As shown in Tables 1 and 2, the gas productions predicted 

by the proposed model were close to the true value of the CBM 

well. The relative error between predicted and true values was 

large only for a very few data. Hence, the Bayes-LS-SVM 

model achieved a good effect. To more intuitively compare 

predicted and true values, the two values were fitted into the 

following figure (Figure 2). As shown in Figure 2, the broken 

lines on the true productivities of the CBM well were almost 

identical to those on the productivities predicted by the Bayes-

LS-SVM, except for very few data points. 

 

     
(a)                                                                                  (b) 

 

Figure 2. The fitted predicted and true values of gas production (a) and water production (b) 

 

4.2.4 Comparative analysis 

 

Table 3. The predicted gas productions of the three models 

 

Serial 

number 

Daily gas 

production (m3) 

BPNN SVM Bayes-LS-SVM 

Predicted 

value (m3) 

Relative error 

(%) 

Predicted 

value (m3) 

Relative error 

(%) 

Predicted 

value (m3) 

Relative error 

(%) 

1 1,300 1,194.84 8.08923 1237.58 4.80154 1264.71 2.71462 

2 1,155 1,203.28 4.180087 1182.75 2.402597 1130.82 2.09351 

3 950 989.04 4.109474 1016.25 6.973684 997.78 5.029474 

4 1,020 949.34 6.92745 990.39 2.90294 997.78 2.17843 

5 900 933.73 3.747778 903.73 0.414444 904.40 0.488889 

6 800 840.07 5.00875 848.62 6.0775 822.28 2.785 

7 860 928.68 7.986047 902.50 4.94186 895.36 4.111628 

8 900 952.81 5.867778 933.63 3.736667 923.39 2.598889 

9 920 970.58 5.497826 928.31 0.903261 930.75 1.168478 

10 894 946.13 5.831096 911.46 1.95302 912.55 2.074944 

11 913 895.72 1.89266 967.35 5.952903 937.16 2.646221 

12 880 925.11 5.126136 885.69 0.646591 886.76 0.768182 

13 750 808.99 7.865333 801.58 6.877333 769.59 2.612 

14 750 843.75 12.5 828.73 10.49733 776.93 3.590667 

15 930 978.84 5.251613 928.06 0.2086 919.90 1.08602 

16 1,000 930.75 6.925 971.36 2.864 969.05 3.095 

17 1,000 948.62 5.138 957.17 4.283 967.94 3.206 

18 1,200 1,098.37 8.46917 1096.29 8.6425 1095.89 8.67583 

19 1,065 1,109.24 4.153991 1032.74 3.02911 1056.92 0.75869 

20 1,100 1,149.21 4.473636 1079.49 1.86455 1078.95 1.91364 
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Table 4. The predicted water productions of the three models 

 

Serial 

number 

Daily water 

production (m3) 

BPNN SVM Bayes-LS-SVM 

Predicted 

value (m3) 

Relative 

error (%) 

Predicted 

value (m3) 

Relative 

error (%) 

Predicted 

value (m3) 

Relative 

error (%) 

1 0.40 0.4153  3.825 0.4176  4.4 0.4150 3.75 

2 0.60 0.6075 1.25 0.6018 0.3 0.6037 0.616667 

3 0.50 0.5324 6.48 0.5146 2.92 0.5168 3.36 

4 0.40 0.4232 5.8 0.4049 1.225 0.4018 0.45 

5 0.60 0.6221 3.683333 0.5921 1.31667 0.5874 2.1 

6 0.50 0.5137 2.74 0.5109 2.18 0.4999 0.02 

7 0.30 0.3191 6.366667 0.3141 4.7 0.3128 4.266667 

8 0.20 0.2283 14.15 0.2061 3.05 0.2026 1.3 

9 0.40 0.4101 2.525 0.4214 5.35 0.3805 4.875 

10 0.30 0.3228 7.6 0.3066 2.2 0.313 4.333333 

11 0.20 0.2071 3.55 0.2298 14.9 0.2001 0.05 

12 0.40 0.4136 3.4 0.4085 2.125 0.3740 6.5 

13 0.50 0.4529 9.42 0.4693 6.14 0.4694 6.12 

14 0.30 0.3124 4.133333 0.3149 4.966667 0.3138 4.6 

15 0.20 0.2473 23.65 0.2320 16 0.2069 3.45 

16 0.30 0.3192 6.4 0.3086 2.866667 0.2913 2.9 

17 0.50 0.5635 12.7 0.4923 1.54 0.4914 1.72 

18 0.70 0.7263 3.757143 0.608 13.1429 0.7053 0.757143 

19 0.90 0.8547 5.03333 0.8876 1.37778 0.9106 1.177778 

20 0.80  0.7831 2.1125  0.7857 1.7875 0.7611 4.8625 

  

To demonstrate its excellence in prediction, the proposed 

Bayes-LS-SVM was compared with SVM prediction model 

and BPNN prediction model. The two contrastive models were 

trained and tested on the same data as our model, using the 

same input and output variables. 

At present, the BPNN is usually optimized by conjugate 

gradient algorithm, variable rate algorithm, additional 

momentum algorithm, Levenberg-Marquardt (LM) algorithm, 

and Gauss-Newton algorithm. Among them, the LM algorithm 

has relatively fast convergence and good robustness. Hence, 

this algorithm was chosen to establish the BPNN model. 

Meanwhile, the SVM model was set up with standard SVM, 

which is superior for nonlinear, small sample and high-

dimensional pattern recognition. The radial basis kernel 

function was selected as the kernel function. Tables 3 and 4 

present the predicted values and relative errors of the three 

models. 

Comparing the predicted gas productions, the BPNN model 

had a large relative error between predicted and true values; 

the SVM model had a relatively small relative error, and better 

prediction performance than BPNN; the Bayes-LS-SVM 

model achieved the highest prediction accuracy, for the 

relative error was very low except for very few predicted 

values. 

From Tables 3 and 4, it can be seen that the Bayes-LS-SVM 

could predict the productivity of the CBM well more 

accurately than BPNN and SVM models, an evidence for its 

advantage in energy-efficient CBM productivity forecast. 

Further, the MSE and RMSE of the three model were 

calculated and compared to confirm which is the most suitable 

method for CBM productivity prediction (Tables 5 and 6). 

 

Table 5. The MSEs and RMSEs of the three models (gas 

production) 

 
Model MSE (%) RMSE (%) 

BPNN 5.9521 6.3571 

SVM 3.9987 4.8646 

Bayes-LS-SVM 2.6798 3.2169 

 

Table 6. The MSEs and RMSEs of the three models (water 

production) 

 
Model MSE (%) RMSE (%) 

BPNN 6.4288 8.23 

SVM 4.6244 6.4581 

Bayes-LS-SVM 2.8605 3.4823 

 

As shown in Tables 5 and 6, on the prediction of gas 

production, BPNN, SVM, and Bayes-LS-SVM had an MSE of 

5.9521%, 3.9987%, and 2.6798%, respectively, and an RMSE 

of 6.3571%, 4.8646%, and 3.2169%, respectively; on the 

prediction of water production, BPNN, SVM, and Bayes-LS-

SVM had an MSE of 6.4288%, 4.6244%, and 2.8605%, 

respectively, and an RMSE of 8.23%, 6.4581%, and 3.4823%, 

respectively. Obviously, Bayes-LS-SVM achieved lower 

prediction errors than the SVM and BPNN. It is obviously 

more suitable for predicting CBM productivity. 

To provide a clear picture of the CBM productivity 

prediction performance of the three models, the predicted 

values of these models are compared with the true gas and 

water productions (Figure 3). 

 

 
(a) 
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Figure 3. The predicted values of the three models on gas 

production (a) and water production (b) 

 

As shown in Figure 3, the predicted values of Bayes-LS-

SVM model agreed well with the true values. The broken lines 

of the predicted values almost overlapped with those on the 

true values. Comparatively, the Bayes-LS-SVM model is 

more suitable for CBM productivity prediction than the other 

models. 

 

 

5. CONCLUSIONS 

 

The traditional BPNN model is susceptible to the local 

optimum trap. Meanwhile, the standard SVM model consumes 

too much time in parameter determination, and tends to face 

the over-fitting problem. To overcome these defects, this paper 

proposes a novel CBM productivity prediction method based 

on chaotic time series and Bayesian evidence framework, and 

verifies the performance of the model through experiments. 

The main conclusions are as follows: 

(1) Following the phase space reconstruction theory, the 

chaotic property of the time series on CBM productivity was 

discussed, and the C-C method was adopted to compute the 

time delay t and embedding dimension m. 

(2) The model parameters were optimized by three-layer 

inference of Bayesian evidence framework. The optimization 

enables the adaptive selection of input variables for prediction, 

reduces the dependence of model construction on experience, 

and improves efficiency and fitting accuracy, making the 

model more adaptive. 

(3) The Bayes-LS-SVM was applied to predict the time 

series after phase space reconstruction, in comparison to 

BPNN and SVM. The results show that the Bayes-LS-SVM 

achieved an MSE of only 2.6798%, and an RMSE of merely 

3.2169% in the forecast of the gas production in a CBM well, 

both of which were smaller than those of BPNN and SVM; 

Bayes-LS-SVM achieved an MSE of only 2.8605%, and an 

RMSE of merely 3.4823%, in the forecast of the gas 

production in a CBM well, both of which were smaller than 

those of BPNN and SVM. The experimental results confirm 

that the predicted values of Bayes-LS-SVM agree well with 

the true values, suggesting that our model is suitable for CBM 

productivity prediction. 
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