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ABSTRACT. The integration of intermittent and volatile wind power poses a huge challenge to 

grid scheduling and operation. The challenge is difficult to tackle as the existing wind power 

forecast methods are faced with low accuracy and poor stability. To solve the problems, this 

paper probes deep into the macro- and micro-variation laws of wind power data sequence, and 

designs a short-term wind power prediction model based on the back-propagation neural 

network (BPNN) corrected by Markov chain. Specifically, the historical wind power data were 

adopted to train the model to the expected accuracy, while the measured data on wind power 

were used for pre-judgment and error correction. The author derived a state transition table of 

the Markov chain by dividing the error state interval, and corrected the BPNN prediction 

results with Markov state transition probability matrix, which eliminates the large error points. 

The experimental results show that the proposed model outperformed the original BPNN 

prediction model in accuracy, indicating that the model is a feasible solution for short and 

medium-term wind power forecast. 

RÉSUMÉ. L'intégration de l'énergie éolienne intermittente et volatile pose un énorme défi pour 

la planification et l'exploitation du réseau. Le défi est difficile à relever car les méthodes de 

prévision de l’énergie éolienne existantes sont confrontées à une faible précision et à une faible 

stabilité. Afin de résoudre ces problèmes, cet article explore en profondeur les lois de macro et 

micro-variations de la séquence de données de l'énergie éolienne et conçoit un modèle de 

prévision de l'énergie éolienne à court terme basé sur le réseau de neurones à rétropropagation 

du gradient (BPNN, le sigle de « back-propagation neural network » en anglais) corrigé par 

la chaîne de Markov. Plus précisément, les données historiques sur l’énergie éolienne ont été 

adoptées pour former le modèle avec la précision attendue, tandis que les données mesurées 

sur l’énergie éolienne ont été utilisées pour le jugement préalable et la correction d’erreur. 

L'auteur a dérivé un tableau de transition d'état de la chaîne de Markov en divisant l'intervalle 

d'état d'erreur et a corrigé les résultats de la prédiction BPNN avec la matrice de probabilité 

de transition d'état de Markov, éliminant ainsi les grands points d'erreur. Les résultats 

expérimentaux montrent que le modèle proposé a surpassé le modèle de prévision BPNN 

originale en termes de précision, indiquant que le modèle est une solution réalisable pour la 

prévision de l'énergie éolienne à court et à moyen terme. 
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1. Introduction 

Along with the rapid development of the world economy, the corresponding 

energy demand has also increased greatly and the traditional fossil energy is facing 

the threat of energy exhaustion. At the same time, climate warming and increasingly 

serious environmental pollution caused by large-scale consumption of traditional 

fossil energy are becoming more and more serious, which poses serious threat to 

ecosystem, social economy and human health. In order to deal with the shortage of 

traditional fossil energy and environmental pollution brought by traditional fossil 

energy, green energy has become the development direction of governments all 

around the world. In China’s “13th Five-year Plan”, the requirements for energy 

security and green production have also been put forward. As a green and renewable 

energy, wind power has been widely applied and developed in the world. With the 

exhaustion of non-renewable fossil fuels such as coal and the increasing pollution to 

the environment, the technology of clean energy generation represented by wind 

power has attracted more and more attention. However, wind power is featured with 

natural volatility, randomness and intermittence, which makes it very difficult to 

dispatch the power grid. Therefore, it is necessary to have accurate wind power 

forecast means to solve the above problems. The accuracy of wind power forecast is 

very vital to the electric power dispatching department and will directly affect the 

amount of power supply to the wind power plant and the reasonable dispatch of wind 

power by the electric power dispatching department, which is of great significance to 

both the enterprises and the electric power department. 

Wind power generation has volatility and intermittence because of the instability 

of wind, which will make it difficult for the power grid to dispatch wind power. At 

present, the important direction to solve this problem is to forecast the wind power 

output during a period of time in the future. The results of the short-term forecast can 

help the power grid to carry out reasonable economic dispatch, unit commitment 

operation and select appropriate opportunity to maintain the draught fan. At present, 

the methods of short-term wind power forecast mainly include random time series 

method, artificial neural network method, Kalman filtering method, support vector 

machine method, and different combinations of these methods. Literature (Fan et al., 

2008) is short-term load forecast method based on wavelet decomposition, fuzzy grey 

clustering and BP neural network. Literature (Xiao et al., 2014) proposes a new power 

prediction model based on discrete time Markov chain theory. In the literature (Liu 

and Huang, 2012), the prediction accuracy of short-term wind power is further 

improved by comparing the first-order and second-order Markov chain models with 

different number of state space and modeling data. Literature (Peng et al., 2011) 

proposes a model based on grey-Markov chain for short-term forecast of wind power, 

analyzes the error transition sequence of grey fitting value and establishes the Markov 

state transition probability matrix. Literature (Shi et al., 2010) proposes a new short-

term wind speed prediction method which utilizes the signal analysis characteristics 
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of wavelet packets and the unsteady data prediction characteristics of the peak Markov 

chain. 

The above research has played a positive role in eliminating the adverse effect of 

random output of wind power plant on the power grid, and has also provided a good 

reference for further improving and optimizing the wind power forecast methods 

(Pang, 2010; Zhang et al., 2012; Zhou et al., 2012). However, the time series method 

requires less historical data, the prediction period is short and the single data can’t 

form a reasonable error estimate so that the abrupt-changed information can’t be 

recognized. The Kalman filtering method can capture the change law of wind power 

well and can update the state information continuously, and can obtain more accurate 

prediction result. However, it is not suitable for the volatility and the violent situation. 

The support vector machine method needs less data, has strong nonlinear learning 

ability, short training time, strong generalization ability, and can effectively overcome 

the curse of dimensionality and local minimal problem, but the accuracy is greatly 

influenced by the selected kernel function structure. Thus, it raises high requirements 

on the accuracy and completeness of kernel function. In view of the existing problems 

of short-term wind power methods, this study proposes a wind power combined 

prediction model based on BP neural network (Zhou et al., 2012). The experimental 

results show that the proposed method can effectively improve the accuracy and 

reliability of wind power forecast, and the prediction accuracy is higher than that of 

single BP neural network. 

2. BP neural network prediction model 

BP neural network is a multi-layer feedforward network trained according to error 

reverse propagation algorithm, represented by network topology, node characteristics 

and learning rules. It is one of the most widely used neural network models that can 

adaptively obtain the nonlinear mapping relationship between input and output by 

storing a large number of input-output mode relations through learning under 

unknown mathematical relation of constructed object and input parameters. In 

network learning, the error which is inconsistent with the expected value in the output 

layer is regarded as the error of connection weight and threshold value of each node 

in each layer, and the error is distributed to each node by transmitting the error in the 

output layer to the input layer by layer. By calculating the reference error of each node, 

each weight and threshold value can be adjusted until the error is the minimum (Zhang 

and Deng, 2013; Feng et al., 2014; Wang et al., 2008; Ding and Xu, 2011). BP 

algorithm adopts the steepest descent method in nonlinear programming, and modifies 

each weight according to the negative gradient direction of the error function. 

Generally, the application of BP neural network includes four steps: 1) to determine 

the network structure form; 2) to collect training and test samples; 3) to train the 

network model; 4) to carry out prediction analysis by using the trained network. 

Figure 1 is a schematic diagram of BP neural network prediction model, the topology 

of which includes an input layer, a hidden layer and an output layer. 
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Figure 1. BP neural network prediction model 

3. Markov chain prediction model 

Markov chain prediction is a prediction method to analyze the future development 

trend and possibility of random events according to the system state transition law 

discovered by Markov, a Russian mathematician. Its essence is to predict the 

probability of occurrence of time and predict the future change of time according to 

the present situation. The prediction of Markov chain mainly contains two processes: 

one is to determine the state space of Markov chain; the other one is to determine the 

state transition probability and the state transition matrix by calculation. The Markov 

chain prediction model can be expressed as: 

𝑋(𝑛) = 𝑋(0)𝑃(𝑛)                                            (1) 

Where, X(n) is state probability vector at the moment of n; X(0) is state probability 

vector at the initial moment; P is state transition probability matrix. 

The Formula (1) has the meaning of predicting the nth step according to P and 

X(0), and the key of the prediction is the determination of the state transition 

probability matrix P. According to the sample data, the number of occurrences of state 

i is Ni, and the number of transition from state i to state j is Nij. Then the transition 

probability from state 𝑖 to state 𝑗 is approximately Nij/Ni, i.e. 

𝑃𝑖𝑗 ≈
𝑁𝑖𝑗

𝑁𝑖
                                                       (2) 

Then the kth state transition probability matrix is: 
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In the solution of state probability, the classification of state is very important. The 

common methods are mean value-mean square error classification, cluster analysis 

and optimal segmentation. 

4. Combined prediction model of BP neural network and Markov chain 

4.1. Establishment process of corrected BP neural network model based on Markov 

chain 

The basic idea of prediction: firstly, the prediction model of wind power BP neural 

network is established, then the error result predicted by BP neural network is 

analyzed by Markov chain model to find the fluctuation amplitude and fluctuation 

trend, and then the state transition probability matrix of error is obtained. According 

to the matrix, the prediction result of neural network is corrected. 

The specific steps are as follows: 

(1) BP neural network prediction model of wind power is constructed with 

MATLAB software, and the model is trained with a lot of measured power data. 

(2) The sample data is selected as input data, and the wind power is preliminarily 

forecast by using the trained BP neural network, and the prediction relative error δ is 

obtained. 

(3) The relative error δ of the predicted value of the sample data is divided into 

Markov state intervals, and a state transition table is obtained. 

(4) A 1st-step state transition matrix 𝑃(1) or a kth-step state transition matrix 𝑃(𝑘) 

is obtained from the state transition table. 

(5) The initial state vector X(0) is determined. 

(6) According to the state transition formula X(n)=X(0)𝑃(𝑘), the state transition 

result of 1st-step (when k=1) or kth-step is obtained. 

(7) The predicted value is corrected to 𝑄 = 𝑄′(1 − δ∗), where δ∗ = (δdown +

δup)/2. 

Where, 𝑄′  is the prediction result of BP neural network, δdown  and δup  are the 

upper and lower-level thresholds in the error state interval. 

4.2. Establishment of BP neural network model 

The data used in the example is from the actual power data from a single wind 

turbine generator of an offshore wind farm in Zhejiang Province. These data are 

composed of wind power values with a time resolution of 15 min. There is a total of 

672 data points from March 1 to March 7, 2018. The first four power data points are 
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taken as input elements of BP neural network to predict the power output value at the 

next moment. There are 671 data groups in total. In order to establish an effective 

model and improve prediction accuracy, this study selects the first 550 sets of data 

with relatively small power fluctuation as model for training (Ching et al., 2015; Zhou 

et al., 2005). The 25 sets of data are used as prediction data. 

4.2.1. Selection of transfer function 

This study adopts a three-layer BP neural network to construct the prediction 

model. The first layer uses the tansig function and the second layer uses the logsig 

function. The corresponding transfer of each neuron in the model is Sigmoid function, 

which is defined as: 

𝑓(𝑥) =
1

1+𝑒−𝑥                                                   (4) 

Where, x is the neuron input and f(x) is the neuron output. 

4.2.2. Determination of parameters of the input layer 

In the BP neural network model, the input and output parameters are very clear. 

The input is the wind power value of the first four adjacent time, and the output is the 

wind power value of the next moment. In the power prediction of the BP neural 

network, when the input data falls in the [-1, 1] interval, the convergence effect is 

optimal, and the prediction result accuracy is higher. Therefore, before the training of 

BP neural network, the input and output data are normalized first by the Formula (5) 

so that the input and output data are within the range of (0,1) and meet the specific 

requirements of the function: 

𝑀′ = (𝑀 − 𝑀𝑚𝑖𝑛)/(𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛)                               (5) 

Where, M is the historical wind power data of the wind power plant, 𝑀𝑚𝑎𝑥 is the 

upper limit value of the historical data, 𝑀𝑚𝑖𝑛 is the lower limit value of the historical 

data, and 𝑀′ is the normalized data. In Matlab, the function [Y,PS]=mapminmax(X) 

can be called to normalize the data. After obtaining the normalized predicted value, 

the predicted value is restored to the original dimension. 

4.2.3. Determination of the number of hidden layers and nodes 

This study selects a single hidden layer network as the program. The determination 

of the number of nodes in the hidden layer is a very important link in the design of 

neural network. In general, the number of nodes in the hidden layer is calculated by 

the empirical formula 𝑁 = 2𝑁𝑖𝑛 + 1 or 𝑁 = √𝑁𝑖𝑛 + 𝑁𝑜𝑢𝑡, where N is the number of 

nodes in the hidden layer, 𝑁𝑖𝑛 represents the number of neurons in the input layer of 

neural network, 𝑁𝑜𝑢𝑡  represents the number of neurons in the output layer of the 

neural network, and the constant a is 1-10. 

In the actual programming process, the node number of 8, 10, 12, 14 and 16 are 

respectively used for comparison, and the errors of different nodes are observed. The 
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results show that when the number of nodes is 12, the network predicted value is 

closer to the target value and the error value is the smallest. Therefore, this study 

selects the number of nodes 12 as the parameter of the program after comparing with 

each other by cut-and-trial method. 

4.2.4. Determination of error function and trained function 

The error function used in training BP neural network is: 

𝐸 =
1

2
∑ ‖𝑝𝑚 − 𝑝𝑚

’‖
2𝑀

𝑚=1                                            (6) 

Where, 𝑝
𝑚

  and 𝑝
𝑚

’  are actual and predicted wind power of the mth sample 

respectively; M represents the number of samples. 

In training BP neural network, trainlm (BP training function), traingd (gradient 

descent BP algorithm function) or traingdm (gradient descent momentum BP 

algorithm function) are generally selected as training functions. After 

comprehensively analyzing the performance of all kinds of functions, this study 

finally selects trainlm whose time of training is the fewest. Although more memory is 

needed, its training speed and performance are obviously superior. 

5. Example analysis 

5.1. Prediction simulation of BP neural network 

The trained BP neutral network model is used to predict the power of wind turbine 

generator in the next 6 hours. The prediction result is shown in Table 1. 

5.2. Corrected prediction result based on Markov chain 

The prediction accuracy of Markov chain is mainly determined by the transition 

matrix. In order to construct the transition matrix, it is necessary to reasonably divide 

the error state interval which is generally determined by mean value-mean square 

error classification method and centered on the mean value x of samples. The standard 

deviation is𝑠 = √
1

𝑛−1
∑ (𝑥𝑖 − 𝑥)2𝑛

𝑖=1 . In general, a data sequence can be divided into: 

(𝑥-𝑠,𝑥), (𝑥,𝑥 + 𝑠) and (𝑥 + 𝑠,𝑥 + 2𝑠).  

As can be seen from Table 1, the error between the simulated value and the actual 

value is between -15% and 15%, the average error is𝑥=-1.546, and the standard 

deviation is s=10.41. According to mean value-standard deviation classification 

method, the Markov states are divided into E1=[-15%,-5%), E2=[-5%,5%), 

E3=[5%,15%] through the mean error and standard deviation of BP neural network 

simulation results. According to the above state division, the error state result of BP 

neural network can be obtained as shown in Table 2. 
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Table 1. Prediction result BP neural network 

Time 
Measured value of 

power /kW 

Predicted value of BP neural 

network/ kW 

Relative 

error (ε/%) 

0:00 63.843 56.105 -12.12 

0:15 106.968 112.573 5.24 

0:30 97.781 98.329 0.56 

0:45 235.875 235.401 7.43 

1:00 131.812 155.415 -12.44 

1:15 449.718 384.239 -14.56 

1:30 327.281 345.118 5.45 

1:45 151.593 161.856 6.77 

2:00 137.531 159.068 13.66 

2:15 152.531 140.496 -7.89 

2:30 233.718 241.477 3.32 

2:45 130.218 111.558 -14.33 

3:00 175.593 151.238 -13.87 

3:15 202.031 226.962 12.34 

3:30 121.781 129.782 6.57 

3:45 269.250 281.474 4.54 

4:00 149.250 165.503 10.89 

4:15 122.531 109.592 -10.56 

4:30 453.843 394.344 -13.11 

4:45 289.031 317.876 9.98 

5:00 279.093 288.694 3.44 

5:15 207.281 220.651 6.45 

5:30 329.437 303.148 -7.98 

5:45 141.843 122.779 -13.44 

6:00 87.469 73.482 -14.99 
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Table 2. State division of Markov chain 

Time 
Measured value of 

power /kW 

Predicted value of BP neural 

network/ kW 

Relative 

error (ε/%) 
State 

0:00 63.843 56.105 -12.12 E1 

0:15 106.968 112.573 5.24 E3 

0:30 97.781 98.329 0.56 E2 

0:45 235.875 235.401 7.43 E3 

1:00 131.812 155.415 -12.44 E1 

1:15 449.718 384.239 -14.56 E1 

1:30 327.281 345.118 5.45 E3 

1:45 151.593 161.856 6.77 E3 

2:00 137.531 159.068 13.66 E3 

2:15 152.531 140.496 -7.89 E1 

2:30 233.718 241.477 3.32 E2 

2:45 130.218 111.558 -14.33 E1 

3:00 175.593 151.238 -13.87 E1 

3:15 202.031 226.962 12.34 E3 

3:30 121.781 129.782 6.57 E3 

3:45 269.250 281.474 4.54 E2 

4:00 149.250 165.503 10.89 E3 

4:15 122.531 109.592 -10.56 E1 

4:30 453.843 394.344 -13.11 E1 

4:45 289.031 317.876 9.98 E3 

5:00 279.093 288.694 3.44 E2 

5:15 207.281 220.651 6.45 E3 

5:30 329.437 303.148 -7.98 E1 

5:45 141.843 122.779 -13.44 E1 

6:00 87.469 73.482 -14.99 E1 

Table 3. Markov chain state transition 

State E1 E2 E3 Total 

E1 5 1 4 10 

E2 1 0 3 4 

E3 4 3 3 10 

Total 10 4 10 24 

 

Then a Markov chain state transition table is obtained, as shown in Table 3. From 

Table 3, the state transition probability matrix is obtained as follows: 



288     EJEE. Volume 20 – n° 3/2018 

 

𝑃(1) = [
0.5     0.1     0.4

0.25     0      0.75
0.4      0.3       0.3 

]                                         (7) 

The prediction result of the BP neural network is corrected by the Markov state 

transition probability matrix, and the correction result is shown in Table 4. 

Table 4. Error correction result of Markov Chain 

Time 

Measured 

value of 

power /kW 

Predicted value 

of BP neural 

network/ kW 

Relative 

error (ε/%) 

Combined 
model 

predictive 

value /kW 

Relative error of 
combined 

model𝜀′/% 

0:00 63.843 56.105 -12.12 64.521 1.06 

0:15 106.968 112.573 5.24 106.944 -0.02 

0:30 97.781 98.329 0.56 93.412 -4.47 

0:45 235.875 235.401 7.43 240.730 2.06 

1:00 131.812 155.415 -12.44 132.727 0.69 

1:15 449.718 384.239 -14.56 441.875 -1.74 

1:30 327.281 345.118 5.45 327.862 0.18 

1:45 151.593 161.856 6.77 153.763 1.43 

2:00 137.531 159.068 15.66 135.208 -1.69 

2:15 152.531 140.496 -7.89 147.521 -3.28 

2:30 233.718 241.477 3.32 229.404 -1.85 

2:45 130.218 111.558 -14.33 128.291 -1.48 

3:00 175.593 151.238 -13.87 173.924 -0.95 

3:15 202.031 226.962 12.34 192.917 -4.51 

3:30 121.781 129.782 6.57 123.293 1.24 

3:45 269.250 281.474 4.54 267.400 -0.69 

4:00 149.250 165.503 10.89 140.678 -5.74 

4:15 122.531 109.592 -10.56 126.030 2.86 

4:30 453.843 394.344 -13.11 453.496 -0.08 

4:45 289.031 317.876 9.98 301.982 4.48 

5:00 279.093 288.694 3.44 274.259 -1.73 

5:15 207.281 220.651 6.45 209.618 1.13 

5:30 329.437 303.148 -7.98 318.305 -3.38 

5:45 141.843 122.779 -13.44 141.196 -0.46 

6:00 87.469 73.482 -15.99 84.505 -3.39 
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5.3. Analysis of prediction results 

According to the data in Table 4, the actual generated power-BP neural network 

predicted power-Markov corrected predicted power changing curve and relative error 

curve chart are drawn, as shown in Figure 2 and Figure 3 below. 

 

Figure 2. Comparison of actual power with predicted power and corrected power 

By observing the curve of Figure 2, we find that the prediction curve of the two 

methods has basically the same trend with the actual power curve, and the prediction 

curve of Markov chain-BP neural network combined model has more coincidence 

with the actual power curve, which shows that the combined prediction method has 

higher accuracy than the BP neural network. 

 

Figure 3. Contrast diagram of relative error before and after correction of Markov 

chain 

It can be seen from Figure 3 that the changing trend of the relative error curve 

predicted by BP neural network is basically the same as that corrected by Markov 

chain, but the relative error data corrected by Markov chain is closer to zero and the 

fluctuation amplitude is smaller, indicating that the corrected data is closer to the 

measured value and the prediction stability is higher. Therefore, that prediction result 
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of the BP neural network-Markov chain combined prediction model is closer to the 

actual value than that of the single BP neural network model, the prediction accuracy 

is higher, and the relative error ε is smaller than that of the BP neural network.  

5.4. Error analysis 

5.4.1. Selection of error formula 

In order to standardize the evaluation of predicted performance, this study adopts 

RMSE (root-mean-square) error expression. 

The predicted absolute error 𝛿𝑡 is the difference between the measured predicted 

value P′(𝑡) and the true value P(𝑡) at the moment𝑡, namely 

𝛿𝑡=𝑃′(𝑡)-𝑃(𝑡)                                                (8) 

Predicted relative error: 

𝜀𝑡 =
𝛿𝑡

𝑃(𝑡)
                                                         (9) 

Finally, the prediction error is defined as: 

𝐸RMSE = √
1

𝑁T
∑ 𝜀𝑡

2NT
ℎ=1                                         (10) 

Where, 𝑁T is the number of data used to evaluate the prediction error during the 

training period.  

5.4.2. Error analysis 

24 sets of relative error data are analyzed, and the results are shown in Table 5 and 

Table 6 below. 

Table 5. Prediction results of BP neural network 

Absolute value of relative error |ε| Number Proportion 

＜10% 13 52.00% 

10%≤A＜15% 12 48.00% 

≥15% 0 0.00% 

Table 6. Prediction results of BP neural network-Markov chain combined model 

Absolute value of relative error |ε| Number Proportion 

<5% 25 100% 

≥5% 0 0.00% 
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It can be seen from Table 4 and Table 5 that the BP neural network model and the 

combined prediction model have superior performance. There are 25 sets of data with 

relative error less than 15% in the BP neural network, accounting for 100%, and 25 

sets of data with relative error less than 5% in the combined prediction model. The 

network coincidence rate is as high as 100%. After calculation, the RMSE predicted 

by BP neural network is 13.54%, and the RMSE corrected by Markov chain is 3.51%. 

According to the Interim Measures for Power Prediction Management of Wind 

Power Plant issued by the National Energy Administration, it is stipulated that the 

maximum error of daily prediction curve provided by the power prediction system of 

wind power plant shall not exceed 25%, the real-time prediction error shall not exceed 

15%, and the root-mean-square error of all-day prediction result shall be less than 

20%. The wind power forecast can be divided into daily forecast and real-time forecast. 

The daily forecast is the forecast of the next 00:00 to 24:00 and the real-time forecast 

refers to the forecast of future 15 minutes to 4 hours and the time resolution is 15 

minutes. The forecast time in this study is the wind power value in the next 6 hours, 

which belongs to real-time forecast.  

After analyzing the power prediction error data, the prediction result of the 

combined prediction model established in this study are in full compliance with the 

relevant requirements of the interim measures for power prediction management of 

wind power plant, and the prediction accuracy is higher than that of BP neural network. 

6. Conclusions 

Based on the combined prediction model of BP neural network and Markov chain, 

this study comprehensively utilizes the advantages of neural network and Markov 

chain prediction, fully excavates the macro-variation and micro-fluctuation law of the 

data series and organically combines the two inherent qualities of the data series, 

which has a strict theoretical basis. By analyzing the short-term prediction results of 

a single wind turbine generator in an offshore wind power plant in Zhejiang Province, 

we find that the root-mean-square error of BP neural network is 13.54% and that 

corrected by Markov chain model is 3.51%. The combined prediction model has high 

accuracy and reliability. Therefore, it provides a new way to forecast wind power 

under the condition that the prior data are limited and there are a lot of uncertain 

factors. 

The combined prediction model of BP neural network and Markov chain is an 

attempt to improve the traditional wind power forecast method of. The input data of 

BP neural network is historical wind power data and the numerical value of wind 

power is analyzed directly, which is different from the traditional meteorological data 

of numerical weather prediction. This method can avoid the accumulative prediction 

error caused by meteorological factors and further improve the prediction accuracy. 

The correctness and reliability of BP neural network applied in generation power 

prediction of wind power plant are verified by an example, which has high practical 

value and reference significance. The prediction error of the model meets the relevant 

national regulations. Although artificial neuron can approximate arbitrary nonlinear 
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mapping with arbitrary precision, traditional BP algorithm is slow in convergence 

speed and easy to fall into local minimum. Thus, many scholars will introduce more 

excellent prediction methods into wind power forecast. Along with the continuous 

development of wind power forecast technology, forecast method also develops from 

simplification to diversification. The combined forecast method makes full use of the 

data of each single method, which reduces the error and improves prediction accuracy. 

In this study, the combined model of BP neural network and Markov chain in the 

field of wind power forecast is preliminarily studied and discussed. With the 

development of combined prediction model, BP neural network model and one or 

several other models are combined into a new prediction model to improve the 

accuracy of wind power forecast, which has been a major trend. 
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