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ABSTRACT. In this  paper, the fine-grained dynamic frequency modulation algorithm (FGDFMA) 

was developed based on critical state points (CSPs), aiming to calculate the optimal operating 

frequency that minimizes the total power consumption of the system. Focusing on the power 

consumption management of embedded mobile terminals (EMTs), a system-level power 

consumption model was put forward, integrating the merits of the dynamic power management 

(DPM) and the dynamic voltage and frequency scaling (DVF S). Then, the CSP-based 

FGDFMA was developed after analyzing the CSPs in the power consumption model. Through 

a simulation on the parameters of actual devices, the proposed algorithm was proved more 

effective than the DPM and the DVFS. 

RÉSUMÉ. Dans cet article, l'algorithme de modulation de fréquence dynamique à granularité 

fine (FGDFMA) a été développé sur la base de points d'état critiques (CSPs) afin de calculer 

la fréquence de fonctionnement optimale minimisant la consommation totale d'énergie du 

système. Se concentrant sur la gestion de la consommation d'énergie des terminaux mobiles 

intégrés (EMTs), un modèle de consommation d'énergie au niveau du système a été proposé, 

intégrant les avantages de la gestion dynamique de l'énergie (DPM) et de la mise à l'échelle 

dynamique de la tension et de la fréquence (DVFS). Ensuite, le FGDFMA basé sur le CSP a 

été développé après analyse des CSP dans le modèle de consommation d'énergie. Grâce à une 

simulation des paramètres de dispositifs réels, l'algorithme proposé s'est avéré plus efficace 

que le DPM et le DVFS. 
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1. Introduction 

Embedded mobile terminals (EMTs) (Pedram, 2006) usually integrate such 

functions as voice communication, audio/video player, internet browser, GPS, games 

and email. These functions, while enriching the user experience, are extremely power 

consuming, prosing a huge challenge to the EMTs powered by batteries. Although the 

battery capacity has quadrupled and even quintupled over the last 30 years, the 

stacking of batteries is the main method to expand the power supply to the EMTs. 

This approach pushes up the cost, size and weight of the EMTs, dragging down the 

mobility and cost-effectiveness of these devices. 

The limit on battery capacity calls for the extension of battery life through system-

level power management techniques. One of such techniques is the dynamic power 

management (DPM) (Chede and Kulat, 2008). The DPM can minimize the system 

power consumption by switching the operating state of each device in light of the 

changes to its workload. It is mainly responsible for the dynamic management of 

peripheral devices or processes. Under this technology, the peripheral devices or 

CPUs, which has been idle for a sufficiently long time, are turned off or put into sleep 

state (Marzolla and Mirandola, 2013), aiming to reduce the battery consumption. 

There are three different kinds of DPM strategies for energy consumption 

optimization, namely timeout DPM, predictive DPM and stochastic DPM. The 

timeout DPM (Niewiadomska-Szynkiewicz et al., 2014) determines a time limit based 

on the observed idle time and switch a device to the sleep mode if the device remains 

idle longer than the time limit. The predictive DPM (Liu et al., 2015) predicts the 

current idle time length according to certain rules at the beginning. If the predicted 

value is longer than the switching threshold, the PMC (Firouzi et al., 2012) will be 

switched to the corresponding sleep mode right away; Otherwise, the PMC will 

remain in the prepared state. The stochastic DPM (Rizvandi et al., 2011) views the 

DPM as a stochastic optimization problem, and uses the stochastic decision model to 

solve the DPM control algorithm. 

The dynamic voltage and frequency scaling (DVFS) (Qiu et al., 2012) is another 

popular power consumption optimization technique. It provides an important means 

to reduce the power consumption of embedded systems. To balance the task response 

time (Li et al., 2017) and system power consumption, the DVFS dynamically adjusts 

the voltage and frequency of the CPU based on the urgency of the system task. The 

dynamic adjustment is implemented while the system is running, which effectively 

reduces the CPU’s energy consumption without sacrificing CPU performance. The 

reduction of system energy consumption is realized at the cost of a longer task 

execution time, revealing the trade-off between performance and power consumption. 

The existing DVFS strategies fall into two categories, namely, the DVFS strategy 

between tasks and the DVFS strategy within a task. The former allocates the CPU 

time to multiple tasks and adjusts CPU frequency only at the completion of 

preemptive tasks, while the latter (Firouzi et al., 2012) can adjust the system’s 

operating frequency when the task is being executed. The recent studies on the DVFS 

show that, the system’s energy consumption may be negatively affected if the CPU’s 
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operating frequency is below a certain level, and the balance frequency should be 

calculated from the energy consumptions of off-chip devices and the CPU. 

It can be seen from previous research that the DPM and the DVFS provide energy-

saving algorithms for different situations of system power consumption. On the one 

hand, the DVFS can reduce power consumption by lowering the CPU frequency, 

because the power consumption is positively correlated with voltage and frequency. 

Nevertheless, the system operating delay will be lengthened at reduced CPU 

frequency, such that the DPM cannot meet the conditions to switch the operating 

mode of the system. On the other hand, the system consumes less power as it enters 

into the sleep mode earlier at increased CPU frequency; however, the frequency 

increase will push up the power consumption of the CPU during the operation, and 

lead to extra energy overhead in the transition to the sleep mode (Marowka, 2014). 

Whereas most of the existing studies analyze the DPM or DVFS separately, this paper 

attempts to examine the critical switch points of system states through the 

combination of the DVFS and the DPM. Specifically, a fine-grained dynamic 

frequency modulation algorithm (FGDFMA) based on critical state points (CSPs) was 

developed for battery-powered EMTs, with the aim to reduce the system power 

consumption while ensuring the real-time performance. Simulation results show that 

the proposed algorithm manages to lower hardware energy consumption, optimize 

system power utilization and maximize the battery performance in the discharge 

period.  

2. System model of CSP-based FGDFMA 

2.1. System model in one application cycle 

According to the frame-based application model in Figure 1, d is the wake-up 

period of an application in the embedded real-time system and that application must 

be completed in any one cycle. The CPU of the model supports the DVFS. Let fmax be 

the maximum operating frequency of the CPU and c be the worse working time under 

fmax. Assuming that the application’s execution time varies linearly with frequencies, 

the worse working time of the application under the operating frequency f can be 

calculated as: 

f

c
Twcet =                                                       (1) 

When f=fmax, the application utilization rate in one cycle d is 1=
d

c
U , and the 

idle time in the cycle is the difference between the application completion time and 

the next wake-up time. The idle time in one cycle d under the operating frequency f 

can be calculated as: 

( )
c

f d
f

 = −                                                 (2) 



80     EJEE. Volume 20 – n° 1/2018 

 

f

c d

f

c
d −

c

 

Figure 1. System model in one application cycle 

2.2. Device state transition model 

Suppose the embedded real-time system utilizes N devices, denoted as 

D={D1,D2,...,DN}. Each device is either in the active state or in the sleep state. Let 
i

aP , 

i

sP , 
i

wsE (
i

swE ) and 
i

wsT (
i

swT ) respectively be the power consumption of device i in 

the active state, the power consumption of device i in the sleep state, the energy 

consumption of device i as it switches from the active state to the sleep state, and the 

time of device i to switch from the active state to the sleep state. 

i
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i

sP

i

wsT i

swT

T
 

Figure 2. State transition overhead 

From the start of cycle d, the device should remain active until the application is 

completed; after the completion, the device can enter the sleep mode to reduce power 

consumption. However, a certain amount of overhead 
i

wsE  is incurred in the state 

switch of the device. If the idle time δ(f) is too short, the power saved by device i on 

entering sleep mode will be less than the state switch overhead 
i

wsE . Thus, it is 

necessary to determine the break-even time for the device, that is, the minimum idle 

time for the state switch. As shown in Figure 2, the break-even time can be expressed 

as: 
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where 
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ov EEE +=  is the total consumption of state switch of device i; 

i
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i

ov TTT +=  is the total time of state switch of device i. The idle time must 

surpass the 
i

ovT  to make the state switch possible. Thus, we have: 
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2.3. Power consumption model 

The total power consumption E of the system consists of static power consumption 

ES and dynamic power consumption E(f):  

)( fEEE s +=                                                 (5) 

The state power consumption ES refers to leakage power, i.e. the minimum power 

consumption to maintain system operation. In this paper, the total power consumption 

is realized by reducing the dynamic power consumption E(f) only, considering that 

the static power consumption can only be eliminated by shutting down the system and 

that E(f) depends on the system’s operating frequency f. 

As shown in Figure 1, assuming that the total number of devices is D, the devices 

DA={D1,D2,...,Dm} cannot be switched from the active state to the sleep state in a cycle 

d, if their idle time δ(f)<Bi. Thus, the set of devices that can be switched can be 

expressed as Di∈D-DA. The dynamic power consumption of the system is made up of 

the power consumption of the CPU, that of all devices D in the non-idle time, that of 

the devices DA that has not entered the sleep state during the idle time, and the 

overhead of the state switch: 

 
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where 
f

c
af 3  is the power consumption of the CPU at the operating frequency f; 

f

c
Pall

 is the power consumption of all devices during the operating time; 





Ai DDi

i

a fP
|

)(  is the power consumption of all devices in the set DA in the idle time; 
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the last term is the power consumption of the state switch of the devices in the set D-

DA. 

3. Realization of CSP-based FGDFMA 

3.1. Determination of the CSPs 

The CPU and devices are the main contributors to the total power consumption of 

the system, which varies with the frequencies. A low frequency may save lots of 

power through the DVFS, but the prolonged operating time will dampen the DPM 

effect. Let c be the worst working time of device D0 under fmax, and B0 be the break-

even time of the device. Since the task completion time drops from d to c with the 

growing operating frequency f, the critical frequency for the device D0 to satisfy the 

break-even time B0 can be obtained by: 

0

*

Bd

c
f

−
=                                                 (7) 

Hence, device D0 can be switched to the sleep mode as long as the working 

frequency is greater than f*. 
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Figure 3. Power consumption functions of the CPU and the device 

As shown in Figure 3, taking f* as the critical point, the total power consumption 

function of the system can be divided into two areas. In area A, the power 

consumption of the device remains constant at dP i

a   under f<f* because the state 

switch is impossible. In area B, the operating time 
f

c
 of the device decreases linearly 
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with the increase of f; in this case, the power consumption of the device is 
i

aP
f

c


. The 

CPU’s power consumption 
f

c
af 3  always increases with the frequency. 

Since Etotal power consumption=Edevice+ECPU, the total power consumption of the system 

is also a function that changes with f (Figure 4). In interval A, the total power 

consumption continues to increase because the device power consumption remains 

unchanged while the CPU consumes more power. In interval B, the CPU power 

consumption grows while the device power consumption drops with the increase of 

frequency; if the frequency is below the limit frequency foptb and above f*, the 

reduction of device power consumption is greater than the increase of CPU power 

consumption, resulting in a decline of the total power consumption; if the frequency 

is above the foptb and below the fmax, the reduction of device power consumption is 

smaller than the increase of CPU power consumption, resulting in a growth of the 

total power consumption. Therefore, the extreme point foptb of Etotal power consumption falls 

in the interval [f*, fmax]. 

optaf
optbf*f

  total power consumptionE

optaE

optbE
f

f1

E

 

Figure 4. Total system power consumption function 

3.2. Determination of the optimal frequency 

It is easy to find the optimal scheduling point of interval A, but difficult to identify 

that of interval B. Since all devices in interval B can be switched to the sleep mode 

after task completion, the power consumption function of interval B can be expressed 

as: 
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Because E(f) is a strictly convex function and is equivalent to a 

constant, the extreme point f that can be obtained by taking a derivative of the function: 

3/1
0

)
2

(
a

P
f a

ee =                                                 (9) 

For any ε>0, E(f) has the following two properties: 

Property 1: ( ) ( ) ( )+ fEfEfEfff eeee ,, ; 

Property 2: ( ) ( ) ( )− fEfEfEfff eeee ,, . 

Then, there are three difference cases for the point of the minimum power 

consumption in interval B, denoted as fmin: 

Case 1: 
max

* fff ee   

In this case, δ(fee)≥B0, D0 can be switched to the sleep mode at f=fee, and fee is an 

extreme point in this interval. Thus, fmin=fee. 

Case 2: fee>fmax 

According to Property 2, the system consumes the least power at f=fmax in interval 

B. Thus, fmin=fmax. 

Case 3: fee<f* 

In this case, δ(fee)<B0 and D0 cannot enter the sleep mode. Thus, fee should 

approximate f* to make the device suitable for state switch. According to Property 1, 

the f=f* is the point with the optimal power consumption in interval B under this 

frequency interval. Thus, fmin=f*. 

From the above analysis, we have: 

( )( )max

*

min ,min,max ffff ee=                              (10) 

3.3. CSP-based FGDFMA 

The previous analysis confirms f=U and f=fmin as the points with the optimal 

power consumption in interval A and interval B, respectively. However, it is still 

known which of the frequencies has the better optimization effect. To obtain the 

optimal scheduling algorithm, this section compares the power consumptions between 

the two intervals. 

( )00

wusd EE +
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When the frequency f=fmin and f=U, the CPU power consumption increases by 

( )22

minc UfacE pu −= , while the device power consumption reduces by: 

tvice E
fU

cPE −







−=

min

0

ade

11
                              (11) 

The power consumption difference between the CPU and device determines 

whether the system will be switched to the sleep mode or continue to operate under 

f=U. 

Let ϕ(fmin, U)=△Ecpu-Edevice. If ϕ(fmin, U)<0, then △Ecpu<Edevice. In this case, the 

optimal scheduling point of the system is fopt=fmin; if ϕ(fmin, U)>0, the optimal 

scheduling point of the system is fopt=U. 

To further display the uncertainty of fopt, the parameters of device Da were 

configured as c=10, d=42, 
aPa =0.5, Esw=Ews=5 and Tsw=Tws=10. Through the above 

analysis, it can be seen that Ba=20, fee=0.63 and δ(fee)>Ba, indicating that the device 

can enter the sleep mode. Under these conditions, E(U)=21.57, E(fee)=21.91 and 

E(U)<E(fee). In this case, the optimal scheduling point of the system is fopt=U. If 

Esw=Ews=1.25 and Tsw=Tws=5, then E(U)=22.87, E(fee)=22.38 and E(U)> E(fee). In 

this case, the optimal scheduling point of the system is fopt=fee. Thus, different devices 

have different fopt. 

Through the above analysis, the optimal scheduling algorithm under a fixed 

system operating frequency can be defined as: 

Let 

3/1
0

2 

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
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Let 
0

*

Bd

c
f

−
=  

fmin=max(f*,min(fee,fmax)) 

If ϕ(fmin, U)<0, then fopt=fmin; otherwise fopt=U 

3.4. Simulation and analysis of the CSP-based FGDFMA  

The optimal power scheduling algorithm, i.e. the CSP-based FGDFMA, was 

simulated with the parameters of actual devices. The maximum operating frequency 

of the CPU was determined by the ARM CortexA9 chip, the cycle length of the real-

time task d was set to 44ms, and the value of B was calculated as 24ms. 

If the worst execution time c of the task is longer than 20ms, then the device does 

not have enough free time to switch to sleep mode. In addition, the system consumes 
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the least power when f=U. Therefore, only the situation c∈ [2,20]  is taken into 

account. 

It can be seen from the above analysis that the positivity/negatively of ϕ(fmin, U) 

depends on the parameters of the device. Through calculation, it is learned that ϕ(fmin, 

U)<0 when c∈[0,18]. In this interval, △Edevice>△ECPU and thus fopt=fmin. ϕ(fmin, U)>0 

when c∈[18,20]. In this interval, △Edevice<△ECPU and thus fopt=U. The relationship 

between ϕ(fmin, U) and c is shown in Figure 5 below. 

 

Figure 5. The relationship between ϕ(fmin, U) and c 

Here, the proposed algorithm CSP-based FGDFMA is compared with the two 

popular optimization methods of power consumption below: 

-Aggressive slowdown (AG-SD): This algorithm only reduces the power 

consumption of the CPU, and does not consider the reduction of device power 

consumption. In this algorithm, the device does not go to sleep, and the operating 

frequency is always f=U. 

-Device-aware slowdown (DA-SD): This algorithm is one of the optimal 

algorithms for dynamic power adjustment. Unlike CSP-based FGDFMA, the DA-SD 

fails to consider the DPM and the system power consumption of state switch. By this 

algorithm, the system will go to sleep if the optimal frequency fee meets the switching 

condition, and remain active if otherwise. 

 

Figure 6. Functional relationships between three different algorithms and c 
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It can be seen from Figure 6 that, with the growth of the worse working time c, the 

fopt changed from fee to U. When c<12, the CSP-based FGDFMA selected the DA-SD 

because ϕ(fmin, U)<0. When c<18, the CSP-based FGDFMA selected the AG-SD 

because ϕ(fmin, U)>0. When 12<c<18, the CSP-based FGDFMA selected the power 

consumption function E(f*), which is better than the DA-SD and AG-SD, because 

fmin=f* and ϕ(f*,U)<0. The simulation results show that the proposed CSP-based 

FGDFMA outperformed the two contrastive algorithms in power consumption in all 

intervals. 

4. Conclusions 

In this paper, the power consumption management of embedded systems is 

explored from a new angle. Considering the problems of the DPM and the DVFS and 

the state switch overhead, the author put forward a system-level power consumption 

model that integrates the merits of the DPM and the DVFS. After analyzing the CSPs 

in the power consumption model, the CSP-based FGDFMA was developed to 

calculate the optimal operating frequency that minimizes the total power consumption 

of the system. Through a simulation on the parameters of actual devices, the proposed 

algorithm was proved more effective than the DPM and the DVFS. 
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