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ABSTRACT
In this contribution, we analyse three separate databases in case study areas each suggestive of particular 
strategies to better portray their predictive power. A database in north-eastern Spain is used to sepa-
rate sub-areas, with hopefully more compatible geomorphologic settings. Another database in central 
Portugal offers the opportunity of representing the uncertainty of predicted hazard class membership 
via iterative cross-validation with systematically partitioned landslide occurrences. A third database in 
central Slovenia is used to interpret the predictive qualities of two dynamic types of landslides: one that 
is relatively well predicting and the other one poorly predicting. The diversity of the experiments and 
their results, point at strategies of blind-testing, still unexploited in spatial prediction modelling, that are 
not necessarily limited to the landslide hazard domain.
Keywords: blind testing, cross-validation, empirical likelihood ratios, landslide hazard, prediction 
 patterns, prediction-rate curves, target pattern.

1 INTRODUCTION
When initially proposed, cross-validation of prediction patterns of landslide hazard had as a 
main target the assessment of their quality as temporal predictors [1,2]. It implied generat-
ing histograms of the distribution of validating occurrences, that is, occurrences not used in 
prediction modelling because of their subsequent temporal appearance, throughout equal-
area ranked classes of a prediction pattern. Such a pattern is obtained by the application of 
a mathematical model to establish spatial relationships between a set of digitized landslide 
occurrences of a specific dynamic type that were mapped in an earlier time interval and a 
number of digitized maps hopefully representing the typical settings of those occurrences.

Each map is transformed into an array of prediction scores that are then integrated into a 
combined score. This is subsequently transformed into equal-area ranks after ordering of all 
values in decreasing order. The histograms obtained can also be analysed as cumulative 
curves in diagrams with the cumulative proportion of study area classified as hazardous on 
the horizontal axis versus the corresponding cumulative proportion of validation occurrence 
areas on the vertical axis.

The initial applications were on databases for which the occurrences were mapped using 
aerial photo-mosaics corresponding to particular years therefore allowing their time parti-
tioning. Subsequent studies in a variety of hazardous regions led to the broadening of 
applications ranging from modelling temporal predictions to predictions using different 
 spatial partitioning [3, 4] for studying the variability of prediction rates.



194 Andrea G. Fabbri & Chang-Jo Chung, Int. J. of Safety and Security Eng., Vol. 6, No. 2 (2016)

In this contribution, we analyse three separate case study areas whose databases were pro-
vided that are suggestive of different strategies to better portray their prediction power. The 
next section describes those databases while the subsequent one introduces favourability 
modelling terminology and cross-validation strategies by blind testing. It is followed by a 
description of the blind-testing experiments for the three study areas located respectively in 
northern Spain, in Portugal and in central Slovenia. The results, in terms of prediction 
 patterns, tables of selected predicted ratio values for different mapping units and predic-
tion-rate curves, point at strategies for blind testing still unexplored for database interpretation. 
Considerations are finally made on their promising value in further research not necessarily 
limited to landslides nor to hazards.

2 THREE DATABASES FOR LANDSLIDE HAZARD PREDICTION
The databases analysed in this contribution originated as case studies in joint European pro-
jects and were eventually shared between collaborating researchers.

The Deba Valley study area located in Northern Spain was constructed for experimenting 
on landslide hazard assessment by Remondo et al. (2003ab) [5,6] and later extended on risk 
assessment (2005) [7]. The Deba Valley spatial database that is used in this contribution has 
also been turned into a case study for training decision makers [8].

The part of the database considered here consists of digital images with the spatial distri-
bution of 1,123 shallow translational landslides and associated flows, stlaf. They were 
mapped and dated through photointerpretation of aerial photo-mosaics and field observa-
tions. Of those landslides 906 occurred prior to 1997 and 217 during the period 1998–2001. 
Their average size being about 400 m2, their distribution was digitally rendered as single 
picture elements or pixels of 10 m resolution. The same resolution was used for the remain-
der of the database, consisting of digitized maps to express the typical spatial settings of 
those landslide occurrences. They are 26 lithological units, 7 land-use classes, as categorical 
data, and aspect, curvature, elevation and slope, as continuous fields. They are listed in the 
upper part of Table 1, short-named as luACES, respectively. The study area is contained in 
a  rectangular grid or raster of 1,886 pixels by 1,555 lines. It occupies 1,393,541 pixels of 10 
m resolution and is shown in Fig. 1. Obviously, 906 pixels correspond to that many pre-97 
occurrences while 217 correspond to the post-97 ones. To classify as hazardous the 
1,393,541 pixels of the study area then, we will be using the 906 pre-97 occurrence pixels.

The Fanhões-Trancão study area in Portugal is located just north of Lisbon. It was 
initially used as part of a course in applied geomorphology by Zêzere (1996) [9]. Later, 
a database was developed to experiment in quantitative landslide hazard prediction [10–
12] and risk assessment [13]. The part of the database considered here contains the 
distribution of 92 trigger zones of shallow translational landslides, stl, divided into 43 
that occurred before or during 1979 and 49 that occurred during or after 1980. The trig-
ger zones were digitized as raster polygons with a resolution of 5 m into digital image of 
760 pixels by 700 lines. Their distribution is shown in Fig. 4a. The same resolution was 
used for digitizing 6 lithological units, 5 land use classes, 5 superficial deposit units, as 
categorical data, aspect, elevation and slope, as continuous fields. They were short-
named as ludAES as listed in Table 2. The study area contains 519,344 pixels. In it 946 
pixels correspond to the 43 pre-79 occurrences and 1,225 to the 49 post-97 occurrences. 
The 946 pixels of the 43 pre-97 occurrences will be used to classify as hazardous the 
519,344 pixels of the study area.

The third database analysed is located in central Slovenia and comes from a study by 
Komac (2004) [14] made to generate a statistical landslide prediction map to be used in risk 
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analysis. It was later reconsidered for favourability modelling [15]. The part of the database 
analysed here includes the distribution of 41 instant slides, is, and 47 fossil/dormant land-
slides, fdl, digitized into images of 25 m resolution, shown in Figure 6a. No separation was 
available of the landslides into temporal groups. Their spatial settings were represented with 
images of the same resolution as the digitized categorical maps of 18 units of lithology, and 
14 classes of land use. Their description is in the upper part of Table 3. In addition, continu-
ous fields maps were aspect, curvature and slope, derived from the elevation contours, and 
three log- transformed distance maps from lithologic boundaries, from structural elements 
and from surficial waters. They were short-named as luACSDgDsDw. The part of the study 
area used here is contained within a rectangular raster of 1,144 pixels by 695 lines to occupy 
795,080 pixels of 25 m resolution. The areas corresponding to the landslide occurrences are 
of 294 pixels for is and 284 pixels for fdl, respectively. The 294 is and the 284 fdl pixels will 
be used to classify as hazardous the 795,080 pixels of the study area.

Although extensively processed, the three databases still deserve being considered to 
assess and test the quality and reliability of the prediction patterns obtainable by new model-
ling strategies.

3 SPATIAL PREDICTION WITH FAVOURABILITY MODELLING
Favourability modelling is a broad term used to generalize the generation of spatial patterns 
representing a classification of a study area into ranks of spatial support in favour of the presence 
of either desired or unwanted occurrences. Desired occurrences can be resources sought and yet 
undiscovered while unwanted occurrences can be hazardous events some of which are not yet 
experienced.

The modelling stands on a proposition, that is, a mathematical statement that has to be 
proven true, on the presence of the occurrences given the presence of conditioning factors, 
otherwise also seen as indirect support of the proposition being true. The direct support being 
the known presence of the occurrences.

In the case of landslide hazard and having a spatial database, the proposition could be: “Pi: 
a pixel i in the study area is affected by a future landslide | given the presence of the known 
conditioning factors.” Obviously the characteristics of the landslides must be sharp and 
homogeneous to imagine a consistent setting, and their presence should be as a distribution 
of trigger areas to represent direct supporting patterns of the proposition, or DSP. The condi-
tioning factors represent evidence in favour of it, however, in an indirect way: they hopefully 
describe acceptably well at least in part the typical or common setting of those landslide 
occurrences. We have termed them indirect supporting patterns, ISP.

To model the quantitative support of the proposition for every pixel in the study area, its 
extension must be selected by expert knowledge. Various mathematical functions can be used, 
such as Bayesian probability, fuzzy sets, linear or logistic regression or the empirical likelihood 
ratio among several other ones. We will be using the latter, ELR, in the applications to follow.

Our spatial database covering the study area will preferentially consists of sets of 
 co-registered digital images of the same resolution. It means to have one or more DSP and 
several ISPs. The latter will provide support as categorical and as continuous field images. The 
mathematical model function is used to establish and integrate spatial relationships between a 
DSP and the ISPs. For instance, the ELR function provides the ratios between the normalized 
frequencies of the categorical ISPs, and the density functions of the continuous field ISPs, in 
the presence of the DSP and that in its absence within the study area. An ELR value of 2, for 
example, means a frequency in the presence of the DSP twice that in its absence. We will be 
using this value as a kind of threshold later on to interpret the applications.
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The combination rules and the assumptions implicit in ELR modelling permit to integrate 
the resulting values for different ISPs into one value for each pixel in the study area. ELR 
modelling has been amply discussed elsewhere by Chung (2006) [16]. The set of all ELR pixel 
values is termed a prediction image that is then transformed into a prediction pattern by con-
verting the image values into ranks. For instance, a 1,000 × 1,000 pixel image study area will 
contain 1 million ELR values that can be conveniently ranked into 200 classes representing 
each 0.5% of the study area. No interpretable significance is recognized to the values except 
for their rank.

In order to assess the quality of the prediction pattern, several strategies can be applied 
depending on the characteristics of the database. For instance, if the DSP can be partitioned 
into time intervals, all occurrences for a given earlier period can be used to generate a predic-
tion pattern and the ones from a later period are used to validate its ranked classes. Or else, if 
the study area is subdivided into sub-areas of similar geomorphology and physiography, one 
sub-area is used to generate a prediction pattern, the statistics of its spatial relationships are 
extended to obtain a prediction pattern in the other sub-area that is then validated using the 
occurrences available in it.

The critical point in cross-validating a prediction pattern is to be able to assess the qual-
ity or “goodness” of its classes as predictors, by the distribution of the occurrences we are 
pretending not to know and were not used in the generation of the pattern. Should we use 
all available occurrences in the study area as DSP, we would obtain the most detailed and 
probably reliable prediction pattern, whose quality as predictor, however, is still unknown. 
This is so unless we use some form of partitioning of the database to assess the prediction 
quality.

Some convenient strategy of cross-validation are iterative processes in which a specific 
number of occurrences are sequentially excluded, a prediction pattern is obtained with the 
remainder that is then cross-validated by the excluded occurrences. The process is repeated 
until all occurrences have been used to predict and to validate. Similarly, iterations could be 
obtained by selecting a given number of occurrences to predict and using the remainder to 
validate. Another useful strategy, particularly when the number of occurrences is large, is to 
select randomly a given number of occurrences to predict and use the remainder to validate. 
This process is then iterated a given number of times. All the iterative processes lead to a 
number of prediction patterns that are integrated statistically into what we have termed a 
target pattern. It combines by pixel value averaging all the prediction patterns obtained. The 
statistics of a target pattern can be analysed for measures of class membership, such as vari-
ance per pixel, obtaining as a representation of its uncertainty, the uncertainty pattern. We 
have used Spatial Target Mapping (STM) for spatial modelling with iterative cross- validation. 
The software is ancillary to a geographical information system [8, 17].

Only expert knowledge of the database and of the physical processes it portrays, in addi-
tion to favourability modelling, can complement the analyst’s imagination in constructing or 
following a useful strategy of cross-validation to assess the “goodness” of the database for 
prediction modelling. So far, in most applications, it was found that changing the mathemat-
ical model is mildly influential on the prediction pattern. More critical seems to be the 
database quality and contents [18].

The applications that follow in the different European study areas are to open a window on 
some potentially useful strategies for cross-validation that aim at extracting particular 
 information from the data while attempting to answer specific questions that the database 
might or might not be fit to provide.
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4 EXPERIMENTS WITH BLIND-TESTING STRATEGIES

4.1 Partitioning of the study area

The entire Deba Valley database that covers the study area shown in Fig. 1 was used to gen-
erate the prediction pattern of Fig. 2a. The legend uses 13 groups of equal-area ranks of the 
predicted hazard classes of the 200 obtained as default. It is a convenient way to  visualize 
the hazard values after having sequenced them in decreasing order. The groups of ranks are 
fixed and are assigned to a pseudo-colour look-up table with the hotter colours representing 
the higher ranks. The identical legend and colours will be used for all the patterns in the 
other applications. The prediction patterns used the 906 pre-97 occurrences as DSP and 
luACES as ISPs. In order to assess the quality of the pattern as predictor, the distribution 
across the pattern of the 217 post-97 occurrences was used to obtain the black cumulative 
prediction-rate curve in Fig. 3. It shows that the top 10% of the study area classified as haz-
ardous contains 42% of the 217 post-97 occurrences, and the top 20% contains 63% of 
them.

If we suspect that the prediction-rate curve reflects too great a variety of geomorphologic 
settings, we can subdivide the study area into more homogeneous sub-areas, as done in 
Fig. 1, to verify whether a local prediction provides better results. This is done with the three 
sub- areas shown in Fig. 1. Three prediction patterns for sub-areas N, C and S were obtained 
and mosaicked into one in Fig. 2b. In it, we can observe more local rankings that can be 
interpreted by their respective prediction-rate curves shown in Fig. 3. Sub-areas C and S 
provide initially steeper curves within the top 10% of their respective hazardous sub-areas. 

Figure 1: The Deba Valley study area in northern Spain, containing 906 pre-97 (black dots) 
and 217 post-97 (white dots) one-pixel landslide occurrences (dimensions 
exaggerated for visualization). It covers an area of 1,393,668 pixels. The three sub-
areas, indicated by different colours cover 370,576 (North, N, red, with 460 pre-97 
and 112 post-97), 678,148 (Center, C, orange, with 225 and 54) and 342,278 
(South, S, green, with 225 and 51).
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Beyond that 10%, however, the curve from the entire study area prediction pattern remains 
steeper.

In terms of cost-benefit, within the top 10%, these considerations could be of guidance 
should hazard mitigation measures or avoidance be planned whose costs would increase 
exponentially with the proportion of study area considered so hazardous as to need such 
measures.

To interpret the prediction patterns, it becomes critical to consider how the different cate-
gorical units, classes and continuous field values contribute to supporting the proposition. 
Table 1 shows the ELR values for the different predictions in the entire study area and in the 
three sub-areas. ELR values range from 0 to infinity, and as a rule of thumb, we can use a 
threshold of 2.00 for simplifying the separation of those more supportive from the less or 
non-supportive ones. The table identifies the different characteristics of the prediction pat-

Figure 2: Prediction pattern obtained for the Deba Valley study area representing equal area 
ranks grouped as in the legend. In (A) the pattern obtained using the 906 pre-97 
stlaf occurrences as DSP and luACES as ISPs. In (B) the mosaic of three prediction 
patterns for sub-areas N, C and S using the respective pre-97 occurrences and ISPs.
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terns. For instance, land use class u6 and lithology unit l2, l4 and l12, together with a curvature 
interval represent most of the support for the prediction pattern in the entire study area. As to 
the separate sub-areas, we can observe how the respective ratio values vary, including the 
absence in sub-area C, of lithology unit l4, l10, l12 and l18, so is for l2, l4 and l12 in sub-area S. 
Also, unit l22 is of relatively greater support in sub-areas C and S than in sub-area N or in the 
entire study area.

4.2 Uncertainty of class membfiership

For the database of the Fanhões-Trancão study area, an ELR prediction was made by the 43 
pre-79 shallow translational landslide occurrences, stl, as DSP and ludAES as ISPs. The 
prediction pattern was to be validated with the distribution of the 49 post-79 occurrences. 
Here, however, measures of uncertainty of the class membership of the occurrences were 
sought. For this three strategies were selected: (i) sequential exclusion of 3 occurrences from 
the 43 stl pre-79 iterated 14 times (43m3 × 14); (ii) random selection of 30 of the 43 iterated 
14 times (43r30 × 14); and (iii) the same random selection as in (ii) iterated 28 times (43r30 
× 28). Here, m stays for minus and r for random while x is the multiplier. Figure 4a shows the 
distribution of the two temporal groups of occurrences. Figure 4b shows the prediction pat-
tern from the 43 pre-79 DSP and ludAES as ISPs. In Fig. 4c we have the target pattern 
obtained by computing the median of the 14 ranks for each pixel of the corresponding 14 
prediction patterns from the 14 iterations of prediction/cross-validation. Obviously, the two 
patterns are rather similar. However, the target pattern also provides a statistics about the 
range of the ranks about the median.

The rank of the range of ranks is shown in Fig. 4d. It represents a measure of uncertainty 
of class membership (of the 200 classes used as default). The wider is the range of ranks, the 
higher is the uncertainty rank in the pattern of Fig. 4d. To exemplify the possible use of such 

Figure 3: Cumulative prediction-rate curves for the 217 post-97 stlaf occurrences for the 
entire Deba Valley study area and for the three sub-areas N, C and S, black, red, 
yellow and green, respectively.
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uncertainty, Fig. 4e shows the part of the target pattern in Fig. 4c, that corresponds to the 
lower 50% of the uncertainty pattern of Fig. 4d.

The target patterns were obtained also by the three strategies, 43m3 × 14, 43r30 × 14 and 
43r30 × 28, and then cross-validated using not only the 43 pre-79 occurrences but also the 49 
post-79 occurrences, as shown in Fig. 5a. There the prediction-rate curves are all very similar 
and the top 10% of the study area classified as hazardous contains 40% of the post-79 occur-
rences while the top 20% contains the 55% and the top 30% the 75%. We can also verify 
together with the prediction pattern ranks of the occurrences the corresponding uncertainty 
pattern ranks.

This is done in the diagram in Fig. 5b for each of the 49 post-79 occurrences in units of 
1,000. In the diagram, the prediction rates for target pattern 43m3 × 14 are compared with the 
corresponding uncertainties and with those for target pattern 43r30 × 28. An uncertainty rank 
of 500 corresponds to the 50% uncertainty/target combination in Fig. 4e.

Table 1:  Categorical and continuous field ISPs and Empirical Likelihood Ratio values for 
predictions using the entire Deba Valley study area, SA, and the three sub-areas, N, 
C and S. Abbreviations are as follows: u1-7 the land use classes, l1-24 the lithology 
units, A, C, E and S, are aspect, curvature, elevation and slope, respectively. Abbre-
viations are bold if ELR > 2.00. In Italics is the corresponding range of classes with 
maximum ratio in brackets. Crossed units indicate their absence in the sub-area.

Land use
classes, u

1, Very dense broad-leaved forest; 2, Dense broad-leaved forest; 3, Semi-
open broad-leaved forest; 4, Very dense coniferous forest; 5, Brush-land; 6, 
Grassland, pastures y cultivated areas; 7, Zones without vegetation.

Lithology
classes, l

1, Marly limestone; 2, Muddy Flysh; 3, Stratified limestone; 4, Marly lime-
stone; 5, Marl; 6, Sandstone and conglomerate; 7, Sandy Flysh; 8, Massive 
limestone; 9, Calcareous lutite and sandy marl; 10, Silicoclastic-calcareous 
Flysh; 11, Calcarenite, marl and calcareous breccia; 12, Calcareous Flysh; 
13, Pyroclastics; 14, Lavas; 15, Polygenic breccias; 16, Siliceous breccias; 
17, Well graded gravel; 18, Poorly graded gravel; 19, Clayey gravel; 20, Well 
graded sand; 21, Poorly graded sand; 22, Silty sand; 23, Clayey sand; 24, Silt 
and fine sand; 25, Residual clay; 26, Anthropogenic deposits.

SA
stlaf 906 
pre97

u6 = 2.49; l2 = 2.38, l4 = 2.30, l5 = 1.38, l10 = 1.80, l12 = 4.48, l18 = 1.74, 
l22 = 1.72; A < 1.25; C > 2.00 296.40–317.60 (max 2.17); E < 1.78; S < 1.78.

sub-a N
stlaf 460 
pre97

u6 = 1.83; l2 = 1.46, l4 = 1.20, l7 = 1.23, l10 = 1.99, l12 = 2.34, l18 = 1.36; 
l22 = 0.65; A < 1.52; C > 2.00 277.56–331.61 (max 4.99); E < 1.61; S < 1.59.

sub-a C
stlaf 225
pre97

u6 = 2.66; l2 = 0.49, l3 = 2.75, l4, l5 = 1.60; l7 = 1.34, l10, l12, l18, l22 = 2.53; l24 
= 1.16; A < 1.50, C < 1.65; E < 1.57; S < 1.25.

sub-a S
stlaf 221
pre97

u5 = 1.14, u6 = 2.29; l2, l4, l5 = 1.41, l10 = 1.14, l12, l18 = 2.07, l22 = 2.16; A < 
1.50, C > 2.00 169.60–189.20 (max 2.37); E < 1.78; S < 1.42.
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Considerations on an acceptable uncertainty level could help in assessing the predicted 
occurrences not only on their prediction score but also on the uncertainty score of class mem-
bership.

Other considerations can be made on the predictability of the post-79 occurrences by the 
pre-79, observing the prediction rates for the units, classes and values for the ISPs of the two 
groups, shown in Table 2. A prediction pattern using the pre-79 occurrences shows higher 
ELR values for l3, u2 and d2 while the one obtained using the post-79 (not shown here but 
source of the ratios) shows higher values for l4.

Figure 4: Distribution of shallow translational landslides in the Fanhões-Trancão study area 
in Portugal in (A). Prediction, target, uncertainty and 50% uncertainty/target 
combination patterns, respectively in (B) to (E).
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Figure 5: Target prediction rates in (A) for 49 post-79 stl occurrences for the three analyses 
using the 43 pre-79 occurrences in the Fanhões-Trancão study area: 43r30 × 28, 
43r30 × 14 and 43m3 × 14. In (B) the histogram of the 43m3 × 14 target rates for 
each of the 49 post-79 occurrences, in red, and the corresponding uncertainty rates 
for analyses 43m3 × 14 in green and 43r30 × 28 in blue.

Table 2: Categorical and continuous field ISP and Empirical Likelihood Ratio values for pre-
dictions in the Fanhões-Trancão study area. Abbreviations are as follows: l1–6 the 
 lithology units, u1–5 the land use classes, d1–3 the surficial deposit classes, A, E and S, 
are aspect, elevation and slope, respectively. Abbreviations are bold if ELR > 2.00. In 
Italics is the corresponding range of classes with maximum ratio in brackets.

Lithology
classes, l

1, Volcanics; 2, Sandstones; 3, Marls and marly limestones; 4, Limestones; 
5, Lacustrine limestones; 6, Conglomerates and sandstones.

Land use
classes, u

1, Cultivated areas; 2, Dense shrubs; 3, Herbaceous vegetation; 4, Trees 
and tree cover; 5, Urban and human intervention areas.

Surficial 
 deposits, d

1, slope deposits thinner than 0.5 m; 2, slope deposits thicker than 0.5 m; 
3, fluvial deposits; 4, Quaternary terrace; 5, Cliff of cuestas.

stl 43  pre-79 l2 = 2.69, l3 = 2.50, l4 = 1.75; u1 = 1.02, u2 = 2.24; d2 = 2.21; A >2 237.90–
102.52, 285.19–338.56 (max 2.85); E < 1.94; S >2 9.74–28.36 (max 4.46).

stl 49 post-79 l2 = 2.40, l3 = 0.92, l4 = 2.14; u1 = 1.18, u2 = 1.45; d2 = 1.81; A >2 244.75–
307.57 (max 3.09); E < 1.89; S >2 13.14–29.00 (max 4.28).
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4.3 Separation of well predicting and well predicted occurrences

Strategies of iterative cross-validation can be used for other purposes such as for separating 
the occurrences of a DSP into groups of well predicting and well-predicted occurrences from 
poorly predicting and predicted ones.

This was done for the database of central Slovenia for two dynamic types of landslide 
occurrences. Figure 6a shows the distribution of 41 instant slides, is, in black, and of 47 
 fossil/dormant landslides, fdl, in green. In this case, no subdivision into time of occurrence 

Figure 6: Distribution of 41 is occurrences in black, and 47 fdl in green, for the central 
Slovenia study area, in (A). Occurrence dimension exaggerated for visibility. Target 
patterns from 41m3 × 13 is in (B) and from 47m3 × 15 fdl in (C). In (D) and (E) the 
prediction patterns obtained for 28 is GT800 and 33 fdl GT900. In (F) and (G) the 
prediction patterns for 13 is LT800 and 14 fdl LT900. Explanations are in the text.



204 Andrea G. Fabbri & Chang-Jo Chung, Int. J. of Safety and Security Eng., Vol. 6, No. 2 (2016)

was available, so that the cross-validation strategies were used of 41m3 × 14 for is and 47m3 
× 15 for fdl. Using clACSDgDsDw as ISPs, they produced the respective prediction-rate 
curves shown in Fig. 7a: a rather good curve for fdl and a poor one for is. The corresponding 
target patterns are shown in Figs 6b and c.

Another strategy was then used to explore the good and bad target patterns. One occur-
rence was sequentially selected to predict all the remaining ones. This led to 41 iterations for 

Figure 7: Prediction-rate curves of target patterns for is and fdl occurrences in the central 
Slovenia study area. In (A) for the 41 is, and the 47 fdl, and in (B) for the subgroups 
of 28 and 13 is and the 33 and 14 fdl. In (C) the distribution of occurrences of the 
4 sub-groups: 28 and 13 is in black and red, 33 and 14 fdl in green and blue, 
respectively.



 Andrea G. Fabbri & Chang-Jo Chung, Int. J. of Safety and Security Eng., Vol. 6, No. 2 (2016) 205

is and 47 for fdl. The corresponding 41 × 41 and 47 × 47 arrays of prediction rates were used 
to separate the respective occurrences into a well predicted/predicting group and a group of 
poorly predicted/predicting ones.

A threshold of 800, that is, the top 20% of predicted values was arbitrarily selected for is 
occurrences, and one of 900, that is, the top 10% was selected for fdl occurrences. One group 

Table 3: Categorical and continuous field ISP and Empirical Likelihood Ratio values for 
predictions in the central Slovenia study area. Abbreviations are as follows: c1–14 the 
CORINE land use classes, l1–14 the lithology units, A, C and S, are aspect, curvature 
and slope, and Dg, Ds and Dw are the logarithmic distances from geological bound-
aries, structuring elements and surficial waters, respectively. Abbreviations are bold 
if ELR > 2.00. In Italics is the corresponding range of classes with maximum ratio 
in brackets.

CORINE
land use
classes, c

1, Broad-leaved forest; 2, Complex cultivated patterns; 3, Mixed forest; 4, 
Non-irrigated arable land; 5, Coniferous forest; 6, Industrial, commercial and 
service units; 7, Transitional woodland scrub; 8, Water courses; 9, Mineral 
extracts; 10, Natural grassland; 11, Discontinuous urban fabric; 12, Irrigated 
arable land; 13, Pastures; 14, Land principally occupied by agriculture, with 
significant areas of natural vegetation.

Lithology
units, l

1, Alluvium; 2, Talus; 3, Sandy and marly clay, clay, sandstone; 4, Lake and 
marsh sediments; 5, Morene, breccia; 6, Conglomerate; 7, Flish; 8, Lime-
stone, marly limestone, marl; 9, Limestone; 10, Shaly claystone and other 
rocks; 11, Limestone and dolomite; 12, Dolomite; 13, Sandstone, shaly clay-
stone, tuff; 14, Sandstone, argillite, tuff; 15, Pyroclastites; 16, Pyroclastites, 
limestone; 17, Sandstone, shaly claystone, alveolite, conglomerate, marl; 18, 
Marly limestone, dolomite, sandy shale.

is 41 c2 = 2.22; l3 = 2.43, l17 = 2.92; A >2.00 65.52-93.96 (max 2.47), C <1.34, S 
>2.00 32.85–40.48 (max 3.31); Dg <1.65, Ds <1.39, Dw >2.00 1.562–3.701 
(max 2.79).

is 28
GT800

c2 = 2.77; l3 = 3.94, l17 = 0.00; A >2.00 62.28–84.60 (max 2.26); C <1.54; S 
>2.00 32.69–37.20 (max 2.70); Dg <1.83, Ds <1.68, Dw >2.00 0.000–3.764 
(max 3.61).

is 13
LT800

c2 = 1.36; l3 = 0.13, l7 = 2.39; l17 = 7.38; A >2.00 67.32–105.84 (max 3.00); 
C <1.07; S >2.00 33.27–42.12 (max 5.83); Dg <1.58; Ds > 2.00 6.734–7.000 
(max 2.24); Dw >2.00 6.574–7.064 (max 2.59).

fdl 47 c13 = 4.80, c14 = 1.92; l4 =2.77, l5 = 2.84, l15 = 1.43; l18 = 1.98; A >2.00 
157.68–177.48 (max 2.09); C <1.48; S <1.09; Dg >2.00 1.606–4.158 
(max 3.02), Ds <1.00, Dw >2.00 3.615–4.570 (max 2.49).

fdl 33
GT900

c13 = 5.99, c14 = 1.50; l4 =3.95, l5 = 4.06, l15 = 0.97, l18 = 1.54; A >2.00 
151.20–182.52 (max 2.05); C <1.71; S <1.09; Dg >2.00 1.523–4.365, 
(max 4.28); Ds <1.61; Dw >2.00 3.449–4.570 (max 2.98).

fdl 14
LT900

c13 = 2.00, c14 = 2.92; l4 = 0.00, l5 = 0.00, l15 = 2.51, l18 = 3.01; A >2.00 
19.08–50.04, 159.48–174.96 (max 2.96); C < 1.19; S >2.00 28.18–32.79 
(max 2.49); Dg < 1.75, Ds <1.99, Dw < 1.99.
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contained all occurrences predicting more than 10 ones with value equal or above the 
 threshold or predicted by at least 10 other ones with a value equal or above that threshold. 
Thus 28 is and 33 fdl occurrences were classified as well predicted/predicting and the remain-
ing 13 and 14 were classified as poorly predicted/predicting is and fdl, respectively.

After the separation of the two groups for each type, new iterative cross-validations were 
obtained as 28m3 × 9, 33m3 × 11, 13m3 × 4 and 18m3 × 6. The respective prediction rates 
are shown in Fig. 7b, while the separate prediction patterns are in Fig. 6d–g. Note the 
 similarity of the target patterns in Fig. 6b with the prediction pattern in Fig. 6d for is occur-
rences, and of those of Fig. 6c with that of Fig. 6e for fdl occurrences.

Table 3 shows the ELR values for the ISPs supporting the two sets of DSPs, is and fdl and 
for the respective sub-sets. We can observe how the subsets concentrate the support of the 
units and values of ISP ratios. In is GT800, we have ratios similar to those in is 41 except for 
l17 with 0 ratio. In is LT800, the ratios are quite different with higher values for l7, l17 and S. 
As to fdl GT900, the ratios are close to those of fdl 47 but with higher values for c13, l4 and 
l5. For fdl LT900, we have lower ratios for c13 and higher for c14, ratios of 0 for l4 and l5 but 
higher for l15 and l18. These differences are the reasons for the different rankings of the 
 patterns in Fig. 6d and 6f as well for the ones in Fig. 6e and 6g.

5 QUESTIONS AND CONCLUDING REMARKS
Many aspects of spatial prediction modelling provide challenges that demand experimen-
tations on representative databases. The three applications of blind-testing described offer 
the opportunity of questions for future research. How to identify optimal study area exten-
sions to obtain acceptable prediction patterns and prediction-rate curves? The Deba Valley 
database provides an example of how to proceed. How to explore the uncertainty of class 
membership to interpret the target patterns? The Fanhões-Trancão database shows some 
strategies for that. How to identify the database signatures supporting a prediction pattern 
for a specific type of occurrence? What to do with poorly predicted/predicting occurrences? 
Should we ignore them as outliers? Or should they be part of the database signature with 
poorer prediction rates? Should we respect the signatures identified? Part of the central 
Slovenia database is used here to stimulate such questions. Furthermore, strategies can 
consider other types of spatial modelling for applications other than hazard prediction. 
Whenever a database targets relationships that are integral part of spatial processes we 
must be able to develop appropriate strategies of blind testing to assess the quality of the 
prediction patterns. The cross-validation strategies described here appear uncommon or 
unexploited to date.
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